Gold Nanoparticles-based Bio-Sensing Methods for Tumor-related Biomedical Applications in Bodily Fluids

Author(s): Lingling Li, Bing Han, Ying Wang, Hai Shi, Jing Zhao*, Genxi Li*.

Journal Name: Current Nanoscience

Volume 16 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Cancer is one of most dangerous diseases that seriously threaten human health, while tumor biomarkers provide important information for clinical diagnosis and treatment of cancers. Given the low abundance of tumor biomarkers in the bodily fluids at the early stage of cancers, it is particularly important to develop bio sensing methods for accurate measurement of tumor biomarkers with high sensitivity.

Objective: Nowadays, gold nanoparticles (AuNPs) that have remarkable physical and chemical properties are extensively used in the design of biosensing strategies. In this context, we mainly review the research progress of AuNPs-based biosensing methods for tumor-related biomedical applications in bodily fluids in recent years.

Results: Optical, electrochemical and mass spectrometric biosensing methods using AuNPs are widely used for excellent performances in the assay of tumor biomarkers.

Conclusion: The existing methods demonstrate high clinical value, while challenges and expectation of biosensing method in tumor-related biomedical application are also discussed.

Keywords: Gold nanoparticles, biosensing method, tumor biomarker, optical method, electrochemical technique, ICP-MS.

[1]
Ranjan, R.; Esimbekova, E.N.; Kratasyuk, V.A. Rapid biosensing tools for cancer biomarkers. Biosens. Bioelectron., 2017, 87, 918-930.
[http://dx.doi.org/10.1016/j.bios.2016.09.061] [PMID: 27664412]
[2]
Dancey, J.E.; Bedard, P.L.; Onetto, N.; Hudson, T.J. The genetic basis for cancer treatment decisions. Cell, 2012, 148(3), 409-420.
[http://dx.doi.org/10.1016/j.cell.2012.01.014] [PMID: 22304912]
[3]
Wu, L.; Qu, X. Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev., 2015, 44(10), 2963-2997.
[http://dx.doi.org/10.1039/C4CS00370E] [PMID: 25739971]
[4]
Yin, Y.; Cao, Y.; Xu, Y.; Li, G. Colorimetric immunoassay for detection of tumor markers. Int. J. Mol. Sci., 2010, 11(12), 5077-5094.
[http://dx.doi.org/10.3390/ijms11125077] [PMID: 21614193]
[5]
Borrebaeck, C.A.K. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. Nat. Rev. Cancer, 2017, 17(3), 199-204.
[http://dx.doi.org/10.1038/nrc.2016.153] [PMID: 28154374]
[6]
Ludwig, J.A.; Weinstein, J.N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer, 2005, 5(11), 845-856.
[http://dx.doi.org/10.1038/nrc1739] [PMID: 16239904]
[7]
Exarchakou, A.; Rachet, B.; Belot, A.; Maringe, C.; Coleman, M.P. Impact of national cancer policies on cancer survival trends and socioeconomic inequalities in England, 1996-2013: population based study. BMJ, 2018, 360, k764.
[http://dx.doi.org/10.1136/bmj.k764] [PMID: 29540358]
[8]
Kitano, M.; Kudo, M.; Yamao, K.; Takagi, T.; Sakamoto, H.; Komaki, T.; Kamata, K.; Imai, H.; Chiba, Y.; Okada, M.; Murakami, T.; Takeyama, Y. Characterization of small solid tumors in the pancreas: the value of contrast-enhanced harmonic endoscopic ultrasonography. Am. J. Gastroenterol., 2012, 107(2), 303-310.
[http://dx.doi.org/10.1038/ajg.2011.354] [PMID: 22008892]
[9]
Li, R.; Jia, X.; Lewis, J.H.; Gu, X.; Folkerts, M.; Men, C.; Jiang, S.B. Real-time volumetric image reconstruction and 3D tumor localization based on a single X-ray projection image for lung cancer radiotherapy. Med. Phys., 2010, 37(6), 2822-2826.
[http://dx.doi.org/10.1118/1.3426002] [PMID: 20632593]
[10]
Maas, M.; Lambregts, D.M.; Nelemans, P.J.; Heijnen, L.A.; Martens, M.H.; Leijtens, J.W.; Sosef, M.; Hulsewé, K.W.E.; Hoff, C.; Breukink, S.O.; Stassen, L.; Beets-Tan, R.G.H.; Beets, G.L. Assessment of clinical complete response after chemoradiation for rectal cancer with digital rectal examination, endoscopy, and MRI: Selection for organ-saving treatment. Ann. Surg. Oncol., 2015, 22(12), 3873-3880.
[http://dx.doi.org/10.1245/s10434-015-4687-9] [PMID: 26198074]
[11]
Morales-Oyarvide, V.; Yoon, W.J.; Ingkakul, T.; Forcione, D.G.; Casey, B.W.; Brugge, W.R.; Fernández-del Castillo, C.; Pitman, M.B. Cystic pancreatic neuroendocrine tumors: the value of cytology in preoperative diagnosis. Cancer Cytopathol., 2014, 122(6), 435-444.
[http://dx.doi.org/10.1002/cncy.21403] [PMID: 24591417]
[12]
Haber, D.A.; Velculescu, V.E. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov., 2014, 4(6), 650-661.
[http://dx.doi.org/10.1158/2159-8290.CD-13-1014] [PMID: 24801577]
[13]
Shigeyasu, K.; Toden, S.; Zumwalt, T.J.; Okugawa, Y.; Goel, A. Emerging role of micrornas as liquid biopsy biomarkers in gastrointestinal cancers. Clin. Cancer Res., 2017, 23(10), 2391-2399.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1676] [PMID: 28143873]
[14]
Chen, Z.; Gaudino, G.; Pass, H.I.; Carbone, M.; Yang, H. Diagnostic and prognostic biomarkers for malignant mesothelioma: an update. Transl. Lung Cancer Res., 2017, 6(3), 259-269.
[http://dx.doi.org/10.21037/tlcr.2017.05.06] [PMID: 28713671]
[15]
Abelev, G.I. Production of embryonal serum α-globulin by hepatomas: review of experimental and clinical data. Cancer Res., 1968, 28(7), 1344-1350.
[PMID: 4174340]
[16]
He, C.Z.; Zhang, K.H.; Li, Q.; Liu, X.H.; Hong, Y.; Lv, N.H. Combined use of AFP, CEA, CA125 and CAl9-9 improves the sensitivity for the diagnosis of gastric cancer. BMC Gastroenterol., 2013, 13, 87-91.
[http://dx.doi.org/10.1186/1471-230X-13-87] [PMID: 23672279]
[17]
Wang, J.; Long, J.; Liu, Z.; Wu, W.; Hu, C. Label-free and high-throughput biosensing of multiple tumor markers on a single light-addressable photoelectrochemical sensor. Biosens. Bioelectron., 2017, 91, 53-59.
[http://dx.doi.org/10.1016/j.bios.2016.12.029] [PMID: 27988479]
[18]
Partin, A.W.; Catalona, W.J.; Southwick, P.C.; Subong, E.N.; Gasior, G.H.; Chan, D.W. Analysis of percent free prostate-specific antigen (PSA) for prostate cancer detection: influence of total PSA, prostate volume, and age. Urology, 1996, 48(6A)(Suppl.), 55-61.
[http://dx.doi.org/10.1016/S0090-4295(96)00611-5] [PMID: 8973701]
[19]
Ricardo, S.; Vieira, A.F.; Gerhard, R.; Leitão, D.; Pinto, R.; Cameselle-Teijeiro, J.F.; Milanezi, F.; Schmitt, F.; Paredes, J. Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J. Clin. Pathol., 2011, 64(11), 937-946.
[http://dx.doi.org/10.1136/jcp.2011.090456] [PMID: 21680574]
[20]
Carney, D.N.; Marangos, P.J.; Ihde, D.C.; Bunn, P.A., Jr; Cohen, M.H.; Minna, J.D.; Gazdar, A.F. Serum neuron-specific enolase: a marker for disease extent and response to therapy of small-cell lung cancer. Lancet, 1982, 1(8272), 583-585.
[http://dx.doi.org/10.1016/S0140-6736(82)91748-2] [PMID: 6121182]
[21]
Kong, W.; He, L.; Richards, E.J.; Challa, S.; Xu, C.X.; Permuth-Wey, J.; Lancaster, J.M.; Coppola, D.; Sellers, T.A.; Djeu, J.Y.; Cheng, J.Q. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene, 2014, 33(6), 679-689.
[http://dx.doi.org/10.1038/onc.2012.636] [PMID: 23353819]
[22]
Markou, A.; Zavridou, M.; Lianidou, E.S. miRNA-21 as a novel therapeutic target in lung cancer. Lung Cancer (Auckl.), 2016, 7, 19-27.
[PMID: 28210157]
[23]
Szabó, Z.; Szegedi, K.; Gombos, K.; Mahua, C.; Flaskó, T.; Harda, K.; Halmos, G. Expression of miRNA-21 and miRNA-221 in clear cell renal cell carcinoma (ccRCC) and their possible role in the development of ccRCC. Urol. Oncol., 2016, 34(12), 533.e21-533.e27.
[http://dx.doi.org/10.1016/j.urolonc.2016.06.011] [PMID: 27427222]
[24]
Brase, J.C.; Johannes, M.; Schlomm, T.; Fälth, M.; Haese, A.; Steuber, T.; Beissbarth, T.; Kuner, R.; Sültmann, H. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int. J. Cancer, 2011, 128(3), 608-616.
[http://dx.doi.org/10.1002/ijc.25376] [PMID: 20473869]
[25]
Mo, M.H.; Chen, L.; Fu, Y.; Wang, W.; Fu, S.W. Cell-free circulating miRNA biomarkers in cancer. J. Cancer, 2012, 3, 432-448.
[http://dx.doi.org/10.7150/jca.4919] [PMID: 23074383]
[26]
Alix-Panabières, C.; Pantel, K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov., 2016, 6(5), 479-491.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1483] [PMID: 26969689]
[27]
Milane, L.; Singh, A.; Mattheolabakis, G.; Suresh, M.; Amiji, M.M. Exosome mediated communication within the tumor microenvironment. J. Control. Release, 2015, 219, 278-294.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.029] [PMID: 26143224]
[28]
Aravanis, A.M.; Lee, M.; Klausner, R.D. Next-generation sequencing of circulating tumor DNA for early cancer detection. Cell, 2017, 168(4), 571-574.
[http://dx.doi.org/10.1016/j.cell.2017.01.030] [PMID: 28187279]
[29]
Li, L.; Feng, D.; Zhang, Y. Simultaneous detection of two tumor markers using silver and gold nanoparticles decorated carbon nanospheres as labels. Anal. Biochem., 2016, 505, 59-65.
[http://dx.doi.org/10.1016/j.ab.2016.04.014] [PMID: 27156810]
[30]
Zhu, X.; Chen, Z.; Zhang, X.; Zhu, Z.; Li, G. Biomolecule-directed assembly of binary gold and titanium dioxide nanoparticles. J. Nanosci. Nanotechnol., 2010, 10(2), 1021-1024.
[http://dx.doi.org/10.1166/jnn.2010.1807] [PMID: 20352751]
[31]
Zhao, J.; Bo, B.; Yin, Y.M.; Li, G.X. Gold nanoparticles-based biosensors for biomedical application. Nano Life, 2012, 021230008
[http://dx.doi.org/10.1142/S1793984412300087]
[32]
Ma, J.; Hu, X.; Tao, Y.; Li, C.; Mao, X.; Li, G. Gold nanoparticle-based biosensors for the assay of tumor marker proteins with clinical applications. Adv. Mater. Lett., 2017, 8, 1125-1131.
[http://dx.doi.org/10.5185/amlett.2017.1552]
[33]
Yoon, H. Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials (Basel), 2013, 3(3), 524-549.
[http://dx.doi.org/10.3390/nano3030524] [PMID: 28348348]
[34]
Howes, P.D.; Chandrawati, R.; Stevens, M.M. Bionanotechnology. Colloidal nanoparticles as advanced biological sensors. Science, 2014, 346(6205)1247390
[http://dx.doi.org/10.1126/science.1247390] [PMID: 25278614]
[35]
Lan, L.; Yao, Y.; Ping, J.; Ying, Y. Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens. Bioelectron., 2017, 91, 504-514.
[http://dx.doi.org/10.1016/j.bios.2017.01.007] [PMID: 28082239]
[36]
Kumar, S.; Ahlawat, W.; Kumar, R.; Dilbaghi, N. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens. Bioelectron., 2015, 70, 498-503.
[http://dx.doi.org/10.1016/j.bios.2015.03.062] [PMID: 25899923]
[37]
Dykman, L.; Khlebtsov, N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev., 2012, 41(6), 2256-2282.
[http://dx.doi.org/10.1039/C1CS15166E] [PMID: 22130549]
[38]
Bubniene, U.; Oćwieja, M.; Bugelyte, B.; Adamczyk, Z.; Nattich-Rak, M.; Voronovic, J.; Ramanaviciene, V.; Ramanavicius, A. Deposition of gold nanoparticles on mica modified by poly (allylamine hydrochloride) monolayers. Colloids Surf. A Physicochem. Eng. Asp., 2014, 441, 204-210.
[http://dx.doi.org/10.1016/j.colsurfa.2013.08.058]
[39]
Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev., 2012, 112(5), 2739-2779.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[40]
Li, G. Nano-inspired Biosensors for Protein Assay with Clinical Applications; Elsevier Inc., 2018.
[41]
Zhao, J.; Hu, S.; Zhong, W.; Wu, J.; Shen, Z.; Chen, Z.; Li, G. Highly sensitive electrochemical aptasensor based on a ligase-assisted exonuclease III-catalyzed degradation reaction. ACS Appl. Mater. Interfaces, 2014, 6(10), 7070-7075.
[http://dx.doi.org/10.1021/am502053d] [PMID: 24786305]
[42]
Li, C.; Wu, D.; Hu, X.; Xiang, Y.; Shu, Y.; Li, G. One-step modification of electrode surface for ultrasensitive and highly selective detection of nucleic acids with practical applications. Anal. Chem., 2016, 88(15), 7583-7590.
[http://dx.doi.org/10.1021/acs.analchem.6b01250] [PMID: 27374134]
[43]
Yan, X.; Li, H.; Li, Y.; Su, X. Visual and fluorescent detection of acetamiprid based on the inner filter effect of gold nanoparticles on ratiometric fluorescence quantum dots. Anal. Chim. Acta, 2014, 852, 189-195.
[http://dx.doi.org/10.1016/j.aca.2014.09.008] [PMID: 25441897]
[44]
He, P.; Liu, L.; Qiao, W.; Zhang, S. Ultrasensitive detection of thrombin using surface plasmon resonance and quartz crystal microbalance sensors by aptamer-based rolling circle amplification and nanoparticle signal enhancement. Chem. Commun. (Camb.), 2014, 50(12), 1481-1484.
[http://dx.doi.org/10.1039/C3CC48223E] [PMID: 24365778]
[45]
Daniel, M.C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1), 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[46]
Sato, K.; Hosokawa, K.; Maeda, M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc., 2003, 125(27), 8102-8103.
[http://dx.doi.org/10.1021/ja034876s] [PMID: 12837070]
[47]
Zhao, W.; Brook, M.A.; Li, Y. Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem, 2008, 9(15), 2363-2371.
[http://dx.doi.org/10.1002/cbic.200800282] [PMID: 18821551]
[48]
Aldewachi, H.; Chalati, T.; Woodroofe, M.N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold nanoparticle-based colorimetric biosensors. Nanoscale, 2017, 10(1), 18-33.
[http://dx.doi.org/10.1039/C7NR06367A] [PMID: 29211091]
[49]
Du, G.; Zhang, D.; Xia, B.; Xu, L.; Wu, S.; Zhan, S.; Ni, X.; Zhou, X.T.; Wang, L. A label-free colorimetric progesterone aptasensor based on the aggregation of gold nanoparticles. Mikrochim. Acta, 2016, 183, 2251-2258.
[http://dx.doi.org/10.1007/s00604-016-1861-0]
[50]
Zhang, J.; Chen, Y.; Li, D.; Cao, Y.; Wang, Z.; Li, G. Colorimetric determination of islet amyloid polypeptide fibrils and their inhibitors using resveratrol functionalized gold nanoparticles. Mikrochim. Acta, 2015, 183, 659-665.
[http://dx.doi.org/10.1007/s00604-015-1687-1]
[51]
Wei, L.; Wang, X.; Li, C.; Li, X.; Yin, Y.; Li, G. Colorimetric assay for protein detection based on “nano-pumpkin” induced aggregation of peptide-decorated gold nanoparticles. Biosens. Bioelectron., 2015, 71, 348-352.
[http://dx.doi.org/10.1016/j.bios.2015.04.072] [PMID: 25932793]
[52]
Fan, D.; Zhai, Q.; Zhou, W.; Zhu, X.; Wang, E.; Dong, S. A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation. Biosens. Bioelectron., 2016, 85, 771-776.
[http://dx.doi.org/10.1016/j.bios.2016.05.080] [PMID: 27281107]
[53]
Chen, G.H.; Chen, W.Y.; Yen, Y.C.; Wang, C.W.; Chang, H.T.; Chen, C.F. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem., 2014, 86(14), 6843-6849.
[http://dx.doi.org/10.1021/ac5008688] [PMID: 24932699]
[54]
Teengam, P.; Siangproh, W.; Tuantranont, A.; Vilaivan, T.; Chailapakul, O.; Henry, C.S. Multiplex paper-based colorimetric DNA sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal. Chem., 2017, 89(10), 5428-5435.
[http://dx.doi.org/10.1021/acs.analchem.7b00255] [PMID: 28394582]
[55]
Wei, X.; Chen, Z.; Tan, L.; Lou, T.; Zhao, Y. DNA-catalytically active gold nanoparticle conjugates-based colorimetric multidimensional sensor array for protein discrimination. Anal. Chem., 2017, 89(1), 556-559.
[http://dx.doi.org/10.1021/acs.analchem.6b04878] [PMID: 27966888]
[56]
Wu, D.; Gao, T.; Lei, L.; Yang, D.; Mao, X.; Li, G. Colorimetric detection of proteins based on target-induced activation of aptazyme. Anal. Chim. Acta, 2016, 942, 68-73.
[http://dx.doi.org/10.1016/j.aca.2016.09.010] [PMID: 27720123]
[57]
Borghei, Y.S.; Hosseini, M.; Dadmehr, M.; Hosseinkhani, S.; Ganjali, M.R.; Sheikhnejad, R. Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization. Anal. Chim. Acta, 2016, 904, 92-97.
[http://dx.doi.org/10.1016/j.aca.2015.11.026] [PMID: 26724767]
[58]
Properzi, F.; Logozzi, M.; Fais, S. Exosomes: the future of biomarkers in medicine. Biomarkers Med., 2013, 7(5), 769-778.
[http://dx.doi.org/10.2217/bmm.13.63] [PMID: 24044569]
[59]
Jiang, Y.; Shi, M.; Liu, Y.; Wan, S.; Cui, C.; Zhang, L.; Tan, W. Aptamer/AuNP biosensor for colorimetric profiling of exosomal proteins. Angew. Chem. Int. Ed. Engl., 2017, 56(39), 11916-11920.
[http://dx.doi.org/10.1002/anie.201703807] [PMID: 28834063]
[60]
Sanromán-Iglesias, M.; Lawrie, C.H.; Liz-Marzán, L.M.; Grzelczak, M. The role of chemically modified DNA in discrimination of single-point mutation through plasmon-based colorimetric assays. ACS Appl. Nano Mater., 2018, 1, 3741-3746.
[http://dx.doi.org/10.1021/acsanm.8b00984]
[61]
Lederle, W.; Linde, N.; Heusel, J.; Bzyl, J.; Woenne, E.C.; Zwick, S.; Skobe, M.; Kiessling, F.; Fusenig, N.E.; Mueller, M.M. Platelet-derived growth factor-B normalizes micromorphology and vessel function in vascular endothelial growth factor-A-induced squamous cell carcinomas. Am. J. Pathol., 2010, 176(2), 981-994.
[http://dx.doi.org/10.2353/ajpath.2010.080998] [PMID: 20042679]
[62]
Zhang, H.; Li, F.; Chen, H.; Ma, Y.; Qi, S.; Chen, X.; Zhou, L. AuNPs colorimetric sensor for detecting platelet-derived growth factor-BB based on isothermal target-triggering strand displacement amplification. Sens. Actuators B Chem., 2015, 207, 748-755.
[http://dx.doi.org/10.1016/j.snb.2014.11.007]
[63]
Ma, X.; Gao, L.; Tang, Y.; Miao, P. Gold nanoparticles‐based DNA logic gate for miRNA inputs analysis coupling strand displacement reaction and hybridization chain reaction. Part. Part. Syst. Charact., 2018, 35 1700326
[http://dx.doi.org/10.1002/ppsc.201700326]
[64]
Demuyser, L.; Van Genechten, W.; Mizuno, H.; Colombo, S.; Van Dijck, P. Introducing fluorescence resonance energy transfer-based biosensors for the analysis of cAMP-PKA signalling in the fungal pathogen Candida glabrata. Cell. Microbiol., 2018, 20(10) e12863
[http://dx.doi.org/10.1111/cmi.12863] [PMID: 29845711]
[65]
Borghei, Y.S.; Hosseini, M.; Ganjali, M.R.; Hosseinkhani, S. A novel BRCA1 gene deletion detection in human breast carcinoma MCF-7 cells through FRET between quantum dots and silver nanoclusters. J. Pharm. Biomed. Anal., 2018, 152, 81-88.
[http://dx.doi.org/10.1016/j.jpba.2018.01.014] [PMID: 29414022]
[66]
Sun, Y.; Lu, X.; Su, F.; Wang, L.; Liu, C.; Duan, X.; Li, Z. Real-time fluorescence ligase chain reaction for sensitive detection of single nucleotide polymorphism based on fluorescence resonance energy transfer. Biosens. Bioelectron., 2015, 74, 705-710.
[http://dx.doi.org/10.1016/j.bios.2015.07.028] [PMID: 26210467]
[67]
Wu, Y.; Guo, W.; Peng, W.; Zhao, Q.; Piao, J.; Zhang, B.; Wu, X.; Wang, H.; Gong, X.; Chang, J. Enhanced fluorescence ELISA based on HAT triggering fluorescence “turn-on” with enzyme-antibody dual labeled AuNP probes for ultrasensitive detection of AFP and HBsAg. ACS Appl. Mater. Interfaces, 2017, 9(11), 9369-9377.
[http://dx.doi.org/10.1021/acsami.6b16236] [PMID: 28252291]
[68]
Xu, S.; Zhang, F.; Xu, L.; Liu, X.; Ma, P.; Sun, Y.; Wang, X.H.; Song, D.Q. A fluorescence resonance energy transfer biosensor based on carbon dots and gold nanoparticles for the detection of trypsin. Sens. Actuators B Chem., 2018, 273, 1015-1021.
[http://dx.doi.org/10.1016/j.snb.2018.07.023]
[69]
Zhang, C.; Ding, C.; Zhou, G.; Xue, Q.; Xian, Y. One-step synthesis of DNA functionalized cadmium-free quantum dots and its application in FRET-based protein sensing. Anal. Chim. Acta, 2017, 957, 63-69.
[http://dx.doi.org/10.1016/j.aca.2016.12.024] [PMID: 28107835]
[70]
Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir, 2005, 21(23), 10644-10654.
[http://dx.doi.org/10.1021/la0513712] [PMID: 16262332]
[71]
Fu, Y.K.; Chen, T.; Wang, G.; Gu, T.; Xie, C.; Huang, J.; Li, X.; Best, S.; Han, G.R. Production of a fluorescence resonance energy ransfer (FRET) biosensor membrane for microRNA detection J. Mater. Chem. B Mater. Biol. Med.,, 2017, 5, 7133-7139.
[http://dx.doi.org/10.1039/C7TB01399J]
[72]
Borghei, Y.S.; Hosseini, M.; Ganjali, M.R.; Ju, H. Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles. Mikrochim. Acta, 2018, 185(6), 286-294.
[http://dx.doi.org/10.1007/s00604-018-2825-3] [PMID: 29737423]
[73]
Yang, X.; Zhuo, Y.; Zhu, S.; Luo, Y.; Feng, Y.; Xu, Y. Selectively assaying CEA based on a creative strategy of gold nanoparticles enhancing silver nanoclusters’ fluorescence. Biosens. Bioelectron., 2015, 64, 345-351.
[http://dx.doi.org/10.1016/j.bios.2014.09.029] [PMID: 25259877]
[74]
Puiu, M.; Bala, C. SPR and SPR imaging: Recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors (Basel), 2016, 16(6), 870-884.
[http://dx.doi.org/10.3390/s16060870] [PMID: 27314345]
[75]
Cao, J.; Sun, T.; Grattan, K.T.V. Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sens. Actuators B Chem., 2014, 195, 332-351.
[http://dx.doi.org/10.1016/j.snb.2014.01.056]
[76]
Scarano, S.; Mascini, M.; Turner, A.P.; Minunni, M. Surface plasmon resonance imaging for affinity-based biosensors. Biosens. Bioelectron., 2010, 25(5), 957-966.
[http://dx.doi.org/10.1016/j.bios.2009.08.039] [PMID: 19765967]
[77]
Jazayeri, M.H.; Amani, H.; Pourfatollah, A.A.; Avan, A.; Ferns, G.A.; Pazoki-Toroudi, H. Enhanced detection sensitivity of prostate-specific antigen via PSA-conjugated gold nanoparticles based on localized surface plasmon resonance: GNP-coated anti-PSA/LSPR as a novel approach for the identification of prostate anomalies. Cancer Gene Ther., 2016, 23(10), 365-369.
[http://dx.doi.org/10.1038/cgt.2016.42] [PMID: 27740614]
[78]
Lee, J.U.; Nguyen, A.H.; Sim, S.J. A nanoplasmonic biosensor for label-free multiplex detection of cancer biomarkers. Biosens. Bioelectron., 2015, 74, 341-346.
[http://dx.doi.org/10.1016/j.bios.2015.06.059] [PMID: 26159154]
[79]
Wang, Q.; Li, Q.; Yang, X.; Wang, K.; Du, S.; Zhang, H.; Nie, Y. Graphene oxide-gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA. Biosens. Bioelectron., 2016, 77, 1001-1007.
[http://dx.doi.org/10.1016/j.bios.2015.10.091] [PMID: 26547426]
[80]
Liu, R.; Wang, Q.; Li, Q.; Yang, X.; Wang, K.; Nie, W. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens. Bioelectron., 2017, 87, 433-438.
[http://dx.doi.org/10.1016/j.bios.2016.08.090] [PMID: 27589408]
[81]
He, P.; Qiao, W.; Liu, L.; Zhang, S. A highly sensitive surface plasmon resonance sensor for the detection of DNA and cancer cells by a target-triggered multiple signal amplification strategy. Chem. Commun. (Camb.), 2014, 50(73), 10718-10721.
[http://dx.doi.org/10.1039/C4CC04776A] [PMID: 25083516]
[82]
Sharma, R.; Ragavan, K.V.; Thakur, M.S.; Raghavarao, K.S.M.S. Recent advances in nanoparticle based aptasensors for food contaminants. Biosens. Bioelectron., 2015, 74, 612-627.
[http://dx.doi.org/10.1016/j.bios.2015.07.017] [PMID: 26190473]
[83]
Li, J.; Wang, J.; Zhang, X.; Chang, H.; Wei, W. Highly selective detection of epidermal growth factor receptor by multifunctional gold-nanoparticle-based resonance Rayleigh scattering method. Sens. Actuators B Chem., 2018, 273, 1300-1306.
[http://dx.doi.org/10.1016/j.snb.2018.07.046]
[84]
Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B, 2003, 107, 668-677.
[http://dx.doi.org/10.1021/jp026731y]
[85]
Cheng, Z.; Choi, N.; Wang, R.; Lee, S.; Moon, K.C.; Yoon, S.Y.; Chen, L.; Choo, J. Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano, 2017, 11(5), 4926-4933.
[http://dx.doi.org/10.1021/acsnano.7b01536] [PMID: 28441008]
[86]
Li, J.; Skeete, Z.; Shan, S.; Yan, S.; Kurzatkowska, K.; Zhao, W.; Ngo, Q.M.; Holubovska, P.; Luo, J.; Hepel, M.; Zhong, C.J. Surface enhanced raman scattering detection of cancer biomarkers with bifunctional nanocomposite probes. Anal. Chem., 2015, 87(21), 10698-10702.
[http://dx.doi.org/10.1021/acs.analchem.5b03456] [PMID: 26479337]
[87]
Yang, C.T.; Pourhassan-Moghaddam, M.; Wu, L.; Bai, P.; Thierry, B. Ultrasensitive detection of cancer prognostic mirna biomarkers based on surface plasmon enhanced light scattering. ACS Sens., 2017, 2(5), 635-640.
[http://dx.doi.org/10.1021/acssensors.6b00776] [PMID: 28723162]
[88]
Li, C.; Ma, J.; Fan, Q.; Tao, Y.; Li, G. Dynamic light scattering (DLS)-based immunoassay for ultra-sensitive detection of tumor marker protein. Chem. Commun. (Camb.), 2016, 52(50), 7850-7853.
[http://dx.doi.org/10.1039/C6CC02633H] [PMID: 27247980]
[89]
Chen, G.; Tong, H.; Gao, T.; Chen, Y.; Li, G. Direct application of gold nanoparticles to one-pot electrochemical biosensors. Anal. Chim. Acta, 2014, 849, 1-6.
[http://dx.doi.org/10.1016/j.aca.2014.08.011] [PMID: 25300210]
[90]
Zhang, J.; Liu, Y.; Lv, J.; Cao, Y.; Li, G.X. Dipeptidyl peptidase-IV activity assay and inhibitor screening using a gold nanoparticle-modified gold electrode with an immobilized enzyme substrate. Mikrochim. Acta, 2015, 182, 281-288.
[http://dx.doi.org/10.1007/s00604-014-1329-z]
[91]
Zhang, J.; Wang, X.; Chen, T.; Feng, C.; Li, G. Electrochemical analysis of enzyme based on the self-assembly of lipid bilayer on an electrode surface mediated by hydrazone chemistry. Anal. Chem., 2017, 89(24), 13245-13251.
[http://dx.doi.org/10.1021/acs.analchem.7b03197] [PMID: 29164866]
[92]
Li, C.; Tao, Y.; Yang, Y.; Xiang, Y.; Li, G. In vitro analysis of DNA-protein interactions in gene transcription using DNAzyme-based electrochemical assay. Anal. Chem., 2017, 89(9), 5003-5007.
[http://dx.doi.org/10.1021/acs.analchem.7b00329] [PMID: 28367628]
[93]
Li, C.; Hu, X.; Lu, J.; Mao, X.; Xiang, Y.; Shu, Y.; Li, G. Design of DNA nanostructure-based interfacial probes for the electrochemical detection of nucleic acids directly in whole blood. Chem. Sci. (Camb.), 2017, 9(4), 979-984.
[http://dx.doi.org/10.1039/C7SC04663D] [PMID: 29629164]
[94]
Li, J.; He, G.; Wang, B.; Shi, L.; Gao, T.; Li, G. Fabrication of reusable electrochemical biosensor and its application for the assay of α-glucosidase activity. Anal. Chim. Acta, 2018, 1026, 140-146.
[http://dx.doi.org/10.1016/j.aca.2018.04.015] [PMID: 29852990]
[95]
Castañeda, A.D.; Brenes, N.J.; Kondajji, A.; Crooks, R.M. Detection of microRNA by electrocatalytic amplification: A general approach for single-particle biosensing. J. Am. Chem. Soc., 2017, 139(22), 7657-7664.
[http://dx.doi.org/10.1021/jacs.7b03648] [PMID: 28537750]
[96]
Rackus, D.G.; Shamsi, M.H.; Wheeler, A.R. Electrochemistry, biosensors and microfluidics: a convergence of fields. Chem. Soc. Rev., 2015, 44(15), 5320-5340.
[http://dx.doi.org/10.1039/C4CS00369A] [PMID: 25962356]
[97]
Bhakta, S.A.; Evans, E.; Benavidez, T.E.; Garcia, C.D. Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal. Chim. Acta, 2015, 872, 7-25.
[http://dx.doi.org/10.1016/j.aca.2014.10.031] [PMID: 25892065]
[98]
Khalil, I.; Julkapli, N.M.; Yehye, W.A.; Basirun, W.J.; Bhargava, S.K. Graphene-gold nanoparticles hybrid-synthesis, functionalization, and application in a electrochemical and surface-enhanced Raman scattering biosensor. Materials (Basel), 2016, 9(6) E406
[http://dx.doi.org/10.3390/ma9060406] [PMID: 28773528]
[99]
Deiminiat, B.; Rounaghi, G.H.; Arbab-Zavar, M.H.; Razavipanah, I. A novel electrochemical aptasensor based on f-MWCNTs/AuNPs nanocomposite for label-free detection of bisphenol A. Sens. Actuators B Chem., 2017, 242, 158-166.
[http://dx.doi.org/10.1016/j.snb.2016.11.041]
[100]
Buk, V.; Pemble, M.E.; Twomey, K. Fabrication and evaluation of a carbon quantum dot/gold nanoparticle nanohybrid material integrated onto planar micro gold electrodes for potential bioelectrochemical sensing applications. Electrochim. Acta, 2019, 293, 307-317.
[http://dx.doi.org/10.1016/j.electacta.2018.10.038]
[101]
Peng, G.; Li, X.; Cui, F.; Qiu, Q.; Chen, X.; Huang, H. Aflatoxin B1 electrochemical aptasensor based on tetrahedral DNA nanostructures functionalized three dimensionally ordered macroporous MoS2-AuNPs film. ACS Appl. Mater. Interfaces, 2018, 10(21), 17551-17559.
[http://dx.doi.org/10.1021/acsami.8b01693] [PMID: 29733573]
[102]
Chakraborty, S.; Babanova, S.; Rocha, R.C.; Desireddy, A.; Artyushkova, K.; Boncella, A.E.; Atanassov, P.; Martinez, J.S. A hybrid DNA-templated gold nanocluster for enhanced enzymatic reduction of oxygen. J. Am. Chem. Soc., 2015, 137(36), 11678-11687.
[http://dx.doi.org/10.1021/jacs.5b05338] [PMID: 26288369]
[103]
Maji, S.K.; Sreejith, S.; Mandal, A.K.; Ma, X.; Zhao, Y. Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl. Mater. Interfaces, 2014, 6(16), 13648-13656.
[http://dx.doi.org/10.1021/am503110s] [PMID: 25046127]
[104]
Ostojic, N.; Duan, Z.; Galyamova, A.; Henkelman, G.; Crooks, R.M. Electrocatalytic study of the oxygen reduction reaction at gold nanoparticles in the absence and presence of interactions with SnOx supports. J. Am. Chem. Soc., 2018, 140(42), 13775-13785.
[http://dx.doi.org/10.1021/jacs.8b08036] [PMID: 30351132]
[105]
Tang, S.; Shen, H.; Hao, Y.; Huang, Z.; Tao, Y.; Peng, Y.; Guo, Y.; Xie, G.; Feng, W. A novel cytosensor based on Pt@Ag nanoflowers and AuNPs/Acetylene black for ultrasensitive and highly specific detection of circulating tumor cells. Biosens. Bioelectron., 2018, 104, 72-78.
[http://dx.doi.org/10.1016/j.bios.2018.01.001] [PMID: 29324284]
[106]
Yang, Y.; Fu, Y.; Su, H.; Mao, L.; Chen, M. Sensitive detection of MCF-7 human breast cancer cells by using a novel DNA-labeled sandwich electrochemical biosensor. Biosens. Bioelectron., 2018, 122, 175-182.
[http://dx.doi.org/10.1016/j.bios.2018.09.062] [PMID: 30265967]
[107]
Soares, J.C.; Iwaki, L.E.O.; Soares, A.C.; Rodrigues, V.C.; Melendez, M.E.; Fregnani, J.H.T.G.; Reis, R.M.; Carvalho, A.L.; Corrêa, D.S.; Oliveira, O.N., Jr Immunosensor for pancreatic cancer based on electrospun nanofibers coated with carbon nanotubes or gold nanoparticles. ACS Omega, 2017, 2(10), 6975-6983.
[http://dx.doi.org/10.1021/acsomega.7b01029] [PMID: 30023536]
[108]
Vural, T.; Yaman, Y.T.; Ozturk, S.; Abaci, S.; Denkbas, E.B. Electrochemical immunoassay for detection of prostate specific antigen based on peptide nanotube-gold nanoparticle-polyaniline immobilized pencil graphite electrode. J. Colloid Interface Sci., 2018, 510, 318-326.
[http://dx.doi.org/10.1016/j.jcis.2017.09.079] [PMID: 28957748]
[109]
Peng, X.; Zhu, J.; Wen, W.; Bao, T.; Zhang, X.; He, H.; Wang, S. Silver nanoclusters-assisted triple-amplified biosensor for ultrasensitive methyltransferase activity detection based on AuNPs/ERGO hybrids and hybridization chain reaction. Biosens. Bioelectron., 2018, 118, 174-180.
[http://dx.doi.org/10.1016/j.bios.2018.07.048] [PMID: 30077131]
[110]
Wang, H.; Ma, Z. Amperometric immunoassay for the tumor marker neuron-specific enolase using a glassy carbon electrode modified with a nanocomposite consisting of polyresorcinol and of gold and platinum nanoparticles. Mikrochim. Acta, 2017, 184, 3247-3253.
[http://dx.doi.org/10.1007/s00604-017-2287-z]
[111]
Wang, Q.; Jiang, B.; Xu, J.; Xie, J.; Xiang, Y.; Yuan, R.; Chai, Y. Amplified terminal protection assay of small molecule/protein interactions via a highly characteristic solid-state Ag/AgCl process. Biosens. Bioelectron., 2013, 43, 19-24.
[http://dx.doi.org/10.1016/j.bios.2012.11.035] [PMID: 23274192]
[112]
Fredj, Z.; Azzouzi, S.; Turner, A.P.F.; Ali, M.B.; Mak, W.C. Neutravidin biosensor for direct capture of dual-functional biotin-molecular beacon-AuNP probe for sensitive voltammetric detection of microRNA. Sens. Actuators B Chem., 2017, 248, 77-84.
[http://dx.doi.org/10.1016/j.snb.2017.03.160]
[113]
Zhao, J.; Tang, Y.Y.; Cao, Y.; Chen, T.S.; Chen, X.X.; Mao, X.X.; Yin, Y.M.; Chen, G.F. Amplified electrochemical detection of surface biomarker in breast cancer stem cell using self-assembled supramolecular nanocomposites. Electrochim. Acta, 2018, 283, 1072-1078.
[http://dx.doi.org/10.1016/j.electacta.2018.07.002]
[114]
Duangkaew, P.; Wutikhun, T.; Laocharoensuk, R. Triple signal amplification strategy based on size and shape transformation of ultrasmall sub-10 nm gold nanoparticles tag towards sensitivity improvement of electrochemical immunosensors. Sens. Actuators B Chem., 2017, 239, 430-437.
[http://dx.doi.org/10.1016/j.snb.2016.08.037]
[115]
Ju, J.; Chen, W. In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem., 2015, 87(3), 1903-1910.
[http://dx.doi.org/10.1021/ac5041555] [PMID: 25533846]
[116]
Nie, Y.; Yang, M.; Ding, Y. Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125. Mikrochim. Acta, 2018, 185(7), 331.
[http://dx.doi.org/10.1007/s00604-018-2869-4] [PMID: 29915871]
[117]
Samadi Pakchin, P.; Ghanbari, H.; Saber, R.; Omidi, Y. Electrochemical immunosensor based on chitosan-gold nanoparticle/carbon nanotube as a platform and lactate oxidase as a label for detection of CA125 oncomarker. Biosens. Bioelectron., 2018, 122, 68-74.
[http://dx.doi.org/10.1016/j.bios.2018.09.016] [PMID: 30243046]
[118]
Yang, Y.; Yan, Q.; Liu, Q.; Li, Y.; Liu, H.; Wang, P.; Chen, L.; Zhang, D.; Li, Y.; Dong, Y. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of echinoidea-shaped Au@Ag-Cu2O nanoparticles for prostate specific antigen detection. Biosens. Bioelectron., 2018, 99, 450-457.
[http://dx.doi.org/10.1016/j.bios.2017.08.018] [PMID: 28820986]
[119]
Shuai, H.L.; Huang, K.J.; Zhang, W.J.; Cao, X.; Jia, M.P. Sandwich-type microRNA biosensor based on magnesium oxide nanoflower and graphene oxide–gold nanoparticles hybrids coupling with enzyme signal amplification. Sens. Actuators B Chem., 2017, 243, 403-411.
[http://dx.doi.org/10.1016/j.snb.2016.12.001]
[120]
Bonta, M.; Hegedus, B.; Limbeck, A. Application of dried-droplets deposited on pre-cut filter paper disks for quantitative LA-ICP-MS imaging of biologically relevant minor and trace elements in tissue samples. Anal. Chim. Acta, 2016, 908, 54-62.
[http://dx.doi.org/10.1016/j.aca.2015.12.048] [PMID: 26826687]
[121]
Bonta, M.; Gonzalez, J.J.; Quarles, C.D.; Russo, R.E.; Hegedus, B.; Limbeck, A. Elemental mapping of biological samples by the combined use of LIBS and LA-ICP-MS. J. Anal. At. Spectrom., 2016, 31, 252-258.
[http://dx.doi.org/10.1039/C5JA00287G]
[122]
Feng, D.; Tian, F.; Qin, W.; Qian, X. A dual-functional lanthanide nanoprobe for both living cell imaging and ICP-MS quantification of active protease. Chem. Sci. (Camb.), 2016, 7(3), 2246-2250.
[http://dx.doi.org/10.1039/C5SC03363B] [PMID: 29910913]
[123]
Yang, W.; Xi, Z.; Zeng, X.; Fang, L.; Jiang, W.; Wu, Y.; Xu, L.J.; Fu, F.F. Magnetic bead-based AuNP labelling combined with inductively coupled plasma mass spectrometry for sensitively and specifically counting cancer cells. J. Anal. At. Spectrom., 2016, 31, 679-685.
[http://dx.doi.org/10.1039/C5JA00364D]
[124]
Li, X.; Chen, B.; He, M.; Xiao, G.; Hu, B. Gold nanoparticle labeling with tyramide signal amplification for highly sensitive detection of alpha fetoprotein in human serum by ICP-MS. Talanta, 2018, 176, 40-46.
[http://dx.doi.org/10.1016/j.talanta.2017.08.007] [PMID: 28917768]
[125]
Zhang, X.; Chen, B.; He, M.; Wang, H.; Hu, B. Gold nanoparticles labeling with hybridization chain reaction amplification strategy for the sensitive detection of HepG2 cells by inductively coupled plasma mass spectrometry. Biosens. Bioelectron., 2016, 86, 736-740.
[http://dx.doi.org/10.1016/j.bios.2016.07.073] [PMID: 27476054]
[126]
Li, X.; Chen, B.; He, M.; Wang, H.; Xiao, G.; Yang, B.; Hu, B. Simultaneous detection of MCF-7 and HepG2 cells in blood by ICP-MS with gold nanoparticles and quantum dots as elemental tags. Biosens. Bioelectron., 2017, 90, 343-348.
[http://dx.doi.org/10.1016/j.bios.2016.11.030] [PMID: 27940237]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 3
Year: 2020
Page: [425 - 440]
Pages: 16
DOI: 10.2174/1573413715666190206152717

Article Metrics

PDF: 20
HTML: 2