In Silico and 3D QSAR Studies of Natural Based Derivatives as Xanthine Oxidase Inhibitors

Author(s): Neelam Malik, Priyanka Dhiman, Anurag Khatkar*.

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: A large number of disorders and their symptoms emerge from deficiency or overproduction of specific metabolites has drawn the attention for the discovery of new therapeutic agents for the treatment of disorders. Various approaches such as computational drug design have provided the new methodology for the selection and evaluation of target protein and the lead compound mechanistically. For instance, the overproduction of xanthine oxidase causes the accumulation of uric acid which can prompt gout.

Objective: In the present study we critically discussed the various techniques such as 3-D QSAR and molecular docking for the study of the natural based xanthine oxidase inhibitors with their mechanistic insight into the interaction of xanthine oxidase and various natural leads.

Conclusion: The computational studies of deferent natural compounds were discussed as a result the flavonoids, anthraquinones, xanthones shown the remarkable inhibitory potential for xanthine oxidase inhibition moreover the flavonoids such as hesperidin and rutin were found as promising candidates for further exploration.

Keywords: In silico docking, Xanthine oxidase, Natural derivatives, Flavonoids, 3D QSAR, CADD.

[1]
Battelli, M.G.; Bolognesi, A.; Polito, L. Pathophysiology of circulating xanthine oxidoreductase: new emerging roles for a multi-tasking enzyme. Biochim. Biophys. Acta, 2014, 1842(9), 1502-1517.
[http://dx.doi.org/10.1016/j.bbadis.2014.05.022] [PMID: 24882753]
[2]
Okamoto, K.; Kawaguchi, Y.; Eger, B.T.; Pai, E.F.; Nishino, T. Crystal structures of urate bound form of xanthine oxidoreductase: substrate orientation and structure of the key reaction intermediate. J. Am. Chem. Soc., 2010, 132(48), 17080-17083.
[http://dx.doi.org/10.1021/ja1077574] [PMID: 21077683]
[3]
Cao, H.; Pauff, J.M.; Hille, R. X-ray crystal structure of a xanthine oxidase complex with the flavonoid inhibitor quercetin. J. Nat. Prod., 2014, 77(7), 1693-1699.
[http://dx.doi.org/10.1021/np500320g] [PMID: 25060641]
[4]
Santi, M.D.; Paulino Zunini, M.; Vera, B.; Bouzidi, C.; Dumontet, V.; Abin-Carriquiry, A.; Grougnet, R.; Ortega, M.G. Xanthine oxidase inhibitory activity of natural and hemisynthetic flavonoids from Gardenia oudiepe (Rubiaceae) in vitro and molecular docking studies. Eur. J. Med. Chem., 2018, 143, 577-582.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.071] [PMID: 29207340]
[5]
Harrison, R. Structure and function of xanthine oxidoreductase: Where are we now? Free Radic. Biol. Med., 2002, 33(6), 774-797.
[http://dx.doi.org/10.1016/S0891-5849(02)00956-5] [PMID: 12208366]
[6]
Urarte, E.; Esteban, R.; Moran, J.F.; Bittner, F. Established and proposed roles of xanthine oxidoreductase in oxidative and reductive pathways in plants. In: Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants; Gupta, K.; Igamberdiev, A., Eds.; Springer: Cham, 2015; Vol. 23, pp. 15-42.
[http://dx.doi.org/10.1007/978-3-319-10079-1_2]
[7]
Maia, L.B.; Moura, J.J.G. Putting xanthine oxidoreductase and aldehyde oxidase on the NO metabolism map: Nitrite reduction by molybdoenzymes. Redox Biol., 2018, 19, 274-289.
[http://dx.doi.org/10.1016/j.redox.2018.08.020] [PMID: 30196191]
[8]
Fernandez, M.L.; Stupar, D.; Croll, T.; Leavesley, D.; Upton, Z. Xanthine oxidoreductase: a novel therapeutic target for the treatment of chronic wounds? Adv. Wound Care (New Rochelle), 2018, 7(3), 95-104.
[http://dx.doi.org/10.1089/wound.2016.0724] [PMID: 29644146]
[9]
Harris, C.M.; Massey, V. The reaction of reduced xanthine dehydrogenase with molecular oxygen. Reaction kinetics and measurement of superoxide radical. J. Biol. Chem., 1997, 272(13), 8370-8379.
[http://dx.doi.org/10.1074/jbc.272.13.8370] [PMID: 9079661]
[10]
Glantzounis, G.K.; Tsimoyiannis, E.C.; Kappas, A.M.; Galaris, D.A. Uric acid and oxidative stress. Curr. Pharm. Des., 2005, 11(32), 4145-4151.
[http://dx.doi.org/10.2174/138161205774913255] [PMID: 16375736]
[11]
Ahmed, S.; Shaffique, S.; Asif, H.M.; Hussain, G.; Ahmad, K. Pathophysiology, Clinical consequences, epidemiology and treatment of hyperurecemic gout. J. Pharm. Pharm. Sci., 2018, 6(1), 88-94.
[12]
Zhang, C.; Wang, R.; Zhang, G.; Gong, D. Mechanistic insights into the inhibition of quercetin on xanthine oxidase. Int. J. Biol. Macromol., 2018, 112, 405-412.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.190] [PMID: 29410028]
[13]
Brondino, C.D.; Romão, M.J.; Moura, I.; Moura, J.J. Molybdenum and tungsten enzymes: the xanthine oxidase family. Curr. Opin. Chem. Biol., 2006, 10(2), 109-114.
[http://dx.doi.org/10.1016/j.cbpa.2006.01.034] [PMID: 16480912]
[14]
Cao, H.; Pauff, J.M.; Hille, R. X-ray crystal structure of a xanthine oxidase complex with the flavonoid inhibitor quercetin. J. Nat. Prod., 2014, 77(7), 1693-1699.
[http://dx.doi.org/10.1021/np500320g] [PMID: 25060641]
[15]
Okamoto, K.; Eger, B.T.; Nishino, T.; Pai, E.F.; Nishino, T. Mechanism of inhibition of xanthine oxidoreductase by allopurinol: Crystal structure of reduced bovine milk xanthine oxidoreductase bound with oxipurinol. Nucleosides Nucleotides Nucleic Acids, 2008, 27(6), 888-893.
[http://dx.doi.org/10.1080/15257770802146577] [PMID: 18600558]
[16]
Du, Y.; Liu, Z.; Qiao, F.; Wang, S.; Chen, K.; Zhang, X. Computational exploration of reactive fragment for mechanism-based inhibition of xanthine oxidase. J. Organomet. Chem., 2018, 864, 58-67.
[http://dx.doi.org/10.1016/j.jorganchem.2018.01.018]
[17]
Okamoto, K.; Kawaguchi, Y.; Eger, B.T.; Pai, E.F.; Nishino, T. Crystal structures of urate bound form of xanthine oxidoreductase: substrate orientation and structure of the key reaction intermediate. J. Am. Chem. Soc., 2010, 132(48), 17080-17083.
[http://dx.doi.org/10.1021/ja1077574] [PMID: 21077683]
[18]
Huber, R.; Hof, P.; Duarte, R.O.; Moura, J.J.; Moura, I.; Liu, M.Y.; LeGall, J.; Hille, R.; Archer, M.; Romão, M.J. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes. Proc. Natl. Acad. Sci. USA, 1996, 93(17), 8846-8851.
[http://dx.doi.org/10.1073/pnas.93.17.8846] [PMID: 8799115]
[19]
Roddy, E.; Zhang, W.; Doherty, M. The changing epidemiology of gout. Nat. Clin. Pract. Rheumatol., 2007, 3(8), 443-449.
[http://dx.doi.org/10.1038/ncprheum0556] [PMID: 17664951]
[20]
Sokoloff, L. Pathology of gout. Arthritis Rheum., 1965, 8(4), 707-713.
[21]
Nuki, G.; Simkin, P.A. A concise history of gout and hyperuricemia and their treatment. Arthritis Res. Ther., 2006, 8(1)(Suppl. 1), S1.
[http://dx.doi.org/10.1186/ar1906] [PMID: 16820040]
[22]
Pacher, P.; Nivorozhkin, A.; Szabó, C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol. Rev., 2006, 58(1), 87-114.
[http://dx.doi.org/10.1124/pr.58.1.6] [PMID: 16507884]
[23]
Palazzuoli, A.; Hashemi, H.; Jameson, L.C.; McCullough, P.A. Hyperuricemia and cardiovascular disease. Rev. Cardiovasc. Med., 2017, 18(4), 134-145.
[PMID: 30398215]
[24]
Edwards, N.L. The role of hyperuricemia and gout in kidney and cardiovascular disease. Cleve. Clin. J. Med., 2008, 75(Suppl. 5), S13-S16.
[http://dx.doi.org/10.3949/ccjm.75.Suppl_5.S13] [PMID: 18822470]
[25]
Meotti, F.C.; Jameson, G.N.; Turner, R.; Harwood, D.T.; Stockwell, S.; Rees, M.D.; Thomas, S.R.; Kettle, A.J. Urate as a physiological substrate for myeloperoxidase: Implications for hyperuricemia and inflammation. J. Biol. Chem., 2011, 286(15), 12901-12911.
[http://dx.doi.org/10.1074/jbc.M110.172460] [PMID: 21266577]
[26]
Feig, D.I. Hyperuricemia and hypertension. Adv. Chronic Kidney Dis., 2012, 19(6), 377-385.
[http://dx.doi.org/10.1053/j.ackd.2012.05.009] [PMID: 23089272]
[27]
Gois, P. H.; de Moraes Souza, E. R. Pharmacotherapy for hyperuricemia in hypertensive patients. Cochrane Database Syst Rev., 2013, (1)
[http://dx.doi.org/10.1002/14651858.CD008652.pub2]
[28]
Johnson, R.J.; Kivlighn, S.D.; Kim, Y.G.; Suga, S.; Fogo, A.B. Reappraisal of the pathogenesis and consequences of hyperuricemia in hypertension, cardiovascular disease, and renal disease. Am. J. Kidney Dis., 1999, 33(2), 225-234.
[http://dx.doi.org/10.1016/S0272-6386(99)70295-7] [PMID: 10023633]
[29]
Liu, Z.; Chen, T.; Niu, H.; Ren, W.; Li, X.; Cui, L.; Li, C. The establishment and characteristics of rat model of atherosclerosis induced by hyperuricemia. Stem Cells Int., 2016, 2016, 1365257.
[http://dx.doi.org/10.1155/2016/1365257] [PMID: 26783398]
[30]
Billiet, L.; Doaty, S.; Katz, J.D.; Velasquez, M.T. Review of hyperuricemia as new marker for metabolic syndrome., 2014.
[http://dx.doi.org/10.1155/2014/852954]
[31]
Dalbeth, N.; Haskard, D.O. Mechanisms of inflammation in gout. Rheumatology (Oxford), 2005, 44(9), 1090-1096.
[http://dx.doi.org/10.1093/rheumatology/keh640] [PMID: 15956094]
[32]
Schumacher, H.R. Crystal-induced arthritis: An overview. Am. J. Med., 1996, 100(2A), 46S-52S.
[http://dx.doi.org/10.1016/S0002-9343(97)89546-0] [PMID: 8604727]
[33]
Meneshian, A.; Bulkley, G.B. The physiology of endothelial xanthine oxidase: from urate catabolism to reperfusion injury to inflammatory signal transduction. Microcirculation, 2002, 9(3), 161-175.
[http://dx.doi.org/10.1038/sj.mn.7800136] [PMID: 12080414]
[34]
Arthur, M.J.; Bentley, I.S.; Tanner, A.R.; Saunders, P.K.; Millward-Sadler, G.H.; Wright, R. Oxygen-derived free radicals promote hepatic injury in the rat. Gastroenterology, 1985, 89(5), 1114-1122.
[http://dx.doi.org/10.1016/0016-5085(85)90218-5] [PMID: 2995189]
[35]
Griguer, C.E.; Oliva, C.R.; Kelley, E.E.; Giles, G.I.; Lancaster, J.R., Jr; Gillespie, G.Y. Xanthine oxidase-dependent regulation of hypoxia-inducible factor in cancer cells. Cancer Res., 2006, 66(4), 2257-2263.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3364] [PMID: 16489029]
[36]
Samra, Z.Q.; Pervaiz, S.; Shaheen, S.; Dar, N.; Athar, M.A. Determination of oxygen derived free radicals producer (xanthine oxidase) and scavenger (paraoxonase1) enzymes and lipid parameters in different cancer patients. Clin. Lab., 2011, 57(9-10), 741-747.
[PMID: 22029190]
[37]
Haga, Y.; Ohtsubo, T.; Murakami, N.; Noguchi, H.; Kansui, Y.; Goto, K.; Matsumura, K.; Kitazono, T. Disruption of xanthine oxidoreductase gene attenuates renal ischemia reperfusion injury in mice. Life Sci., 2017, 182, 73-79.
[http://dx.doi.org/10.1016/j.lfs.2017.06.011] [PMID: 28625358]
[38]
Jordan, A.; Gresser, U. Side effects and interactions of the xanthine oxidase inhibitor febuxostat. Pharmaceuticals (Basel), 2018, 11(2), 51.
[http://dx.doi.org/10.3390/ph11020051] [PMID: 29799494]
[39]
Singer, J.Z.; Wallace, S.L. The allopurinol hypersensitivity syndrome. Unnecessary morbidity and mortality. Arthritis Rheum., 1986, 29(1), 82-87.
[http://dx.doi.org/10.1002/art.1780290111] [PMID: 3947418]
[40]
Kar, S.; Leszczynski, J. Recent advances of computational modeling for predicting drug metabolism: A perspective. Curr. Drug Metab., 2017, 18(12), 1106-1122.
[http://dx.doi.org/10.2174/1389200218666170607102104] [PMID: 28595533]
[41]
Jain, A. Computer aided drug design. . J. Phys., 2017, 884(1), 012072.
[42]
Daina, A.; Blatter, M.C.; Baillie Gerritsen, V.; Palagi, P.M.; Marek, D.; Xenarios, I.; Schwede, T.; Michielin, O.; Zoete, V. Drug design workshop: A web-based educational tool to introduce computer-aided drug design to the general public. J. Chem. Educ., 2017, 94(3), 335-344.
[http://dx.doi.org/10.1021/acs.jchemed.6b00596]
[43]
Bleicher, K.H.; Böhm, H.J.; Müller, K.; Alanine, A.I. Hit and lead generation: Beyond high-throughput screening. Nat. Rev. Drug Discov., 2003, 2(5), 369-378.
[http://dx.doi.org/10.1038/nrd1086] [PMID: 12750740]
[44]
Schneider, G.; Böhm, H.J. Virtual screening and fast automated docking methods. Drug Discov. Today, 2002, 7(1), 64-70.
[http://dx.doi.org/10.1016/S1359-6446(01)02091-8] [PMID: 11790605]
[45]
Lyne, P.D. Structure-based virtual screening: an overview. Drug Discov. Today, 2002, 7(20), 1047-1055.
[http://dx.doi.org/10.1016/S1359-6446(02)02483-2] [PMID: 12546894]
[46]
Klebe, G. Virtual ligand screening: strategies, perspectives and limitations. Drug Discov. Today, 2006, 11(13-14), 580-594.
[http://dx.doi.org/10.1016/j.drudis.2006.05.012] [PMID: 16793526]
[47]
Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[48]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[49]
Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[50]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[51]
Ciemny, M.P.; Kurcinski, M.; Kozak, K.J.; Kolinski, A.; Kmiecik, S. Highly flexible protein-peptide docking using CABS-dock. Methods Mol. Biol., 2017, 1561, 69-94.
[http://dx.doi.org/10.1007/978-1-4939-6798-8_6]
[52]
Bianco, G.; Forli, S.; Goodsell, D.S.; Olson, A.J. Covalent docking using autodock: Two-point attractor and flexible side chain methods. Protein Sci., 2016, 25(1), 295-301.
[http://dx.doi.org/10.1002/pro.2733] [PMID: 26103917]
[53]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[54]
Abagyan, R.; Totrov, M.; Kuznetsov, D. ICM-A new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem., 1994, 15(5), 488-506.
[http://dx.doi.org/10.1002/jcc.540150503]
[55]
Liu, M.; Wang, S. MCDOCK: A Monte Carlo simulation approach to the molecular docking problem. J. Comput. Aided Mol. Des., 1999, 13(5), 435-451.
[http://dx.doi.org/10.1023/A:1008005918983] [PMID: 10483527]
[56]
Kramer, B.; Rarey, M.; Lengauer, T. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins, 1999, 37(2), 228-241.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19991101)37:2<228:AID-PROT8>3.0.CO;2-8] [PMID: 10584068]
[57]
Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 1988, 110(18), 5959-5967.
[http://dx.doi.org/10.1021/ja00226a005] [PMID: 22148765]
[58]
Harvey, A.L. Natural products in drug discovery. Drug Discov. Today, 2008, 13(19-20), 894-901.
[http://dx.doi.org/10.1016/j.drudis.2008.07.004] [PMID: 18691670]
[59]
Shen, J.; Xu, X.; Cheng, F.; Liu, H.; Luo, X.; Shen, J.; Chen, K.; Zhao, W.; Shen, X.; Jiang, H. Virtual screening on natural products for discovering active compounds and target information. Curr. Med. Chem., 2003, 10(21), 2327-2342.
[http://dx.doi.org/10.2174/0929867033456729] [PMID: 14529345]
[60]
Camp, D.; Davis, R.A.; Evans-Illidge, E.A.; Quinn, R.J. Guiding principles for natural product drug discovery. Future Med. Chem., 2012, 4(9), 1067-1084.
[http://dx.doi.org/10.4155/fmc.12.55] [PMID: 22709251]
[61]
Ma, D.L.; Chan, D.S.; Leung, C.H. Molecular docking for virtual screening of natural product databases. Chem. Sci. (Camb.), 2011, 2(9), 1656-1665.
[http://dx.doi.org/10.1039/C1SC00152C]
[62]
Romão, M.J.; Archer, M.; Moura, I.; Moura, J.J.; LeGall, J.; Engh, R.; Schneider, M.; Hof, P.; Huber, R. Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas. Science, 1995, 270(5239), 1170-1176.
[http://dx.doi.org/10.1126/science.270.5239.1170] [PMID: 7502041]
[63]
Enroth, C.; Eger, B.T.; Okamoto, K.; Nishino, T.; Nishino, T.; Pai, E.F. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc. Natl. Acad. Sci. USA, 2000, 97(20), 10723-10728.
[http://dx.doi.org/10.1073/pnas.97.20.10723] [PMID: 11005854]
[64]
Nishino, T.; Okamoto, K.; Kawaguchi, Y.; Hori, H.; Matsumura, T.; Eger, B.T.; Pai, E.F.; Nishino, T. Mechanism of the conversion of xanthine dehydrogenase to xanthine oxidase: identification of the two cysteine disulfide bonds and crystal structure of a non-convertible rat liver xanthine dehydrogenase mutant. J. Biol. Chem., 2005, 280(26), 24888-24894.
[http://dx.doi.org/10.1074/jbc.M501830200] [PMID: 15878860]
[65]
Yamaguchi, Y.; Matsumura, T.; Ichida, K.; Okamoto, K.; Nishino, T. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. J. Biochem., 2007, 141(4), 513-524.
[http://dx.doi.org/10.1093/jb/mvm053] [PMID: 17301077]
[66]
Nishino, T.; Okamoto, K. The role of the [2Fe-2s] cluster centers in xanthine oxidoreductase. J. Inorg. Biochem., 2000, 82(1-4), 43-49.
[http://dx.doi.org/10.1016/S0162-0134(00)00165-3] [PMID: 11132637]
[67]
Hille, R.; Nishino, T.; Bittner, F. Molybdenum enzymes in higher organisms. Coord. Chem. Rev., 2011, 255(9-10), 1179-1205.
[http://dx.doi.org/10.1016/j.ccr.2010.11.034] [PMID: 21516203]
[68]
Nishino, T.; Okamoto, K.; Eger, B.T.; Pai, E.F.; Nishino, T. Mammalian xanthine oxidoreductase - mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J., 2008, 275(13), 3278-3289.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06489.x] [PMID: 18513323]
[69]
Borges, F.; Fernandes, E.; Roleira, F. Progress towards the discovery of xanthine oxidase inhibitors. Curr. Med. Chem., 2002, 9(2), 195-217.
[http://dx.doi.org/10.2174/0929867023371229] [PMID: 11860355]
[70]
Gutteridge, S.; Tanner, S.J.; Bray, R.C. The molybdenum centre of native xanthine oxidase. Evidence for proton transfer from substrates to the centre and for existence of an anion-binding site. Biochem. J., 1978, 175(3), 869-878.
[http://dx.doi.org/10.1042/bj1750869] [PMID: 217353]
[71]
Greenwood, R.J.; Wilson, G.L.; Pilbrow, J.R.; Wedd, A.G. Molybdenum (V) sites in xanthine oxidase and relevant analog complexes: comparison of oxygen-17 hyperfine coupling. J. Am. Chem. Soc., 1993, 115(13), 5385-5392.
[http://dx.doi.org/10.1021/ja00066a005]
[72]
Fridovich, I.; Handler, P. Xanthine oxidase. II. Studies of the active site. J. Biol. Chem., 1958, 231(2), 899-911.
[PMID: 13539025]
[73]
Hille, R. The mononuclear molybdenum enzymes. Chem. Rev., 1996, 96(7), 2757-2816.
[http://dx.doi.org/10.1021/cr950061t] [PMID: 11848841]
[74]
Doonan, C.J.; Stockert, A.; Hille, R.; George, G.N. Nature of the catalytically labile oxygen at the active site of xanthine oxidase. J. Am. Chem. Soc., 2005, 127(12), 4518-4522.
[http://dx.doi.org/10.1021/ja042500o] [PMID: 15783235]
[75]
Yan, J.; Zhang, G.; Hu, Y.; Ma, Y. Effect of luteolin on xanthine oxidase: inhibition kinetics and interaction mechanism merging with docking simulation. Food Chem., 2013, 141(4), 3766-3773.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.092] [PMID: 23993547]
[76]
Gardlik, S.; Rajagopalan, K.V. The state of reduction of molybdopterin in xanthine oxidase and sulfite oxidase. J. Biol. Chem., 1990, 265(22), 13047-13054.
[PMID: 2376587]
[77]
Skibo, E.B. Noncompetitive and irreversible inhibition of xanthine oxidase by benzimidazole analogues acting at the functional flavin adenine dinucleotide cofactor. Biochemistry, 1986, 25(15), 4189-4194.
[http://dx.doi.org/10.1021/bi00363a004] [PMID: 3756135]
[78]
Rodríguez-Trelles, F.; Tarrío, R.; Ayala, F.J. Convergent neofunctionalization by positive Darwinian selection after ancient recurrent duplications of the xanthine dehydrogenase gene. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13413-13417.
[http://dx.doi.org/10.1073/pnas.1835646100] [PMID: 14576276]
[79]
Harborne, J.B.; Mabry, T.J. The flavonoids; Advances in Research: Springer, US, 2013.
[80]
Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther., 2002, 96(2-3), 67-202.
[http://dx.doi.org/10.1016/S0163-7258(02)00298-X] [PMID: 12453566]
[81]
Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[82]
Cook, N.C.; Samman, S. Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem., 1996, 7(2), 66-76.
[http://dx.doi.org/10.1016/0955-2863(95)00168-9]
[83]
Van Hoorn, D.E.; Nijveldt, R.J.; Van Leeuwen, P.A.; Hofman, Z.; M’Rabet, L.; De Bont, D.B.; Van Norren, K. Accurate prediction of xanthine oxidase inhibition based on the structure of flavonoids. Eur. J. Pharmacol., 2002, 451(2), 111-118.
[http://dx.doi.org/10.1016/S0014-2999(02)02192-1] [PMID: 12231379]
[84]
Umamaheswari, M.; Madeswaran, A.; Asokkumar, K.; Sivashanmugam, T.; Subhadradevi, V.; Jagannath, P. Discovery of potential xanthine oxidase inhibitors using in silico docking studies. Pharma Chem., 2011, 3(5), 240-247.
[85]
Umamaheswari, M.; Madeswaran, A.; Asokkumar, K. Virtual screening analysis and in-vitro xanthine oxidase inhibitory activity of some commercially available flavonoids. Iran. J. Pharm. Res., 2013, 12(3), 317-323.
[PMID: 24250638]
[86]
Rajan, T.; Muthukrishnan, S. Molecular docking studies of xanthine oxidase inhibitors identified from pseudarthria viscida. Eur. J. Mol. Biol. Biochem, 2014, 1(1), 1-6.
[87]
Hamidi, A.A.; Rashidi, M.R.; Dastmalchi, S. Molecular docking studies of quercetin as a xanthine oxidase inhibitor. Mol. Biol. Res., 2014, 45(1)
[88]
Lin, C.M.; Chen, C.S.; Chen, C.T.; Liang, Y.C.; Lin, J.K. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem. Biophys. Res. Commun., 2002, 294(1), 167-172.
[http://dx.doi.org/10.1016/S0006-291X(02)00442-4] [PMID: 12054758]
[89]
Hendriani, R.; Nursamsiar, A.T. In vitro and In silico evaluation of xanthine oxidase inhibitory activity of quercetin contained in sonchus arvensis leaf extract., 2017.
[http://dx.doi.org/10.22159/ ajpcr.2017.v10s2.19486]
[90]
Santi, M.D.; Paulino Zunini, M.; Vera, B.; Bouzidi, C.; Dumontet, V.; Abin-Carriquiry, A.; Grougnet, R.; Ortega, M.G. Xanthine oxidase inhibitory activity of natural and hemisynthetic flavonoids from Gardenia oudiepe (Rubiaceae) in vitro and molecular docking studies. Eur. J. Med. Chem., 2018, 143, 577-582.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.071] [PMID: 29207340]
[91]
Zhang, C.; Wang, R.; Zhang, G.; Gong, D. Mechanistic insights into the inhibition of quercetin on xanthine oxidase. Int. J. Biol. Macromol., 2018, 112, 405-412.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.190] [PMID: 29410028]
[92]
Lin, S.; Zhang, G.; Liao, Y.; Pan, J. Inhibition of chrysin on xanthine oxidase activity and its inhibition mechanism. Int. J. Biol. Macromol., 2015, 81, 274-282.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.017] [PMID: 26275460]
[93]
Hunyadi, A.; Martins, A.; Danko, B.; Chuang, D.W.; Trouillas, P.; Chang, F.R.; Wu, Y.C.; Falkay, G. Discovery of the first non-planar flavonoid that can strongly inhibit xanthine oxidase: protoapigenone 1′-O-propargyl ether. Tetrahedron Lett., 2013, 54(48), 6529-6532.
[http://dx.doi.org/10.1016/j.tetlet.2013.09.087]
[94]
Singh, H.; Sharma, S.; Ojha, R.; Gupta, M.K.; Nepali, K.; Bedi, P.M. Synthesis and evaluation of naphthoflavones as a new class of non purine xanthine oxidase inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(17), 4192-4197.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.041] [PMID: 25106887]
[95]
Dong, Y.; Huang, H.; Zhao, M.; Sun-Waterhouse, D.; Lin, L.; Xiao, C. Mechanisms underlying the xanthine oxidase inhibitory effects of dietary flavonoids galangin and pinobanksin. J. Funct. Foods, 2016, 24, 26-36.
[http://dx.doi.org/10.1016/j.jff.2016.03.021]
[96]
Wang, Y.; Zhang, G.; Pan, J.; Gong, D. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase. J. Agric. Food Chem., 2015, 63(2), 526-534.
[http://dx.doi.org/10.1021/jf505584m] [PMID: 25539132]
[97]
Jayaraj, P.; Mathew, B.; Parimaladevi, B.; Ramani, V.A.; Govindarajan, R. Isolation of a bioactive flavonoid from Spilanthes calva DC in vitro xanthine oxidase assay and in silico study. Biomed. Prev. Nutr, 2014, 4(4), 481-484.
[http://dx.doi.org/10.1016/j.bionut.2014.07.005]
[98]
Lin, S.; Zhang, G.; Liao, Y.; Pan, J.; Gong, D. Dietary flavonoids as xanthine oxidase inhibitors: Structure-affinity and structure–activity relationships. J. Agric. Food Chem., 2015, 63(35), 7784-7794.
[http://dx.doi.org/10.1021/acs.jafc.5b03386] [PMID: 26285120]
[99]
Yan, J.; Zhang, G.; Hu, Y.; Ma, Y. Effect of luteolin on xanthine oxidase: Inhibition kinetics and interaction mechanism merging with docking simulation. Food Chem., 2013, 141(4), 3766-3773.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.092] [PMID: 23993547]
[100]
Lin, S.; Zhang, G.; Pan, J.; Gong, D. Deciphering the inhibitory mechanism of genistein on xanthine oxidase in vitro. J. Photochem. Photobiol. B, 2015, 153, 463-472.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.10.022] [PMID: 26584360]
[101]
Peres, V.; Nagem, T.J.; de Oliveira, F.F. Tetraoxygenated naturally occurring xanthones. Phytochemistry, 2000, 55(7), 683-710.
[http://dx.doi.org/10.1016/S0031-9422(00)00303-4] [PMID: 11190384]
[102]
Carpenter, I.; Locksley, H.D.; Scheinmann, F. Xanthones in higher plants: Biogenetic proposals and a chemotaxonomic survey. Phytochemistry, 1969, 8(10), 2013-2025.
[http://dx.doi.org/10.1016/S0031-9422(00)88089-9]
[103]
Peres, V.; Nagem, T.J. Trioxygenated naturally occurring xanthones. Phytochemistry, 1997, 44(2), 191-214.
[http://dx.doi.org/10.1016/S0031-9422(96)00421-9]
[104]
Walker, E.B. HPLC analysis of selected xanthones in mangosteen fruit. J. Sep. Sci., 2007, 30(9), 1229-1234.
[http://dx.doi.org/10.1002/jssc.200700024] [PMID: 17623461]
[105]
Hu, L.; Hu, H.; Wu, W.; Chai, X.; Luo, J.; Wu, Q. Discovery of novel xanthone derivatives as xanthine oxidase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(13), 4013-4015.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.140] [PMID: 21620698]
[106]
Khammee, T.; Jongsu, W.; Kuno, M.; Suksamrarn, S. Allylxanthone derivatives as xanthine oxidase inhibitors: Synthesis, biological evaluation and molecular docking study. Orient. J. Chem., 2018, 34(1), 38-44.
[http://dx.doi.org/10.13005/ojc/340104]
[107]
Hua, Y.; Chen, C.X.; Liu, Y.Q.; Zhou, J. Two new xanthones from Polygala crotalarioides. J. Asian Nat. Prod. Res., 2007, 9(3-5), 273-275.
[http://dx.doi.org/10.1080/10286020600650040] [PMID: 17566921]
[108]
Zhou, L.Y.; Peng, J.L.; Wang, J.M.; Geng, Y.Y.; Zuo, Z.L.; Hua, Y. Structure-activity relationship of xanthones as inhibitors of xanthine oxidase. Molecules, 2018, 23(2), 365.
[http://dx.doi.org/10.3390/molecules23020365] [PMID: 29425137]
[109]
Shi, D.H.; Huang, W.; Li, C.; Liu, Y.W.; Wang, S.F. Design, synthesis and molecular modeling of aloe-emodin derivatives as potent xanthine oxidase inhibitors. Eur. J. Med. Chem., 2014, 75, 289-296.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.058] [PMID: 24556143]
[110]
Zhang, T.J.; Li, S.Y.; Yuan, W.Y.; Wu, Q.X.; Wang, L.; Yang, S.; Sun, Q.; Meng, F.H. Discovery and biological evaluation of some (1H-1,2,3-triazol-4-yl)methoxybenzaldehyde derivatives containing an anthraquinone moiety as potent xanthine oxidase inhibitors. Bioorg. Med. Chem. Lett., 2017, 27(4), 729-732.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.049] [PMID: 28131711]
[111]
Chang, Y.C.; Lee, F.W.; Chen, C.S.; Huang, S.T.; Tsai, S.H.; Huang, S.H.; Lin, C.M. Structure-activity relationship of C6-C3 phenylpropanoids on xanthine oxidase-inhibiting and free radical-scavenging activities. Free Radic. Biol. Med., 2007, 43(11), 1541-1551.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.08.018] [PMID: 17964425]
[112]
Thangathirupathi, A.; Ali, N.; Natarajan, P.; Kumar, R. Molecular docking studies of andrographolide with xanthine oxidase. Asian. J. Pharm. Clin. Res., 2013, 6(2), 300-302.
[113]
Khanna, S.; Burudkar, S.; Bajaj, K.; Shah, P.; Keche, A.; Ghosh, U.; Desai, A.; Srivastava, A.; Kulkarni-Almeida, A.; Deshmukh, N.J.; Dixit, A.; Brahma, M.K.; Bahirat, U.; Doshi, L.; Nemmani, K.V.; Tannu, P.; Damre, A. B-Rao, C.; Sharma, R.; Sivaramakrishnan, H. Isocytosine-based inhibitors of xanthine oxidase: design, synthesis, SAR, PK and in vivo efficacy in rat model of hyperuricemia. Bioorg. Med. Chem. Lett., 2012, 22(24), 7543-7546.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.029] [PMID: 23122864]
[114]
Vitale, R.M.; Antenucci, L.; Gavagnin, M.; Raimo, G.; Amodeo, P. Structure-activity relationships of fraxamoside as an unusual xanthine oxidase inhibitor. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 345-354.
[http://dx.doi.org/10.1080/14756366.2016.1252758] [PMID: 28097900]
[115]
Kumar, D.; Kaur, G.; Negi, A.; Kumar, S.; Singh, S.; Kumar, R. Synthesis and xanthine oxidase inhibitory activity of 5,6-dihydropyrazolo/pyrazolo[1,5-c]quinazoline derivatives. Bioorg. Chem., 2014, 57, 57-64.
[http://dx.doi.org/10.1016/j.bioorg.2014.08.007] [PMID: 25222504]
[116]
Masuoka, N.; Nihei, K.; Maeta, A.; Yamagiwa, Y.; Kubo, I. Inhibitory effects of cardols and related compounds on superoxide anion generation by xanthine oxidase. Food Chem., 2015, 166, 270-274.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.021] [PMID: 25053055]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 2
Year: 2019
Page: [123 - 138]
Pages: 16
DOI: 10.2174/1568026619666190206122640
Price: $58

Article Metrics

PDF: 22
HTML: 3