Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in the Applications of Hybrid Magnetic Nanomaterials as Magnetically Retrievable Nanocatalysts

Author(s): Fatemeh Kalantari, Ali Ramazani* and Mohammad Reza Poor Heravi

Volume 23, Issue 2, 2019

Page: [136 - 163] Pages: 28

DOI: 10.2174/1385272823666190206142328

Price: $65

Abstract

Magnetic nanoparticles derived from iron oxide, for example, magnetite (Fe3O4) and maghemite (γ-Fe2O3), fulfill most of these requirements, and recent advances in their synthesis give access to size-controlled monodisperse particles. Hybrid magnetic materials have been synthesized from organic compounds and metal or metal oxide nanoparticles and examined as catalysts for the organic synthesis. When the reaction has been completed, the catalysts can be easily separated by simple external magnetic decantation.

Keywords: Hybrid magnetic materials, click chemistry, green chemistry, nanocatalyst, magnetic separation, nanomaterials.

Graphical Abstract
[1]
MacMillan, D.W. The advent and development of organocatalysis. Nlm., 2008, 455, 304-308.
[2]
Bertelsen, S.; Jørgensen, K.A. Organocatalysis-after the gold rush. Chem. Soc. Rev., 2009, 38, 2178-2189.
[3]
McMorn, P.; Hutchings, G.J. Heterogeneous enantioselective catalysts: strategies for the immobilisation of homogeneous catalysts. Chem. Soc. Rev., 2004, 33, 108-122.
[4]
Gruttadauria, M.; Giacalone, F.; Noto, R. Supported proline and proline-derivatives as recyclable organocatalysts. Chem. Soc. Rev., 2008, 37, 1666-1688.
[5]
Z., Hasanpour Maleki, A.; Hosseini, M.; Gorgannezhad, L.; Nejadshafiee, V.; Ramazani, A.; Haririan, I.; Shafiee, A.; Khoobi, M. Efficient multicomponent synthesis of 1, 2, 3-triazoles catalyzed by Cu (II) supported on PEI@ Fe3O4 mnps in a water/PEG 300 system. Turk. J. Chem., 2017, 41, 294-307.
[6]
Ramazani, A.; Khoobi, M.; Sadri, F.; Tarasi, R.; Shafiee, A.; Aghahosseini, H.; Joo, S.W. Efficient and selective oxidation of alcohols in water employing palladium supported nanomagnetic Fe3O4@hyperbranched polyethylenimine (Fe3O4@HPEI. Pd) as a new organic-inorganic hybrid nanocatalyst. Appl. Organomet. Chem., 2018, 32.
[7]
Motevalizadeh, S.F.; Khoobi, M.; Sadighi, A.; Khalilvand-Sedagheh, M.; Pazhouhandeh, M.; Ramazani, A.; Faramarzi, M.A.; Shafiee, A. Lipase immobilization onto polyethylenimine coated magnetic nanoparticles assisted by divalent metal chelated ions. J. Mol. Catal., B Enzym., 2015, 120, 75-83.
[8]
Dayyani, N.; Khoee, S.; Ramazani, A. Design and synthesis of ph-sensitive polyamino-ester magneto-dendrimers: Surface functional groups effect on viability of human prostate carcinoma cell lines DU145. Eur. J. Med. Chem., 2015, 98, 190-202.
[9]
Khoobi, M.; Khalilvand‐Sedagheh, M.; Ramazani, A.; Asadgol, Z.; Forootanfar, H.; Faramarzi, M.A. Synthesis of polyethyleneimine (PEI) and β‐cyclodextrin grafted PEI nanocomposites with magnetic cores for lipase immobilization and esterification. J. Chem. Technol. Biotechnol., 2016, 91, 375-384.
[10]
Tarasi, R.; Khoobi, M.; Niknejad, H.; Ramazani, A.; Ma’mani, L.; Bahadorikhalili, S.; Shafiee, A. B-cyclodextrin functionalized poly (5-amidoisophthalicacid) grafted Fe3O4 magnetic nanoparticles: A novel biocompatible nanocomposite for targeted docetaxel delivery. J. Magn. Magn. Mater., 2016, 417, 451-459.
[11]
Yıldız, Y.; Erken, E.; Pamuk, H.; Sert, H.; Sen, F. Monodisperse pt nanoparticles assembled on reduced graphene oxide: Highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol., 2016, 16, 5951-5958.
[12]
Erken, E.; Yıldız, Y.; Kilba, B.; Sen, F. Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol., 2016, 16, 5944-5950.
[13]
Yildiz, Y.; Okyay, T.O.; Sen, B.; Gezer, B.; Kuzu, S.; Savk, A.; Demir, E.; Dasdelen, Z.; Sert, H.; Sen, F. Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. ChemistrySelect, 2017, 2, 697-701.
[14]
Goksu, H.; Yıldız, Y.; Celik, B.; Yazıcı, M.; Kılbas, B.; Sen, F. Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. ChemistrySelect, 2016, 5, 953-958.
[15]
Aday1, B.; Pamuk, H.; Kaya, M.; Sen, F. Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-dioxoacridine derivatives. J. Nanosci. Nanotechnol., 2016, 16, 6498-6504.
[16]
Akocak, S.; Şen, B.; Lolak, N.; Şavk, A.; Koca, M.; Kuzu, S.; Şen, F. One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. J. Nanostruct. Nano-Objects, 2017, 11, 25-31.
[17]
Ranganath, K.V.; Glorius, F. Superparamagnetic nanoparticles for asymmetric catalysis—a perfect match. Catal. Sci. Technol., 2011, 1, 13-22.
[18]
Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev., 2013, 42, 3371-3393.
[19]
Luo, S.; Zhen, X.; Cheng, J-P. Asymmetric bifunctional primary aminocatalysis on magnetic nanoparticles. ChemComm., 2008, 44, 5719-5721.
[20]
Lee, K.S.; Woo, M.H. H.S, Kim.; E.Y, Lee.; Lee, I.S. Synthesis of hybrid Fe3O4–silica–Nio superstructures and their application as magnetically separable high-performance biocatalysts. ChemComm., 2009, 25, 3780-3782.
[21]
Ramazani, A.; Mahyari, A.; Farshadi, A.; Rouhani, M. Preparation of silica nanoparticles from organic laboratory waste of silica gel HF254 and their use as a highly efficient catalyst for the one‐pot synthesis of 2, 3-dihydro‐1H‐isoindolone derivatives. Helvetica Chimica. Acta, 2011, 94, 1831-1837.
[22]
Arabian, R.; Ramazani, A.; Mohta, B.; Azizkhani, V.; Joo, S.W.; Rouhani, M. A convenient and efficient protocol for the synthesis of HBIW catalyzed by silica nanoparticles under ultrasound irradiation. J. Energ. Mater., 2014, 32, 300-305.
[23]
Ramazani, A.; Dastanra, K.; Nasrabadi, F.Z.; Karimi, Z.; Rouhani, M.; Hosseini, M. Silica nanoparticles as a high efficient catalyst for the one-pot synthesis of 3-oxo-3-phenylpropanamid derivatives from isocyanides, phenylacetaldehyde and secondary amines. Turk. J. Chem., 2012, 36, 467-476.
[24]
Rezaei, A.; Ramazani, A.; Gouranlou, F.; Woo Joo, S. Silica nanoparticles/nanosilica sulfuric acid as a reusable catalyst for fast, highly efficient and green synthesis of 2-(heteroaryl) acetamide derivatives. Lett. Org. Chem., 2017, 14, 86-92.
[25]
Khoobi, M.; Ramazani, A.; Hojjati, Z.; Shakeri, R. M, Khoshneviszadeh.; Ardestani, S.K.; Shafiee, A.; A, Foroumadi.; Joo, S.W. Synthesis of novel 4 h-chromenes containing a pyrimidine-2-thione function in the presence of Fe3O4 magnetic nanoparticles and study of their antioxidant activity. Phosphorus Sulfur Silicon Relat. Elem., 2014, 189, 1586-1595.
[26]
Sadri, F.; Ramazani, A.; Ahankar, H. Taghavi, Fardood S.; Azimzadeh Asiabi, P.; Khoobi, M.; Woo Joo, S.; Dayyani, N. Aqueous-phase oxidation of alcohols with green oxidants (Oxone and hydrogen peroxide) in the presence of MgFe2O4 magnetic nanoparticles as an efficient and reusable catalyst. J. Nanostruct., 2016, 6, 264-272.
[27]
Ramazani, A.; Sadri, F.; Massoudi, A.; Khoobi, M.; Joo, S.W.; Dolatyari, L.; Dayyani, N. Magnetic ZnFe2O4 nanoparticles as an efficient catalyst for the oxidation of alcohols to carbonyl compounds in the presence of oxone as an oxidant; Iranian J. Catal, 2015, pp. 285-291.
[28]
Sadri, F.; Ramazani, A.; Massoudi, A.; Khoobi, M.; Tarasi, R.; Shafiee, A.; Azizkhani, V.; Dolatyari, L.; Joo, S.W. Green oxidation of alcohols by using hydrogen peroxide in water in the presence of magnetic Fe3O4 nanoparticles as recoverable catalyst. Green Chem. Lett. Rev., 2014, 7, 257-264.
[29]
Baig, R.N.; Leazer, J.; Varma, R.S. Magnetically separable Fe3O4@ DOPA–Pd: a heterogeneous catalyst for aqueous Heck reaction. Clean Technol. Environ. Policy, 2015, 17, 2073-2077.
[30]
Sun, X.; Zheng, Y.; Sun, L.; Su, H.; Qi, C. Pd nanoparticles immobilized on orange-like magnetic polymer-supported FE3O4/ppy nanocomposites: a novel and highly active catalyst for suzuki reaction in water. Catal. Lett., 2015, 145, 1047-1053.
[31]
Baig, R.N.; Varma, R.S. A highly active and magnetically retrievable nanoferrite–DOPA–copper catalyst for the coupling of thiophenols with aryl halides. Chem. Comm., 2012, 48, 2582-2584.
[32]
Baig, R.N.; Varma, R.S. Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites. Green Chem., 2013, 15, 398-417.
[33]
Arundhathi, R.; Damodara, D.; Likhar, P.R.; Kantam, M.L.; Saravanan, P.; Magdaleno, T.; Kwon, S.H. Fe3O4@ mesoporouspolyaniline: A highly efficient and magnetically separable catalyst for cross coupling of aryl chlorides and phenols. Adv. Synth. Catal., 2011, 353, 1591-1600.
[34]
Jin, M.J.; Lee, D.H. A practical heterogeneous catalyst for the Suzuki, Sonogashira, and Stille coupling reactions of unreactive aryl chlorides. Angew. Chem., 2010, 122, 1137-1140.
[35]
Stevens, P.D.; Fan, J.; Gardimalla, H.M.; Yen, M.; Gao, Y. Superparamagnetic nanoparticle-supported catalysis of Suzuki cross-coupling reactions. Org. Lett., 2005, 7, 2085-2088.
[36]
Sun, J.; Yu, G.; Liu, L.; Li, Z.; Kan, Q.; Huo, Q.; Guan, J. Core–shell structured Fe3O4@ sio2 supported cobalt (ii) or copper (ii) acetylacetonate complexes: magnetically recoverable nanocatalysts for aerobic epoxidation of styrene. Catal. Sci. Technol., 2014, 4, 1246-1252.
[37]
Baig, R.N.; Nadagouda, M.N.; Varma, R.S. Carbon-coated magnetic palladium: Applications in partial oxidation of alcohols and coupling reactions. Green Chem., 2014, 16, 4333-4338.
[38]
Chen, L.; Li, B.; Liu, D. Schiff base complex coated Fe3O4 nanoparticles: a highly recyclable nanocatalyst for selective oxidation of alkyl aromatics. Catal. Lett., 2014, 144, 1053-1061.
[39]
Fang, Y.; Chen, Y.; Li, X.; Zhou, X.; Li, J.; Tang, W.; Huang, J.; Jin, J.; Ma, J. Gold on thiol-functionalized magnetic mesoporous silica sphere catalyst for the aerobic oxidation of olefins. J. Mol. Catal. Chem., 2014, 392, 16-21.
[40]
Podolean, I.; Kuncser, V.; Gheorghe, N.; Macovei, D.; Parvulescu, V.I. Coman, S.M. Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chem., 2013, 15, 3077-3082.
[41]
Vaquer, L.; Riente, P.; Sala, X.; Jansat, S.; Benet-Buchholz, J.; Llobet, A.; Pericàs, M.A. Molecular ruthenium complexes anchored on magnetic nanoparticles that act as powerful and magnetically recyclable stereospecific epoxidation catalysts. Catal. Sci. Technol., 2013, 3, 706-714.
[42]
Zhang, Z.; Zhang, F.; Zhu, Q.; Zhao, W.; Ma, B.; Ding, Y. Magnetically separable polyoxometalate catalyst for the oxidation of dibenzothiophene with H2O2. J. Colloid Interface Sci., 2011, 360, 189-194.
[43]
Oliveira, R.L.; Zanchet, D.; Kiyohara, P.K.; Rossi, L.M. On the stabilization of gold nanoparticles over silica‐based magnetic supports modified with organosilanes. Chem. Eur. J., 2011, 17, 4626-4631.
[44]
Masteri-Farahani, M.; Tayyebi, N. A new magnetically recoverable nanocatalyst for epoxidation of olefins. J. Mol. Catal. Chem., 2011, 348, 83-87.
[45]
Ucoski, G.M.; Nunes, F.S.; DeFreitas-Silva, G.; Idemori, Y.M.; Nakagaki, S. Metalloporphyrins immobilized on silica-coated Fe3O4 nanoparticles. Magnetically recoverable catalysts for the oxidation of organic substrates. Appl. Catal. A., 2013, 459, 121-130.
[46]
Anastas, P.T.; Bartlett, L.B.; Kirchhoff, M.M.; Williamson, T.C. The role of catalysis in the design, development, and implementation of green chemistry. Catal. Today, 2000, 55, 11-22.
[47]
Shi, F.; Tse, M.K.; Pohl, M.M.; Brückner, A.; Zhang, S.; Beller, M. Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano‐fe2o3 in selective oxidations. Angew. Chem., 2007, 46, 8866-8868.
[48]
Chen, J.; Zhang, Q.; Wang, Y.; Wan, H. Size‐dependent catalytic activity of supported palladium nanoparticles for aerobic oxidation of alcohols. Adv. Synth. Catal., 2008, 350, 453-464.
[49]
Mak, C.A.; Ranjbar, S.; Riente, P.; Rodríguez-Escrich, C.; Pericàs, M.A. Hybrid magnetic materials (Fe3O4–κ-carrageenan) as catalysts for the Michael addition of aldehydes to nitroalkenes. Tetrahedron, 2014, 70, 6169-6173.
[50]
Sobhani, S.; Bazrafshan, M.; Delluei, A.A.; Parizi, Z.P. Phospha-michael addition of diethyl phosphite to α, β-unsaturated malonates catalyzed by nano γ-Fe2O3-pyridine based catalyst as a new magnetically recyclable heterogeneous organic base. Appl. Catal. A., 2013, 454, 145-151.
[51]
Riente, P.; Mendoza, C.; Pericás, M.A. Functionalization of Fe3O4 magnetic nanoparticles for organocatalytic michael reactions. J. Mater. Chem., 2011, 21, 7350-7355.
[52]
Zeng, T.; Yang, L.; Hudson, R.; Song, G.; Moores, A.R.; Li, C-J. Fe3O4 nanoparticle-supported copper (I) pybox catalyst: magnetically recoverable catalyst for enantioselective direct-addition of terminal alkynes to imines. Org. Lett., 2010, 13, 442-445.
[53]
Sharma, R.; Monga, Y.; Puri, A. Magnetically separable silica@ Fe3O4 core–shell supported nano-structured copper (II) composites as a versatile catalyst for the reduction of nitroarenes in aqueous medium at room temperature. J. Mol. Catal.A: Chem., 2014, 393, 84-95.
[54]
Baig, R.N.; Varma, R.S. Magnetic silica-supported ruthenium nanoparticles: an efficient catalyst for transfer hydrogenation of carbonyl compounds. ACS Sustain. Chem. Eng., 2013, 1, 805-809.
[55]
Hu, A.; Yee, G.T.; Lin, W. Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. J. Amer. Chem. Soc., 2005, 127, 12486-12487.
[56]
Scolaro, C.; Bergamo, A.; Brescacin, L. R, Delfino.; Cocchietto, M.; Laurenczy, G.; Geldbach, T.J.; Sava, G.; Dyson, P.J. In vitro and in vivo evaluation of ruthenium (II)− arene PTA complexes. J. Med. Chem., 2005, 48, 4161-4171.
[57]
Phillips, A.D.; Gonsalvi, L.; Romerosa, A.; Vizza, F. M, Peruzzini. Coordination chemistry of 1, 3, 5-triaza-7-phosphaadamantane (PTA): Transition metal complexes and related catalytic, medicinal and photoluminescent applications. Coord. Chem. Rev., 2004, 248, 955-993.
[58]
Hartinger, C.G.; Dyson, P.J. Bioorganometallic chemistry-from teaching paradigms to medicinal applications. Chem. Soc. Rev., 2009, 38, 391-401.
[59]
Polshettiwar, V.; Varma, R.S. Nanoparticle‐supported and magnetically recoverable ruthenium hydroxide catalyst: efficient hydration of nitriles to amides in aqueous medium. Chem. Eur. J., 2009, 15, 1582-1586.
[60]
Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. Asymmetric transfer hydrogenation of aromatic ketones catalyzed by chiral ruthenium (II). J. Am. Chem. Soc., 1995, 117, 7562-7563.
[61]
Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T. Noyor, R i. Asymmetric transfer hydrogenation of imines. J. Am. Chem. Soc., 1996, 118, 4916-4917.
[62]
Li, J.; Zhang, Y.; Han, D.; Gao, Q.; Li, C. Asymmetric transfer hydrogenation using recoverable ruthenium catalyst immobilized into magnetic mesoporous silica. J. Mol. Catal. Chem., 2009, 298, 31-35.
[63]
Van Laren, M.W.; Duin, M.A.; Klerk, C.; Naglia, M.; Rogolino, D.; Pelagatti, P.; Bacchi, A.; Pelizzi, C.; Elsevier, C.J. Palladium (0) complexes with unsymmetric bidentate nitrogen ligands for the stereoselective hydrogenation of 1-phenyl-1-propyne to (Z)-1-phenyl-1-propene. Organometallics, 2002, 21, 1546-1553.
[64]
Kluwer, A.M.; Koblenz, T.S.; Jonischkeit, T.; Woelk, K.; Elsevier, C.J. Kinetic and spectroscopic studies of the [palladium (Ar-bian)]-catalyzed semi-hydrogenation of 4-octyne. J. Amer. Chem. Soc., 2005, 127, 15470-15480.
[65]
López-Serrano, J.; Duckett, S.B.; Aiken, S.; Almeida Leñero, K.Q.; Drent, E.; Dunne, J.P.; Konya, D.; Whitwood, A.C. A para-hydrogen investigation of palladium-catalyzed alkyne hydrogenation. J. Am. Chem. Soc., 2007, 129, 6513-6527.
[66]
Polshettiwar, V.; Baruwati, B.; Varma, R.S. Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol. Green Chem., 2009, 11, 127-131.
[67]
Guin, D.; Baruwati, B.; Manorama, S.V. Pd on amine-terminated ferrite nanoparticles: a complete magnetically recoverable facile catalyst for hydrogenation reactions. Org. Lett., 2007, 9, 1419-1421.
[68]
Sun, Y.; Liu, G.; Gu, H.; Huang, T.; Zhang, Y.; Li, H. Magnetically recoverable sio2-coated Fe3O4 nanoparticles: a new platform for asymmetric transfer hydrogenation of aromatic ketones in aqueous medium. Chem. Commun., 2011, 47, 2583-2585.
[69]
Xu, R.; Xie, T.; Zhao, Y.; Li, Y. Quasi-homogeneous catalytic hydrogenation over monodisperse nickel and cobalt nanoparticles. Nanotechnology, 2007, 18, 005-602.
[70]
Dhiman, M.; Chalke, B.; Polshettiwar, V. Efficient synthesis of monodisperse metal (Rh, Ru, Pd) nanoparticles supported on fibrous nanosilica (KCC-1) for catalysis. ACS Sustain. Chem.& Eng., 2015, 3, 3224-3230.
[71]
Pagoti, S.; Dutta, D.; Dash, J. A Magnetoclick Imidazolidinone Nanocatalyst for Asymmetric 1, 3‐Dipolar Cycloadditions. Adv. Synth. Catal., 2013, 355, 3532-3538.
[72]
Wang, D.; Salmon, L.; Ruiz, J.; Astruc, D. A recyclable ruthenium (II) complex supported on magnetic nanoparticles: A regioselective catalyst for alkyne-azide cycloaddition. ChemComm., 2013, 49, 6956-6958.
[73]
García‐Garrido, S.E.; Francos, J.; Cadierno, V.; Basset, J.M.; Polshettiwar, V. Chemistry by nanocatalysis: first example of a solid‐supported RAPTA complex for organic reactions in aqueous medium. ChemSusChem, 2011, 4, 104-111.
[74]
Baig, R.N.; Varma, R.S. A highly active magnetically recoverable nano ferrite-glutathione-copper (nano-FGT-Cu) catalyst for Huisgen 1, 3-dipolar cycloadditions. Green Chem., 2012, 14, 625-632.
[75]
Polshettiwar, V.; Thivolle‐Cazat, J.; Taoufik, M.; Stoffelbach, F.; Norsic, S.; Basset, J.M. “Hydro‐metathesis” of Olefins: A catalytic reaction using a bifunctional single‐site tantalum hydride catalyst supported on fibrous silica (kcc‐1) nanospheres. Angew. Chem. Int. Ed., 2011, 50, 2747-2751.
[76]
Park, K.H.; Jang, K.; Son, S.U.; Sweigart, D.A. Self-supported organometallic rhodium quinonoid nanocatalysts for stereoselective polymerization of phenylacetylene. J. Am. Chem. Soc., 2006, 128, 8740-8741.
[77]
Astruc, D.; Diallo, A.K.; Gatard, S.; Liang, L.; Ornelas, C.; Martinez, V.; Méry, D.; Ruiz, J. Olefin metathesis in nano-sized systems. Beilstein J. Org. Chem., 2011, 7, 94.
[78]
Kong, Y.; Tan, R.; Zhao, L.; Yin, D. L-Proline supported on ionic liquid-modified magnetic nanoparticles as a highly efficient and reusable organocatalyst for direct asymmetric aldol reaction in water. Green Chem., 2013, 15, 2422-2433.
[79]
Wang, B.G.; Ma, B.C.; Wang, Q. Wang. W. Superparamagnetic nanoparticle‐supported (s)‐diphenyl‐prolinol trimethylsilyl ether as a recyclable catalyst for asymmetric Michael addition in water. Adv. Synth. Catal., 2010, 352, 2923-2928.
[80]
Claesson, E.M.; Mehendale, N.C.; Gebbink, R.J.K.; Van Koten, G.; Philipse, A.P. Magnetic silica colloids for catalysis. J. Magn. Magn. Mater., 2007, 311, 41-45.
[81]
MB Gawande.; A, Velhinho.; I.D, Nogueira.; C, Ghumman.; O, Teodoro. P.S, Branco. A facile synthesis of cysteine–ferrite magnetic nanoparticles for application in multicomponent reactions—a sustainable protocol. Rsc. Adv., 2012, 2, 6144-6149.
[82]
Mondal, J.; Sen, T.; Bhaumik, A. Fe3O4@ mesoporous SBA-15: a robust and magnetically recoverable catalyst for one-pot synthesis of 3, 4-dihydropyrimidin-2 (1 H)-ones via the Biginelli reaction. Dalton Trans., 2012, 41, 6173-6181.
[83]
Rostamizadeh, S.; Azad, M.; Shadjou, N.; Hasanzadeh, M. (α-Fe2O3)-MCM-41-SO3H as a novel magnetic nanocatalyst for the synthesis of N-aryl-2-amino-1, 6-naphthyridine derivatives. Catal. Commun., 2012, 25, 83-91.
[84]
Zhang, Q.; Su, H.; Luo, J.; Wei, Y. A magnetic nanoparticle supported dual acidic ionic liquid: a “quasi-homogeneous” catalyst for the one-pot synthesis of benzoxanthenes. Green Chem., 2012, 14, 201-208.
[85]
Pourjavadi, A.; Hosseini, S.H.; Hosseini, S.T.; Aghayeemeibody, S.A. Magnetic nanoparticles coated by acidic functionalized poly (amidoamine) dendrimer: Effective acidic organocatalyst. Catal. Commun., 2012, 28, 86-89.
[86]
Celik, B. Baskaya Gaye.; Sert, H.; Karatepe, O.; Erken E.; Sen, F. Monodisperse Pt (0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB Int. J. Hydrogen Energy., 2016, 41 13, 5661-5669.
[87]
Celik, B.; Kuzu, S.; Erken, E.; Sert, H. koskun, Y.; Sen, F. Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation. Int. J. Hydrogen Energy, 2016, 41(4), 3093-3101.
[88]
Daşdelen, Z.; Yıldız, Y.; Eriş, S.; Şen, F. Enhanced electro catalyticactivity and durability of Pt nanoparticles decorated on GO-PVP hybrid material for methanol oxidation reaction. Appl. Catal. B Environ., 2019, 511-516.
[89]
Karatepe, O.; Yıldız, Y.; Pamuk, H.; Eris, S.; Dasdelen, Z.; Sen, F. Enhanced electrocatalytic activity and durability of highly monodisperse Pt@ppy–PANI nanocomposites as a novel catalyst for the electrooxidation of methanol. RSC Advances, 2016, 6(56), 50851-50857.
[90]
Torki, M.; Tangestaninejad, S.; Mirkhanil, V.; Moghadam, M.; Mohammadpoor‐Baltork, I. RuIII (OTf) SalophenCH2–NHSiO2–Fe: an efficient and magnetically recoverable catalyst for trimethylsilylation of alcohols and phenols with hexamethyldisilazane. Appl. Organomet. Chem., 2014, 28, 304-309.
[91]
Gleeson, O. Davies. G.-L.; Peschiulli, A.; Tekoriute, R.; Gun’ko, Y.K.; Connon, S.J. The immobilisation of chiral organocatalysts on magnetic nanoparticles: the support particle cannot always be considered inert. Org. Biomol. Chem., 2011, 9, 7929-7940.
[92]
Hirakawa, T.; Tanaka, S.; Usuki, N.; Kanzaki, H.; Kishimoto, M.; Kitamura, M. A magnetically separable heterogeneous deallylation catalyst: [cpru (η3‐C3H5) (2‐pyridinecarboxylato)]PF6 complex supported on a ferromagnetic microsize particle Fe3O4@ sio2. Eur. J. Org. Chem., 2009, 789-792.
[93]
Dálaigh Corr, S.A.; Gun’ko, Y.; Connon, S.J. A magnetic‐nanoparti-cle‐supported 4‐N, N‐dialkylaminopyridine catalyst: Excellent reactivity combined with facile catalyst recovery and recyclability. Angew. Chem. Int. Ed., 2007, 46, 4329-4332.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy