Proteomics Study of Mesenchymal Stem Cell-Like Cells Isolated from Cerebrospinal Fluid of Patients with Meningioma

Author(s): Arash Saffarian, Amir Tarokh, Mohammad Reza Haghshenas, Mousa Taghipour, Nooshafarin Chenari, Abbas Ghaderi, Mahboobeh Razmkhah*.

Journal Name: Current Proteomics

Volume 16 , Issue 4 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Background: Cerebrospinal fluid (CSF) contains pro-growth factors that can affect proliferation, migration and differentiation of Mesenchymal Stem Cells (MSCs).

Objective: This study aimed to isolate MSC like cells from CSF of patients with meningioma and psudotumorcerebri (PTC) and identify differentially expressed proteins in these cells.

Methods: Five patients with newly diagnosed intracranial meningioma and five patients with PTC were recruited in this comparative proteomics study. MSCs were isolated from CSF and validated by mesenchyml and non-mesenchyml fluorochrome antibodies, and flow cytometer analysis. Two- Dimensional Gel Electrophoresis (2-DE) coupled with Mass Spectrometry (MS) was performed to identify differentially expressed proteins.

Results: Microscopic views of the isolated cells as well as flow cytometer analysis were found to be compatible with MSC-like cells. Eight distinct protein spots were differentially and reproducibly expressed among the stained gels of two studied groups. The identified proteins were Phosphoglycerate Mutase 1 (PGAM1), LIM and SH3 domain protein (LASP1), peroxiredoxin-6 (PRDX-6), type I cytoskeletal 9 (KRT9), Superoxide Dismutase (SOD), endoplasmin, Stathmin 1 (STMN1), and glutathione S-transferase (GST).

Conclusion: This study provides new insights into the plausible role of CSF derived MSCs in cancer progression, and reveals a promising therapeutic opportunity for targeting of MSC proteins in patients with meningioma.

Keywords: Meningioma, psudotumorcerebri, cerebrospinal fluid, mesenchymal stem cells, proteomics, staining buffer.

[1]
Hossain, A.; Gumin, J.; Gao, F.; Figueroa, J.; Shinojima, N.; Takezaki, T.; Priebe, W.; Villarreal, D.; Kang, S.G.; Joyce, C.; Sulman, E.; Wang, Q.; Marini, F.C.; Andreeff, M.; Colman, H.; Lang, F.F. Mesenchymal stem cells isolated from human gliomas increase proliferation and maintain stemness of glioma stem cells through the IL-6/gp130/STAT3 pathway. Stem Cells, 2015, 33(8), 2400-2415.
[2]
Kang, S.G.; Shinojima, N.; Hossain, A.; Gumin, J.; Yong, R.L.; Colman, H.; Marini, F.; Andreeff, M.; Lang, F.F. Isolation and perivascular localization of mesenchymal stem cells from mouse brain. Neurosurgery, 2010, 67(3), 711-720.
[3]
Lim, H.Y.; Kim, K.M.; Kim, B.K.; Shim, J.K.; Lee, J.H.; Huh, Y.M.; Kim, S.H.; Kim, E.H.; Park, E.K.; Shim, K.W.; Chang, J.H.; Kim, D.S.; Kim, S.H.; Hong, Y.K.; Lee, S.J.; Kang, S.G. Isolation of mesenchymal stem-like cells in meningioma specimens. Int. J. Oncol., 2013, 43(4), 1260-1268.
[4]
Kim, J.H.; Lee, S.K.; Yoo, Y.C.; Park, N.H.; Park, D.B.; Yoo, J.S.; An, H.J.; Park, Y.M.; Cho, K.G. Proteome analysis of human cerebrospinal fluid as a diagnostic biomarker in patients with meningioma. Med. Sci. Monit., 2012, 18(11), BR450-BR460.
[5]
Ren, C.; Yin, P.; Ren, N.; Wang, Z.; Wang, J.; Zhang, C.; Ge, W.; Geng, D.; Wang, X. Cerebrospinal fluid-stem cell interactions may pave the path for cell-based therapy in neurological diseases. Stem Cell Res. Ther., 2018, 9(1), 66.
[6]
Majumdar, K.; Mandal, S.; Thakkar, R.; Saran, R.K.; Srivastava, A.K. Meningeal osteochondroma simulating meningioma with metaplastic change: A rare golf-ball-like lesion of non-meningothelial mesenchymal origin. Brain Tumor Pathol., 2014, 31(1), 62-67.
[7]
Ghaderi, A.; Abtahi, S. Mesenchymal stem cells: Miraculous healers or dormant killers? Stem Cell Rev., 2018, 14(5), 722-733.
[8]
Okamoto, H.; Li, J.; Vortmeyer, A.O.; Jaffe, H.; Lee, Y.S.; Glasker, S.; Sohn, T.S.; Zeng, W.; Ikejiri, B.; Proescholdt, M.A.; Mayer, C.; Weil, R.J.; Oldfield, E.H.; Zhuang, Z. Comparative proteomic profiles of meningioma subtypes. Cancer Res., 2006, 66(20), 10199-10204.
[9]
Hammond, J.B.; Kruger, N.J. The bradford method for protein quantitation. Methods Mol. Biol., 1988, 3, 25-32.
[10]
Pandamooz, S.; Naji, M.; Alinezhad, F.; Zarghami, A.; Pourghasem, M. The influence of cerebrospinal fluid on epidermal neural crest stem cells may pave the path for cell-based therapy. Stem Cell Res. Ther., 2013, 4(4), 84.
[11]
Durvasula, S.; Imitola, J. The cerebrospinal fluid-stem cell interactions as target for regenerative therapy in neurological diseases. Stem Cells Dev., 2015, 24(2), 145-146.
[12]
Zhu, M.; Feng, Y.; Dangelmajer, S.; Guerrero-Cazares, H.; Chaichana, K.L.; Smith, C.L.; Levchenko, A.; Lei, T.; Quinones-Hinojosa, A. Human cerebrospinal fluid regulates proliferation and migration of stem cells through insulin-like growth factor-1. Stem Cells Dev., 2015, 24(2), 160-171.
[13]
Xu, L.; Li, G. Circulating mesenchymal stem cells and their clinical implications. J. Orthop. Translat., 2014, 2(1), 1-7.
[14]
Shahar, T.; Rozovski, U.; Hess, K.R.; Hossain, A.; Gumin, J.; Gao, F.; Fuller, G.N.; Goodman, L.; Sulman, E.P.; Lang, F.F. Percentage of mesenchymal stem cells in high-grade glioma tumor samples correlates with patient survival. Neuro-oncol., 2017, 19(5), 660-668.
[15]
Grunewald, T.G.; Butt, E. The LIM and SH3 domain protein family: structural proteins or signal transducers or both? Mol. Cancer, 2008, 7, 31.
[16]
Phillips, G.R.; Anderson, T.R.; Florens, L.; Gudas, C.; Magda, G.; Yates, J.R.; Colman, D.R. Actin-binding proteins in a postsynaptic preparation: Lasp-1 is a component of central nervous system synapses and dendritic spines. J. Neurosci. Res., 2004, 78(1), 38-48.
[17]
Ruggieri, V.; Agriesti, F.; Tataranni, T.; Perris, R.; Mangieri, D. Paving the path for invasion: the polyedric role of LASP1 in cancer. Tumour Biol., 2017, 39(6), 1010428317705757.
[18]
Orth, M.F.; Cazes, A.; Butt, E.; Grunewald, T.G. An update on the LIM and SH3 domain protein 1 (LASP1): A versatile structural, signaling, and biomarker protein. Oncotarget, 2015, 6(1), 26-42.
[19]
Dejima, T.; Imada, K.; Takeuchi, A.; Shiota, M.; Leong, J.; Tombe, T.; Tam, K.; Fazli, L.; Naito, S.; Gleave, M.E.; Ong, C.J. Suppression of LIM and SH3 domain protein 1 (LASP1) negatively regulated by androgen receptor delays castration resistant prostate cancer progression. Prostate, 2017, 77(3), 309-320.
[20]
Zhang, X.; Liu, Y.; Fan, C.; Wang, L.; Li, A.; Zhou, H.; Cai, L.; Miao, Y.; Li, Q.; Qiu, X.; Wang, E. Lasp1 promotes malignant phenotype of non-small-cell lung cancer via inducing phosphorylation of FAK-AKT pathway. Oncotarget, 2017, 8(43), 75102-75113.
[21]
Wang, H.; Shi, J.; Luo, Y.; Liao, Q.; Niu, Y.; Zhang, F.; Shao, Z.; Ding, Y.; Zhao, L. LIM and SH3 protein 1 induces TGFbeta-mediated epithelial-mesenchymal transition in human colorectal cancer by regulating S100A4 expression. Clin. Cancer Res., 2014, 20(22), 5835-5847.
[22]
Gao, W.; Han, J. Silencing of LIM and SH3 protein 1 (LASP-1) inhibits thyroid cancer cell proliferation and invasion. Oncol. Res., 2017, 25(6), 879-886.
[23]
Traenka, C.; Remke, M.; Korshunov, A.; Bender, S.; Hielscher, T.; Northcott, P.A.; Witt, H.; Ryzhova, M.; Felsberg, J.; Benner, A.; Riester, S.; Scheurlen, W.; Grunewald, T.G.; von Deimling, A.; Kulozik, A.E.; Reifenberger, G.; Taylor, M.D.; Lichter, P.; Butt, E.; Pfister, S.M. Role of LIM and SH3 protein 1 (LASP1) in the metastatic dissemination of medulloblastoma. Cancer Res., 2010, 70(20), 8003-8014.
[24]
Wu, B.X.; Hong, F.; Zhang, Y.; Ansa-Addo, E.; Li, Z. GRP94/gp96 in cancer: Biology, structure, immunology, and drug development. Adv. Cancer Res., 2016, 129, 165-190.
[25]
Hu, T.; Xie, N.; Qin, C.; Wang, J.; You, Y. Glucose-regulated protein 94 is a novel glioma biomarker and promotes the aggressiveness of glioma via Wnt/beta-catenin signaling pathway. Tumour Biol., 2015, 36(12), 9357-9364.
[26]
Taghipour, M.; Omidvar, A.; Razmkhah, M.; Ghaderi, A.; Mojtahedi, Z. Comparative proteomic analysis of tumor mesenchymal-like stem cells derived from high grade versus low grade gliomas. Cell J., 2017, 19(2), 250-258.
[27]
Tran, D.Q.; Andersson, J.; Wang, R.; Ramsey, H.; Unutmaz, D.; Shevach, E.M. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc. Natl. Acad. Sci. USA, 2009, 106(32), 13445-13450.
[28]
Bloch, O.; Crane, C.A.; Fuks, Y.; Kaur, R.; Aghi, M.K.; Berger, M.S.; Butowski, N.A.; Chang, S.M.; Clarke, J.L.; McDermott, M.W.; Prados, M.D.; Sloan, A.E.; Bruce, J.N.; Parsa, A.T. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: A phase II, single-arm trial. Neuro-oncol., 2014, 16(2), 274-279.
[29]
Tosti, G.; di Pietro, A.; Ferrucci, P.F.; Testori, A. HSPPC-96 vaccine in metastatic melanoma patients: From the state of the art to a possible future. Expert Rev. Vaccines, 2009, 8(11), 1513-1526.
[30]
Biaoxue, R.; Xiguang, C.; Hua, L.; Shuanying, Y. Stathmin-dependent molecular targeting therapy for malignant tumor: The latest 5 years’ discoveries and developments. J. Transl. Med., 2016, 14(1), 279.
[31]
Jeon, T.Y.; Han, M.E.; Lee, Y.W.; Lee, Y.S.; Kim, G.H.; Song, G.A.; Hur, G.Y.; Kim, J.Y.; Kim, H.J.; Yoon, S.; Baek, S.Y.; Kim, B.S.; Kim, J.B.; Oh, S.O. Overexpression of stathmin1 in the diffuse type of gastric cancer and its roles in proliferation and migration of gastric cancer cells. Br. J. Cancer, 2010, 102(4), 710-718.
[32]
Obayashi, S.; Horiguchi, J.; Higuchi, T.; Katayama, A.; Handa, T.; Altan, B.; Bai, T.; Bao, P.; Bao, H.; Yokobori, T.; Nishiyama, M.; Oyama, T.; Kuwano, H. Stathmin1 expression is associated with aggressive phenotypes and cancer stem cell marker expression in breast cancer patients. Int. J. Oncol., 2017, 51(3), 781-790.
[33]
Hitosugi, T.; Zhou, L.; Elf, S.; Fan, J.; Kang, H.B.; Seo, J.H.; Shan, C.; Dai, Q.; Zhang, L.; Xie, J.; Gu, T.L.; Jin, P.; Aleckovic, M.; LeRoy, G.; Kang, Y.; Sudderth, J.A.; DeBerardinis, R.J.; Luan, C.H.; Chen, G.Z.; Muller, S.; Shin, D.M.; Owonikoko, T.K.; Lonial, S.; Arellano, M.L.; Khoury, H.J.; Khuri, F.R.; Lee, B.H.; Ye, K.; Boggon, T.J.; Kang, S.; He, C.; Chen, J. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell, 2012, 22(5), 585-600.
[34]
Qu, J.; Sun, W.; Zhong, J.; Lv, H.; Zhu, M.; Xu, J.; Jin, N.; Xie, Z.; Tan, M.; Lin, S.H.; Geng, M.; Ding, J.; Huang, M. Phosphoglycerate mutase 1 regulates dNTP pool and promotes homologous recombination repair in cancer cells. J. Cell Biol., 2017, 216(2), 409-424.
[35]
Zhang, D.; Jin, N.; Sun, W.; Li, X.; Liu, B.; Xie, Z.; Qu, J.; Xu, J.; Yang, X.; Su, Y.; Tang, S.; Han, H.; Chen, D.; Ding, J.; Tan, M.; Huang, M.; Geng, M. Phosphoglycerate mutase 1 promotes cancer cell migration independent of its metabolic activity. Oncogene, 2017, 36(20), 2900-2909.
[36]
Fu, B.S.; Liu, W.; Zhang, J.W.; Zhang, T.; Li, H.; Chen, G.H. Serum proteomic analysis on metastasis-associated proteins of hepatocellular carcinoma. Nan Fang Yi Ke Da Xue Xue Bao, 2009, 29(9), 1775-1778.
[37]
Richens, J.L.; Spencer, H.L.; Butler, M.; Cantlay, F.; Vere, K.A.; Bajaj, N.; Morgan, K.; O’Shea, P. Rationalising the role of Keratin 9 as a biomarker for Alzheimer’s disease. Sci. Rep., 2016, 6, 22962.
[38]
Prabhu, K.; Bhat, G.P. Serum total glutathione-s-transferase levels in oral cancer. J. Cancer Res. Ther., 2007, 3(3), 167-168.
[39]
Chung-Man Ho, J.; Zheng, S.; Comhair, S.A.; Farver, C.; Erzurum, S.C. Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res., 2001, 61(23), 8578-8585.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 16
ISSUE: 4
Year: 2019
Page: [282 - 288]
Pages: 7
DOI: 10.2174/1570164616666190204161453
Price: $58

Article Metrics

PDF: 19