Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Analysis of Extracellular Proteome of Staphylococcus aureus: A Mass Spectrometry based Proteomics Method of Exotoxin Characterisation

Author(s): Rajdeep Das, Nisha D`souza, Surya K. Choubey, Sethumadhavan Murlidharan, Anura V. Kurpad and Amit K. Mandal*

Volume 17, Issue 1, 2020

Page: [3 - 9] Pages: 7

DOI: 10.2174/1570164616666190204160627

Price: $65

Abstract

Background: Staphylococcus aureus (S. aureus), an important pathogen, causes a wide range of infections in human starting from food poisoning to septicemia. It affects the host cells with various exotoxins, known as virulence factors, which are synthesized in growth phase-dependent manner of the bacteria. S. aureus has been reported to become resistant to antibiotics rapidly. Among two common clinical isolates, Methicillin-sensitive S. aureus (MSSA) and Methicillin-resistant S. aureus (MRSA), MRSA pose major problems across hospitals around the world.

Objective: The objective of the present study was to profile the exoproteins of Methicillin-sensitive S. aureus (ATCC 25293) and subsequently to establish a proteomics-based method of characterization of S. aureus that is crucial in treating hospital-acquired infections.

Methods: We used two-dimensional nanoLC/ESI-MS based proteomic platform to characterize and quantify the exoproteins isolated from Methicillin-sensitive S. aureus (ATCC 25293) strain.

Results: A total of 69 proteins were identified from extracellular proteome pool of ATCC 25293 strain that includes 18 extracellular proteins, 40 cytoplasmic proteins, 2 membrane proteins, 3 cell wall proteins and 6 uncharacterized proteins.

Conclusion: We propose that this mass spectrometry-based proteomics method of characterization of exoproteins might be useful to identify S. aureus strains that are resistant to antibiotics.

Keywords: Staphylococcus aureus, extracellular proteome, mass spectrometry, nanoLC, toxin, antibiotics.

« Previous
Graphical Abstract
[1]
Mandell, G.L.; Douglas, R.G.; Bennet, J.E. Principles and practice of infectious diseases; Waldvogel, F.A., Ed.; New York: Churchill Livingstone, 1985, pp. 1097-1116.
[2]
Mandell, G.L.; Douglas, R.G.; Bennet, J.E. Principles and practice of infectious diseases; Waldvogel, F.A., Ed.; New York: Churchill Livingstone, 1995, pp. 1489-1510.
[3]
Khan, M.M.; Ernst, O.; Sun, J.; Fraser, D.C.I.; Ernst, K.R.; Goodlett, R.D.; Nita-Lazar, A. Mass spectrometry-based structural analysis and systems immunoproteomics strategies for deciphering the host response to endotoxin. J. Mol. Biol., 2018, 430, 2641-2660.
[4]
Smeltzer, M.S.; Hart, M.E.; Landolo, J.J. Phenotypic characterization of xpr, a global regulator of extracellular virulence factors in Staphylococcus aureus. Infect. Immun., 1993, 61, 919-925.
[5]
Soufi, Y.; Soufi, B. Mass spectrometry-based bacterial proteomics: Focus on dermatologic microbial pathogens. Front. Microbiol., 2016, 7, 1-7.
[6]
Kornblum, J.; Kreiswirth, B.N.; Projan, S.J.; Ross, H.; Novick, R.P. Molecular biology of the Staphylococci; Novick, R.P., Ed.; New York: VCH, 1990, pp. 373-402.
[7]
Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev., 2000, 13, 16-34.
[8]
Nandakumar, R.; Nandakumar, M.P.; Marten, R.M.; Ross, M.J. Proteome analysis of membrane and cell wall associated proteins from Staphylococcus aureus. J. Proteome Res., 2005, 4, 250-257.
[9]
Ravipaty, S.; Reilly, P.J. Comprehensive characterization of methicillin resistant Staphylococcus aureus sub sp. Aureus COL secretome by two-dimensional liquid chromatography and mass spectrometry. Mol. Cell. Proteomics, 2010, 9, 1898-1919.
[10]
Pocsfalvi, G.; Cacace, G.; Cuccurullo, M.; Serluca, G.; Sorrentino, A.; Schlosser, G.; Blaiotta, G.; Malorni, G. Proteomic analysis of exoproteins expressed by enterotoxigenic Staphylococcus aureus strains. Proteomics, 2008, 8, 2462-2476.
[11]
Kimura, A.; Igarashi, H.; Ushioda, H.; Okuzumi, K.; Kobayashi, H.; Otsuka, T. Epidemiological study of Staphylococcus aureus isolated from the Japanese national university and medical college hospitals with coagulase typing, and production of enterotoxins and toxic shock syndrome toxin-1. Kansenshogaku Zasshi, 1992, 66, 1543-1549.
[12]
Nadig, S.; Namburi, P.; Raghunath, D.; Arekere, G. Genotyping of methicillin-resistant Staphylococcus aureus isolates from Indian hospitals. Curr. Sci., 2006, 91, 1364-1369.
[13]
Das, R.; Mitra, G.; Mathew, B.; Ross, C.; Bhat, V.; Mandal, A.K. Automated analysis of hemoglobin variants using nano LC-MS and customized databases. J. Proteome Res., 2013, 12, 3215-3222.
[14]
Silva, J.C.; Gorenstein, M.V.; Li, G.Z.; Vissers, J.P.; Geromanos, S.J. Absolute quantification of proteins by LCMSE: A virtue of parallel MS acquisition. Mol. Cell. Proteomics, 2006, 5, 144-156.
[15]
Bernardo, K.; Fleer, S.; Pakulat, N.; Krut, O.; Hünger, F.; Krönke, M. Identification of Staphylococcus aureus exotoxins by combined sodium dodecyl sulfate gel electrophoresis and matrix‐assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics, 2002, 2, 740-746.
[16]
Nakano, M.; Kawano, Y.; Kawagish, M.; Hasegawa, T.; Iinuma, Y.; Oht, M. Two-dimensional analysis of exoproteins of methicillin-resistant Staphylococcus aureus (MRSA) for possible epidemiological applications. Microbiol. Immunol., 2002, 46, 11-22.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy