PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II

Author(s): Phaedra Eleftheriou*, Athina Geronikaki, Anthi Petrou.

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Diabetes Mellitus (DM), is a metabolic disorder characterized by high blood glucose levels. The main types of diabetes mellitus are Diabetes mellitus type I, Diabetes mellitus type II, gestational diabetes and Diabetes of other etiology. Diabetes type II, the Non Insulin Dependent Type (NIDDM) is the most common type, characterized by the impairment in activation of the intracellular mechanism leading to the insertion and usage of glucose after interaction of insulin with its receptor, known as insulin resistance. Although, a number of drugs have been developed for the treatment of diabetes type II, their ability to reduce blood glucose levels is limited, while several side effects are also observed. Furthermore, none of the market drugs targets the enhancement of the action of the intracellular part of insulin receptor or recuperation of the glucose transport mechanism in GLUT4 dependent cells. The Protein Tyrosine Phosphatase (PTP1b) is the main enzyme involved in insulin receptor desensitization and has become a drug target for the treatment of Diabetes type II. Several PTP1b inhibitors have already been found, interacting with the binding site of the enzyme, surrounding the catalytic amino acid Cys215 and the neighboring area or with the allosteric site of the enzyme, placed at a distance of 20 Å from the active site, around Phe280. However, the research continues for finding more potent inhibitors with increased cell permeability and specificity.

Objective: The aim of this review is to show the attempts made in developing of Protein Tyrosine Phosphatase (PTP1b) inhibitors with high potency, selectivity and bioavailability and to sum up the indications for favorable structural characteristics of effective PTP1b inhibitors.

Methods: The methods used include a literature survey and the use of Protein Structure Databanks such as PuBMed Structure and RCSB and the tools they provide.

Conclusion: The research for finding PTP1b inhibitors started with the design of molecules mimicking the Tyrosine substrate of the enzyme. The study revealed that an aromatic ring connected to a polar group, which preferably enables hydrogen bond formation, is the minimum requirement for small inhibitors binding to the active site surrounding Cys215. Molecules bearing two hydrogen bond donor/acceptor (Hb d/a) groups at a distance of 8.5-11.5 Å may form more stable complexes, interacting simultaneously with a secondary area A2. Longer molecules with two Hb d/a groups at a distance of 17 Å or 19 Å may enable additional interactions with secondary sites (B and C) that confer stability as well as specificity. An aromatic ring linked to polar or Hb d/a moieties is also required for allosteric inhibitors. A lower distance between Hb d/a moieties, around 7.5 Å may favor allosteric interaction. Permanent inhibition of the enzyme by oxidation of the catalytic Cys215 has also been referred. Moreover, covalent modification of Cys121, placed near but not inside the catalytic pocket has been associated with permanent inhibition of the enzyme.

Keywords: Diabetes mellitus, Protein tyrosine phosphatase inhibitors, PTP1b, Competitive inhibitors, Allosteric inhibitors, Covalent inhibitors, Selectivity.

[1]
Vats, R.K.; Kumar, V.; Kothari, A.; Mital, A.; Ramachandran, U. Emerging targets for diabetes. Curr. Sci., 2005, 88, 241-249.
[2]
Global report on Diabetes. World Health Organization 2016. ISBN 978 92 4 156525 7 (NLM classification: WK 810)
[3]
van Belle, T.L.; Coppieters, K.T.; von Herrath, M.G. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol. Rev., 2011, 91(1), 79-118.
[http://dx.doi.org/10.1152/physrev. 00003. 2010] [PMID: 21248163]
[4]
Stumvoll, M.; Goldstein, B.J.; van Haeften, T.W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet, 2005, 365(9467), 1333-1346.
[http://dx.doi.org/10.1016/S0140-6736(05)61032-X] [PMID: 15823385]
[5]
Lund, I.K.; Hansen, J.A.; Andersen, H.S.; Møller, N.P.; Billestrup, N. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling. J. Mol. Endocrinol., 2005, 34(2), 339-351.
[http://dx.doi.org/10.1677/jme.1.01694] [PMID: 15821101]
[6]
Morral, N. Novel targets and therapeutic strategies for type 2 diabetes. Trends Endocrinol. Metab., 2003, 14(4), 169-175.
[http://dx.doi.org/ dx.doi.org/10.1016/S1043-2760(03)00031-6] [PMID: 12714277]
[7]
Wagman, A.S.; Nuss, J.M. Current therapies and emerging targets for the treatment of diabetes. Curr. Pharm. Des., 2001, 7(6), 417-450.
[http://dx.doi.org/10.2174/1381612013397915] [PMID: 11281851]
[8]
Sola, D.; Rossi, L.; Piero, G.; Schianca, C.; Maffioli, P.; Bigliocca, M.; Mella, R.; Corlianò, F.; Fra, G.; Bartoli, E.; Derosa, G. Sulfonylureas and their use in clinical practice. Arch. Med. Sci., 2015, 11(4), 840-848.
[9]
Amos, A.F.; McCarty, D.J.; Zimmet, P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010. Diabet. Med., 1997, 14(Suppl. 5), S1-S85.
[http://dx.doi.org/ 10.1002/(SICI)1096-9136(199712)14:5+<S7:AID-DIA522>3.3.CO;2-I] [PMID: 9450510]
[10]
Balasubramanyam, M.; Mohan, V. Orally active insulin mimics: where do we stand now? J. Biosci., 2001, 26(3), 383-390.
[http://dx.doi.org/10.1007/BF02703748] [PMID: 11568484]
[11]
Hendriks, W.J.A.J.; Pulido, R. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochim. Biophys. Acta, 2013, 1832(10), 1673-1696.
[http://dx.doi.org/10.1016/j.bbadis.2013.05.022] [PMID: 23707412]
[12]
Elchebly, M.; Payette, P.; Michaliszyn, E. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 1999, 283, 1544-1548.
[13]
Nathan, D.M.; Buse, J.B.; Davidson, M.B.; Ferrannini, E.; Holman, R.R.; Sherwin, R.; Zinman, B. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 2009, 32(1), 193-203.
[http://dx.doi.org/10.2337/dc08-9025] [PMID: 18945920]
[14]
Tautz, L.; Pellecchia, M.; Mustelin, T. Targeting the PTPome in human disease. Expert Opin. Ther. Targets, 2006, 10(1), 157-177.
[http://dx.doi.org/10.1517/14728222.10.1.157] [PMID: 16441235]
[15]
Gao, Y.; Voigt, J.; Zhao, H.; Pais, G.C.; Zhang, X.; Wu, L.; Zhang, Z.Y.; Burke, T.R., Jr Utilization of a peptide lead for the discovery of a novel PTP1B-binding motif. J. Med. Chem., 2001, 44(18), 2869-2878.
[http://dx.doi.org/10.1021/jm010020r] [PMID: 11520195]
[16]
Dixit, M.; Saeed, U.; Kumar, A.; Siddiqi, M.I.; Tamrakar, A.K.; Srivastava, A.K.; Goel, A. Synthesis, molecular docking and PTP1B inhibitory activity of functionalized 4,5-dihydronaphthofurans and dibenzofurans. Med. Chem., 2008, 4(1), 18-24.
[http://dx.doi.org/10.2174/157340608783331515] [PMID: 18220968]
[17]
Scapin, G.; Patel, S.B.; Becker, J.W.; Wang, Q.; Desponts, C.; Waddleton, D.; Skorey, K.; Cromlish, W.; Bayly, C.; Therien, M.; Gauthier, J.Y.; Li, C.S.; Lau, C.K.; Ramachandran, C.; Kennedy, B.P.; Asante-Appiah, E. The structural basis for the selectivity of benzotriazole inhibitors of PTP1B. Biochemistry, 2003, 42(39), 11451-11459.
[http://dx.doi.org/10.1021/bi035098j] [PMID: 14516196]
[18]
Puius, Y.A.; Zhao, Y.; Sullivan, M.; Lawrence, D.S.; Almo, S.C.; Zhang, Z.Y. Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design. Proc. Natl. Acad. Sci. USA, 1997, 94(25), 13420-13425.
[http://dx.doi.org/10.1073/pnas.94.25.13420] [PMID: 9391040]
[19]
Moretto, A.F.; Kirincich, S.J.; Xu, W.X.; Smith, M.J.; Wan, Z.K.; Wilson, D.P.; Follows, B.C.; Binnun, E.; Joseph-McCarthy, D.; Foreman, K.; Erbe, D.V.; Zhang, Y.L.; Tam, S.K.; Tam, S.Y.; Lee, J. Bicyclic and tricyclic thiophenes as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem., 2006, 14(7), 2162-2177.
[http://dx.doi.org/10.1016/j.bmc.2005.11.005] [PMID: 16303309]
[20]
Klopfenstein, S.R.; Evdokimov, A.G.; Colson, A.O.; Fairweather, N.T.; Neuman, J.J.; Maier, M.B.; Gray, J.L.; Gerwe, G.S.; Stake, G.E.; Howard, B.W.; Farmer, J.A.; Pokross, M.E.; Downs, T.R.; Kasibhatla, B.; Peters, K.G. 1,2,3,4-Tetrahydroisoquinolinyl sulfamic acids as phosphatase PTP1B inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(6), 1574-1578.
[http://dx.doi.org/10.1016/j.bmcl. 2005.12.051] [PMID: 16386905]
[21]
Liu, G.; Szczepankiewicz, B.G.; Pei, Z.; Janowick, D.A.; Xin, Z.; Hajduk, P.J.; Abad-Zapatero, C.; Liang, H.; Hutchins, C.W.; Fesik, S.W.; Ballaron, S.J.; Stashko, M.A.; Lubben, T.; Mika, A.K.; Zinker, B.A.; Trevillyan, J.M.; Jirousek, M.R. Discovery and structure-activity relationship of oxalylarylaminobenzoic acids as inhibitors of protein tyrosine phosphatase 1B. J. Med. Chem., 2003, 46(11), 2093-2103.
[http://dx.doi.org/10.1021/jm0205696] [PMID: 12747781]
[22]
Jia, Z.; Ye, Q.; Dinaut, A.N.; Wang, Q.; Waddleton, D.; Payette, P.; Ramachandran, C.; Kennedy, B.; Hum, G.; Taylor, S.D. Structure of protein tyrosine phosphatase 1B in complex with inhibitors bearing two phosphotyrosine mimetics. J. Med. Chem., 2001, 44(26), 4584-4594.
[http://dx.doi.org/10.1021/jm010266w] [PMID: 11741477]
[23]
Larsen, S.D.; Barf, T.; Liljebris, C.; May, P.D.; Ogg, D.; O’Sullivan, T.J.; Palazuk, B.J.; Schostarez, H.J.; Stevens, F.C.; Bleasdale, J.E. Synthesis and biological activity of a novel class of small molecular weight peptidomimetic competitive inhibitors of protein tyrosine phosphatase 1B. J. Med. Chem., 2002, 45(3), 598-622.
[http://dx.doi.org/10.1021/jm010393s] [PMID: 11806712]
[24]
Asante-Appiah, E.; Patel, S.; Desponts, C.; Taylor, J.M.; Lau, C.; Dufresne, C.; Therien, M.; Friesen, R.; Becker, J.W.; Leblanc, Y.; Kennedy, B.P.; Scapin, G. Conformation-assisted inhibition of protein-tyrosine phosphatase-1B elicits inhibitor selectivity over T-cell protein-tyrosine phosphatase. J. Biol. Chem., 2006, 281(12), 8010-8015.
[http://dx.doi.org/10.1074/jbc.M511827200] [PMID: 16407290]
[25]
Wan, Z.K.; Lee, J.; Xu, W.; Erbe, D.V.; Joseph-McCarthy, D.; Follows, B.C.; Zhang, Y.L. Monocyclic thiophenes as protein tyrosine phosphatase 1B inhibitors: capturing interactions with Asp48. Bioorg. Med. Chem. Lett., 2006, 16(18), 4941-4945.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.051] [PMID: 16806920]
[26]
Douty, B.; Wayland, B.; Ala, P.J.; Bower, M.J.; Pruitt, J.; Bostrom, L.; Wei, M.; Klabe, R.; Gonneville, L.; Wynn, R.; Burn, T.C.; Liu, P.C.; Combs, A.P.; Yue, E.W. Isothiazolidinone inhibitors of PTP1B containing imidazoles and imidazolines. Bioorg. Med. Chem. Lett., 2008, 18(1), 66-71.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.012] [PMID: 18037290]
[27]
Bleasdale, J.E.; Ogg, D.; Palazuk, B.J.; Jacob, C.S.; Swanson, M.L.; Wang, X.Y.; Thompson, D.P.; Conradi, R.A.; Mathews, W.R.; Laborde, A.L.; Stuchly, C.W.; Heijbel, A.; Bergdahl, K.; Bannow, C.A.; Smith, C.W.; Svensson, C.; Liljebris, C.; Schostarez, H.J.; May, P.D.; Stevens, F.C.; Larsen, S.D. Small molecule peptidomimetics containing a novel phosphotyrosine bioisostere inhibit protein tyrosine phosphatase 1B and augment insulin action. Biochemistry, 2001, 40(19), 5642-5654.
[http://dx.doi.org/ 10.1021/bi002865v] [PMID: 11341829]
[28]
Sun, J.P.; Fedorov, A.A.; Lee, S.Y.; Guo, X.L.; Shen, K.; Lawrence, D.S.; Almo, S.C.; Zhang, Z.Y. Crystal structure of PTP1B complexed with a potent and selective bidentate inhibitor. J. Biol. Chem., 2003, 278(14), 12406-12414.
[http://dx.doi.org/ 10.1074/jbc.M212491200] [PMID: 12547827]
[29]
Eleftheriou, P. The protein tyrosine phosphatase 1b as a drug target for the treatment of diabetes type II. Developing effective and selective PTP1B inhibitors. ChemXPress, 2013, 2, 72-84.
[30]
Eleftheriou, P.; Petrou, A.; Geronikaki, A.; Liaras, K.; Dirnali, S.; Anna, M. Prediction of enzyme inhibition and mode of inhibitory action based on calculation of distances between hydrogen bond donor/acceptor groups of the molecule and docking analysis: An application on the discovery of novel effective PTP1B inhibitors. SAR QSAR Environ. Res., 2015, 26(7-9), 557-576.
[http://dx.doi.org/10.1080/1062936X.2015.1074939] [PMID: 26294069]
[31]
Barr, A.J. Protein tyrosine phosphatases as drug targets: strategies and challenges of inhibitor development. Future Med. Chem., 2010, 2(10), 1563-1576.
[http://dx.doi.org/10.4155/fmc. 10.241] [PMID: 21426149]
[32]
Wiesmann, C.; Barr, K.J.; Kung, J.; Zhu, J.; Erlanson, D.A.; Shen, W.; Fahr, B.J.; Zhong, M.; Taylor, L.; Randal, M.; McDowell, R.S.; Hansen, S.K. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat. Struct. Mol. Biol., 2004, 11(8), 730-737.
[http://dx.doi.org/10.1038/nsmb803] [PMID: 15258570]
[33]
Ganou, C.A.; Eleftheriou, P.T.; Theodosis-Nobelos, P.; Fesatidou, M.; Geronikaki, A.A.; Lialiaris, T.; Rekka, E.A. Docking analysis targeted to the whole enzyme: an application to the prediction of inhibition of PTP1B by thiomorpholine and thiazolyl derivatives. SAR QSAR Environ. Res., 2018, 29(2), 133-149.
[http://dx.doi.org/1062936X.2017.1414874] [PMID: 29347844]
[34]
Leung, C.; Grzyb, J.; Lee, J.; Meyer, N.; Hum, G.; Jia, C.; Liu, S.; Taylor, S.D. The difluoromethylenesulfonic acid group as a monoanionic phosphate surrogate for obtaining PTP1B inhibitors. Bioorg. Med. Chem., 2002, 10(7), 2309-2323.
[http://dx.doi.org/ 10.1016/S0968-0896(02)00062-7] [PMID: 11983529]
[35]
Bhattacharya, S.; Labutti, J.N.; Seiner, D.R.; Gates, K.S. Oxidative inactivation of protein tyrosine phosphatase 1B by organic hydroperoxides. Bioorg. Med. Chem. Lett., 2008, 18(22), 5856-5859.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.029] [PMID: 18595691]
[36]
Reddy, M.V.; Ghadiyaram, C.; Panigrahi, S.K.; Krishnamurthy, N.R.; Hosahalli, S.; Chandrasekharappa, A.P.; Manna, D.; Badiger, S.E.; Dubey, P.K.; Mangamoori, L.N. X-ray structure of PTP1B in complex with a new PTP1B inhibitor. Protein Pept. Lett., 2014, 21(1), 90-93.
[http://dx.doi.org/10.2174/09298665113209990089] [PMID: 23964742]
[37]
Punthasee, P.; Laciak, A.R.; Cummings, A.H.; Ruddraraju, K.V.; Lewis, S.M.; Hillebrand, R.; Singh, H.; Tanner, J.J.; Gates, K.S. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate. Biochemistry, 2017, 56(14), 2051-2060.
[http://dx.doi.org/ 10.1021/acs.biochem.7b00151] [PMID: 28345882]
[38]
Hansen, S.K.; Cancilla, M.T.; Shiau, T.P.; Kung, J.; Chen, T.; Erlanson, D.A. Allosteric inhibition of PTP1B activity by selective modification of a non-active site cysteine residue. Biochemistry, 2005, 44(21), 7704-7712.
[http://dx.doi.org/ 10.1021/bi047417s] [PMID: 15909985]
[39]
Gao, Y.; Wu, L.; Luo, J.H.; Guo, R.; Yang, D.; Zhang, Z.Y.; Burke, T.R., Jr Examination of novel non-phosphorus-containing phosphotyrosyl mimetics against protein-tyrosine phosphatase-1B and demonstration of differential affinities toward Grb2 SH2 domains. Bioorg. Med. Chem. Lett., 2000, 10(9), 923-927.
[http://dx.doi.org/10.1016/S0960-894X(00)00124-4] [PMID: 10853661]
[40]
Burke, T.R.; Yao, J.Z.; Zhao, H.; Wu, L.; Zhang, Z-Y.; Voigt, J. Enatioselective synthesis of nonphosphorus-containing phosphotyrosine mimetics and their use in preparation of tyrosine phosphatase inhibitory peptides. Tetrahedron, 1998, 54, 9981-9994.
[http://dx.doi.org/10.1016/S0040-4020(98)00590-0]
[41]
Larsen, S.D.; Stevens, F.C.; Lindberg, T.J.; Bodnar, P.M.; O’Sullivan, T.J.; Schostarez, H.J.; Palazuk, B.J.; Bleasdale, J.E. Modification of the N-terminus of peptidomimetic protein tyrosine phosphatase 1B (PTP1B) inhibitors: identification of analogues with cellular activity. Bioorg. Med. Chem. Lett., 2003, 13(5), 971-975.
[http://dx.doi.org/10.1016/S0960-894X(02)01065-X] [PMID: 12617932]
[42]
Chen, Y.T.; Onaran, M.B.; Doss, D.J.; Seto, C.T. Alpha-Ketocarboxylic Acid-Based Inhibitors of Protein Tyrosine Phosphatases. J. Org. Chem., 2003, 68, 4123-4125.
[http://dx.doi.org/ 10.1021/jo034113n] [PMID: 12737607]
[43]
Lin, L.; Shen, Q.; Chen, G-R.; Xie, J. β-C-glycosiduronic acids and β-C-glycosyl compounds: new PTP1B inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(24), 6348-6351.
[http://dx.doi.org/ 10.1016/j.bmcl.2008.10.091] [PMID: 18993066]
[44]
Iversen, L.F.; Andersen, H.S.; Branner, S.; Mortensen, S.B.; Peters, G.H.; Norris, K.; Olsen, O.H.; Jeppesen, C.B.; Lundt, B.F.; Ripka, W.; Møller, K.B.; Møller, N.P. Structure-based design of a low molecular weight, nonphosphorus, nonpeptide, and highly selective inhibitor of protein-tyrosine phosphatase 1B. J. Biol. Chem., 2000, 275(14), 10300-10307.
[http://dx.doi.org/10.1074/jbc.275.14.10300] [PMID: 10744717]
[45]
Hum, G.; Lee, J.; Taylor, S.D. Synthesis of [difluoro-(3-alkenylphenyl)-methyl]-phosphonic acids on non-crosslinked polystyrene and their evaluation as inhibitors of PTP1B. Bioorg. Med. Chem. Lett., 2002, 12(23), 3471-3474.
[http://dx.doi.org/10.1016/S0960-894X(02)00768-0] [PMID: 12419386]
[46]
Lakshminarayana, N.; Prasad, Y.R.; Gharat, L.; Thomas, A.; Narayanan, S.; Raghuram, A.; Srinivasan, C.V.; Gopalan, B. Synthesis and evaluation of some novel dibenzo[b,d]furan carboxylic acids as potential anti-diabetic agents. Eur. J. Med. Chem., 2010, 45(9), 3709-3718.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.020] [PMID: 20627471]
[47]
Xin, Z.; Oost, T.K.; Abad-Zapatero, C.; Hajduk, P.J.; Pei, Z.; Szczepankiewicz, B.G.; Hutchins, C.W.; Ballaron, S.J.; Stashko, M.A.; Lubben, T.; Trevillyan, J.M.; Jirousek, M.R.; Liu, G. Potent, selective inhibitors of protein tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett., 2003, 13(11), 1887-1890.
[http://dx.doi.org/ 10.1016/S0960-894X(03)00302-0] [PMID: 12749891]
[48]
He, R-J.; Yu, Z-H.; Zhang, R-Y.; Zhang, Z-Y. Protein Tyrosine Phosphatases as Potential Therapeutic Targets. Bioorg. Med. Chem., 2012, 20, 1940-1946.
[http://dx.doi.org/10.1016/j.bmc.2011.11.004] [PMID: 22133902]
[49]
Patel, D.; Jain, M.; Shah, S.R.; Bahekar, R.; Jadav, P.; Joharapurkar, A.; Dhanesha, N.; Shaikh, M.; Sairam, K.V.; Kapadnis, P. Discovery of potent, selective and orally bioavailable triaryl-sulfonamide based PTP1B inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(2), 1111-1117.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.122] [PMID: 22189136]
[50]
Arabaci, G.; Yi, T.; Fu, H.; Porter, M.E.; Beebe, K.D.; Pei, D. alpha-bromoacetophenone derivatives as neutral protein tyrosine phosphatase inhibitors: structure-Activity relationship. Bioorg. Med. Chem. Lett., 2002, 12(21), 3047-3050.
[http://dx.doi.org/ 10.1016/S0960-894X(02)00681-9] [PMID: 12372498]
[51]
Shrestha, S.; Bhattarai, B.R.; Kafle, B.; Lee, K-H.; Cho, H. Derivatives of 1,4-bis(3-hydroxycarbonyl-4-hydroxyl)styrylbenzene as PTP1B inhibitors with hypoglycemic activity. Bioorg. Med. Chem., 2008, 16(18), 8643-8652.
[http://dx.doi.org/10.1016/j.bmc.2008.07.090] [PMID: 18722777]
[52]
Li, C.; He, X.P.; Zhang, Y.J.; Li, Z.; Gao, L.X.; Shi, X.X.; Xie, J.; Li, J.; Chen, G.R.; Tang, Y. Click to a focused library of benzyl 6-triazolo(hydroxy)benzoic glucosides: novel construction of PTP1B inhibitors on a sugar scaffold. Eur. J. Med. Chem., 2011, 46(9), 4212-4218.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.025] [PMID: 21745700]
[53]
Song, Z.; He, X-P.; Li, C.; Gao, L.X.; Wang, Z-X.; Tang, Y.; Xie, J.; Li, J.; Chen, G.R. Preparation of triazole-linked glycosylated α-ketocarboxylic acid derivatives as new PTP1B inhibitors. Carbohydr. Res., 2011, 346(1), 140-145.
[http://dx.doi.org/ 10.1016/j.carres.2010.10.023] [PMID: 21111404]
[54]
Lin, L.; Shen, Q.; Chen, G.R.; Xie, J. Synthesis of triazole-linked beta-C-glycosyl dimers as inhibitors of PTP1B. Bioorg. Med. Chem., 2008, 16(22), 9757-9763.
[http://dx.doi.org/ 10.1016/j.bmc.2008.09.066] [PMID: 18922697]
[55]
Lakshminarayana, N.; Rajendra Prasad, Y.; Gharat, L.; Thomas, A.; Ravikumar, P.; Narayanan, S.; Srinivasan, C.V.; Gopalan, B. Synthesis and evaluation of some novel isochroman carboxylic acid derivatives as potential anti-diabetic agents. Eur. J. Med. Chem., 2009, 44(8), 3147-3157.
[http://dx.doi.org/10.1016/j.ejmech.2009. 03.009] [PMID: 19349096]
[56]
Shim, Y.S.; Kim, K.C.; Chi, D.Y.; Lee, K-H.; Cho, H. Formylchromone derivatives as a novel class of protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2003, 13(15), 2561-2563.
[http://dx.doi.org/10.1016/S0960-894X(03)00479-7] [PMID: 12852966]
[57]
Kumar, A.; Sharma, S.; Tripathi, V.D.; Maurya, R.A.; Srivastava, S.P.; Bhatia, G.; Tamrakar, A.K.; Srivastava, A.K. Design and synthesis of 2,4-disubstituted polyhydroquinolines as prospective antihyperglycemic and lipid modulating agents. Bioorg. Med. Chem., 2010, 18(11), 4138-4148.
[http://dx.doi.org/10.1016/j.bmc.2009.11.061] [PMID: 20471838]
[58]
Ahn, J.H.; Cho, S.Y.; Ha, J.D.; Chu, S.Y.; Jung, S-H.; Jung, Y-S.; Baek, J-Y.; Choi, I.K.; Shin, E-Y.; Kang, S-K.; Kim, S-S.; Cheon, H.G.; Yang, S-D.; Choi, J.K. Synthesis and PTP1B inhibition of 1,2-naphthoquinone derivatives as potent anti-diabetic agents. Bioorg. Med. Chem. Lett., 2002, 12(15), 1941-1946.
[http://dx.doi.org/10.1016/S0960-894X(02)00331-1] [PMID: 12113814]
[59]
Liljebris, C.; Martinsson, J.; Tedenborg, L.; Williams, M.; Barker, E.; Duffy, J.E.; Nygren, A.; James, S. Synthesis and biological activity of a novel class of pyridazine analogues as non-competitive reversible inhibitors of protein tyrosine phosphatase 1B (PTP1B). Bioorg. Med. Chem., 2002, 10(10), 3197-3212.
[http://dx.doi.org/ 10.1016/S0968-0896(02)00176-1] [PMID: 12150865]
[60]
Gupta, S.; Pandey, G.; Rahuja, N.; Srivastava, A.K.; Saxena, A.K. Design, synthesis and docking studies on phenoxy-3-piperazin-1-yl-propan-2-ol derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(19), 5732-5734.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.008] [PMID: 20797859]
[61]
Xie, J.; Tian, J.; Su, L.; Huang, M.; Zhu, X.; Ye, F.; Wan, Y. Pyrrolo[2,3-c]azepine derivatives: a new class of potent protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(14), 4306-4309.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.052] [PMID: 21696953]
[62]
Liu, Z.; Lee, W.; Kim, S-N.; Yoon, G.; Cheon, S.H. Design, synthesis, and evaluation of bromo-retrochalcone derivatives as protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(12), 3755-3758.
[http://dx.doi.org/j.bmcl.2011.04.057] [PMID: 21555221]
[63]
Qiu, W-W.; Shen, Q.; Yang, F.; Wang, B.; Zou, H.; Li, J-Y.; Li, J.; Tang, J. Synthesis and biological evaluation of heterocyclic ring-substituted maslinic acid derivatives as novel inhibitors of protein tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett., 2009, 19(23), 6618-6622.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.017] [PMID: 19846303]
[64]
Luo, L.; He, X.P.; Shen, Q.; Li, J.Y.; Shi, X.X.; Xie, J.; Li, J.; Chen, G.R. Synthesis of (glycopyranosyl-triazolyl)-purines and their inhibitory activities against protein tyrosine phosphatase 1B (PTP1B). Chem. Biodivers., 2011, 8(11), 2035-2044.
[http://dx.doi.org/10.1002/cbdv.201000242] [PMID: 22083916]
[65]
Bhattarai, B.R.; Kafle, B.; Hwang, J-S.; Ham, S.W.; Lee, K-H.; Park, H.; Han, I-O.; Cho, H. Novel thiazolidinedione derivatives with anti-obesity effects: dual action as PTP1B inhibitors and PPAR-γ activators. Bioorg. Med. Chem. Lett., 2010, 20(22), 6758-6763.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.130] [PMID: 20850970]
[66]
Bhattarai, B.R.; Kafle, B.; Hwang, J-S.; Khadka, D.; Lee, S.M.; Kang, J.S.; Ham, S.W.; Han, I.O.; Park, H.; Cho, H. Thiazolidinedione derivatives as PTP1B inhibitors with antihyperglycemic and antiobesity effects. Bioorg. Med. Chem. Lett., 2009, 19(21), 6161-6165.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.020] [PMID: 19783142]
[67]
Ottanà, R.; Maccari, R.; Ciurleo, R.; Paoli, P.; Jacomelli, M.; Manao, G.; Camici, G.; Laggner, C.; Langer, T. 5-Arylidene-2-phenylimino-4-thiazolidinones as PTP1B and LMW-PTP inhibitors. Bioorg. Med. Chem., 2009, 17(5), 1928-1937.
[http://dx.doi.org/ 10.1016/j.bmc.2009.01.044] [PMID: 19217304]
[68]
Lin, L.; Shen, Q.; Chen, G.R.; Xie, J. Synthesis of triazole-linked beta-C-glycosyl dimers as inhibitors of PTP1B. Bioorg. Med. Chem., 2008, 16(22), 9757-9763.
[http://dx.doi.org/10.1016/j.bmc.2008.09.066] [PMID: 18922697]
[69]
Lu, L.; Yue, J.; Yuan, C.; Zhu, M.; Han, H.; Liu, Z.; Guo, M. Ternary oxovanadium(IV) complexes with amino acid-Schiff base and polypyridyl derivatives: synthesis, characterization, and protein tyrosine phosphatase 1B inhibition. J. Inorg. Biochem., 2011, 105(10), 1323-1328.
[http://dx.doi.org/10.1016/j.jinorgbio. 2011.07.008] [PMID: 21864810]
[70]
Lu, L.; Wang, S.; Zhu, M.; Liu, Z.; Guo, M.; Xing, S.; Fu, X. Inhibition protein tyrosine phosphatases by an oxovanadium glutamate complex, Na2[VO(Glu)2(CH3OH)](Glu = glutamate). Biometals, 2010, 23(6), 1139-1147.
[http://dx.doi.org/ 10.1007/s10534-010-9363-8] [PMID: 20617368]
[71]
Yuan, C.; Lu, L.; Wu, Y.; Liu, Z.; Guo, M.; Xing, S.; Fu, X.; Zhu, M. Synthesis, characterization, and protein tyrosine phosphatases inhibition activities of oxovanadium(IV) complexes with Schiff base and polypyridyl derivatives. J. Inorg. Biochem., 2010, 104(9), 978-986.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.05.003] [PMID: 20542335]
[72]
Yuan, C.; Lu, L.; Gao, X.; Wu, Y.; Guo, M.; Li, Y.; Fu, X.; Zhu, M. Ternary oxovanadium(IV) complexes of ONO-donor Schiff base and polypyridyl derivatives as protein tyrosine phosphatase inhibitors: synthesis, characterization, and biological activities. J. Biol. Inorg. Chem., 2009, 14(6), 841-851.
[http://dx.doi.org/ 10.1007/s00775-009-0496-6] [PMID: 19290551]
[73]
Li, Y.; Lu, L.; Zhu, M.; Wang, Q.; Yuan, C.; Xing, S.; Fu, X.; Mei, Y. Potent inhibition of protein tyrosine phosphatases by copper complexes with multi-benzimidazole derivatives. Biometals, 2011, 24(6), 993-1004.
[http://dx.doi.org/10.1007/s10534-011-9460-3] [PMID: 21618062]
[74]
Terrence, R. Burke, Jr., Zhu-Jun Yao, He Zhao, George W. A. Milne, Li Wu, Zhong-Yin Zhang and Johannes H. Voigt. Enantioselective Synthesis of Nonphosphorus-Containing Phosphotyrosyl Mimetics and Their Use in the Preparation of Tyrosine Phosphatase Inhibitory Peptides. Tetrahedron, 1998, 54, 9981-9994.
[http://dx.doi.org/10.1016/S0040-4020(98)00590-0]
[75]
Gao, Y.; Wu, L.; Luo, J.H.; Guo, R.; Yang, D.; Zhang, Z.Y.; Burke, T.R., Jr Examination of novel non-phosphorus-containing phosphotyrosyl mimetics against protein-tyrosine phosphatase-1B and demonstration of differential affinities toward Grb2 SH2 domains. Bioorg. Med. Chem. Lett., 2000, 10(9), 923-927.
[http://dx.doi.org/10.1016/S0960-894X(00)00124-4] [PMID: 10853661]
[76]
Combs, A.P.; Yue, E.W.; Bower, M.; Ala, P.J.; Wayland, B.; Douty, B.; Takvorian, A.; Polam, P.; Wasserman, Z.; Zhu, W.; Crawley, M.L.; Pruitt, J.; Sparks, R.; Glass, B.; Modi, D.; McLaughlin, E.; Bostrom, L.; Li, M.; Galya, L.; Blom, K.; Hillman, M.; Gonneville, L.; Reid, B.G.; Wei, M.; Becker-Pasha, M.; Klabe, R.; Huber, R.; Li, Y.; Hollis, G.; Burn, T.C.; Wynn, R.; Liu, P.; Metcalf, B. Structure-based design and discovery of protein tyrosine phosphatase inhibitors incorporating novel isothiazolidinone heterocyclic phosphotyrosine mimetics. J. Med. Chem., 2005, 48(21), 6544-6548.
[http://dx.doi.org/10.1021/jm0504555] [PMID: 16220970]
[77]
Yue, E.W.; Wayland, B.; Douty, B.; Crawley, M.L.; McLaughlin, E.; Takvorian, A.; Wasserman, Z.; Bower, M.J.; Wei, M.; Li, Y.; Ala, P.J.; Gonneville, L.; Wynn, R.; Burn, T.C.; Liu, P.C.; Combs, A.P. Isothiazolidinone heterocycles as inhibitors of protein tyrosine phosphatases: synthesis and structure-activity relationships of a peptide scaffold. Bioorg. Med. Chem., 2006, 14(17), 5833-5849.
[http://dx.doi.org/10.1016/j.bmc.2006.05.032] [PMID: 16769216]
[78]
Combs, A.P.; Zhu, W.; Crawley, M.L.; Glass, B.; Polam, P.; Sparks, R.B.; Modi, D.; Takvorian, A.; McLaughlin, E.; Yue, E.W.; Wasserman, Z.; Bower, M.; Wei, M.; Rupar, M.; Ala, P.J.; Reid, B.M.; Ellis, D.; Gonneville, L.; Emm, T.; Taylor, N.; Yeleswaram, S.; Li, Y.; Wynn, R.; Burn, T.C.; Hollis, G.; Liu, P.C.; Metcalf, B. Potent benzimidazole sulfonamide protein tyrosine phosphatase 1B inhibitors containing the heterocyclic (S)-isothiazolidinone phosphotyrosine mimetic. J. Med. Chem., 2006, 49(13), 3774-3789.
[http://dx.doi.org/10.1021/jm0600904] [PMID: 16789735]
[79]
Sparks, R.B.; Polam, P.; Zhu, W.; Crawley, M.L.; Takvorian, A.; McLaughlin, E.; Wei, M.; Ala, P.J.; Gonneville, L.; Taylor, N.; Li, Y.; Wynn, R.; Burn, T.C.; Liu, P.C.; Combs, A.P. Benzothiazole benzimidazole (S)-isothiazolidinone derivatives as protein tyrosine phosphatase-1B inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(3), 736-740.
[http://dx.doi.org/10.1016/j.bmcl.2006.10.079] [PMID: 17097290]
[80]
Liu, Z.; Chai, Q.; Li, Y-Y.; Shen, Q.; Ma, L-P.; Zhang, L-N.; Wang, X.; Sheng, L.; Li, J.Y.; Li, J.; Shen, J.K. Discovery of novel PTP1B inhibitors with antihyperglycemic activity. Acta Pharmacol. Sin., 2010, 31(8), 1005-1012.
[http://dx.doi.org/10.1038/aps.2010.81] [PMID: 20686525]
[81]
Qian, S.; Li, H.; Chen, Y.; Zhang, W.; Yang, S.; Wu, Y. Synthesis and biological evaluation of oleanolic acid derivatives as inhibitors of protein tyrosine phosphatase 1B. J. Nat. Prod., 2010, 73(11), 1743-1750.
[http://dx.doi.org/10.1021/np100064m] [PMID: 20964318]
[82]
Wang, W-L.; Yang, D-L.; Gao, L-X.; Tang, C-L.; Ma, W-P.; Ye, H-H.; Zhang, S-Q.; Zhao, Y-N.; Xu, H-J.; Hu, Z.; Chen, X.; Fan, W-H.; Chen, H-J.; Li, J.Y.; Nan, F-J.; Li, J.; Feng, B. 1H-2,3-dihydroperimidine derivatives: a new class of potent protein tyrosine phosphatase 1B inhibitors. Molecules, 2013, 19(1), 102-121.
[http://dx.doi.org/10.3390/molecules19010102] [PMID: 24366088]
[83]
Du, Y.; Ling, H.; Zhang, M.; Shen, J.; Li, Q. Discovery of novel, potent, selective and cellular active ADC type PTP1B inhibitors via fragment-docking-oriented de novel design. Bioorg. Med. Chem., 2015, 23(15), 4891-4898.
[http://dx.doi.org/10.1016/j.bmc.2015. 05.032] [PMID: 26100442]
[84]
Wilson, D.P.; Wan, Z.K.; Xu, W.X.; Kirincich, S.J.; Follows, B.C.; Joseph-McCarthy, D.; Foreman, K.; Moretto, A.; Wu, J.; Zhu, M.; Binnun, E.; Zhang, Y.L.; Tam, M.; Erbe, D.V.; Tobin, J.; Xu, X.; Leung, L.; Shilling, A.; Tam, S.Y.; Mansour, T.S.; Lee, J. Structure-based optimization of protein tyrosine phosphatase 1B inhibitors: from the active site to the second phosphotyrosine binding site. J. Med. Chem., 2007, 50(19), 4681-4698.
[http://dx.doi.org/ 10.1021/jm0702478] [PMID: 17705360]
[85]
Salmeen, A.; Andersen, J.N.; Myers, M.P.; Tonks, N.K.; Barford, D. Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol. Cell, 2000, 6(6), 1401-1412.
[http://dx.doi.org/10.1016/S1097-2765(00)00137-4] [PMID: 11163213]
[86]
Ala, P.J.; Gonneville, L.; Hillman, M.; Becker-Pasha, M.; Yue, E.W.; Douty, B.; Wayland, B.; Polam, P.; Crawley, M.L.; McLaughlin, E.; Sparks, R.B.; Glass, B.; Takvorian, A.; Combs, A.P.; Burn, T.C.; Hollis, G.F.; Wynn, R. Structural insights into the design of nonpeptidic isothiazolidinone-containing inhibitors of protein-tyrosine phosphatase 1B. J. Biol. Chem., 2006, 281(49), 38013-38021.
[http://dx.doi.org/10.1074/jbc.M607913200] [PMID: 17028182]
[87]
Liu, P.; Du, Y.; Song, L.; Shen, J.; Li, Q. Novel, potent, selective and cellular active ABC type PTP1B inhibitors containing (methanesulfonyl-phenyl-amino)-acetic acid methyl ester phosphotyrosine mimetic. Bioorg. Med. Chem., 2015, 23(21), 7079-7088.
[http://dx.doi.org/10.1016/j.bmc.2015.09.024] [PMID: 26481657]
[88]
Liu, P.; Du, Y.; Song, L.; Shen, J.; Li, Q. Discovery of novel, high potent, ABC type PTP1B inhibitors with TCPTP selectivity and cellular activity. Eur. J. Med. Chem., 2016, 118, 27-33.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.014] [PMID: 27123900]
[89]
Zhang, L.; Jiang, C.S.; Gao, L-X.; Gong, J-X.; Wang, Z-H.; Li, J-Y.; Li, J.; Li, X-W.; Guo, Y-W. Design, synthesis and in vitro activity of phidianidine B derivatives as novel PTP1B inhibitors with specific selectivity. Bioorg. Med. Chem. Lett., 2016, 26(3), 778-781.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.097] [PMID: 26774579]
[90]
Meng, G.; Zheng, M.; Wang, M.; Tong, J.; Ge, W.; Zhang, J.; Zheng, A.; Li, J.; Gao, L.; Li, J. Design and synthesis of new potent PTP1B inhibitors with the skeleton of 2-substituted imino-3-substituted-5-heteroarylidene-1,3-thiazolidine-4-one: Part I. Eur. J. Med. Chem., 2016, 122, 756-769.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.060] [PMID: 27526040]
[91]
Tang, X.; Zhang, X.; Chen, Z.; Yin, W.; Nan, G.; Tian, J.; Ye, F.; Xiao, I.Z. Novel benzamido derivatives as PTP1B inhibitors with antiypertglycemic andlipidlowering efficacy. Acta Pharm. Sin. B, in press
[92]
Tang, Y.B.; Lu, D.; Chen, Z.; Hu, C.; Yang, Y.; Tian, J.Y.; Ye, F.; Wu, L.; Zhang, Z.Y.; Xiao, Z. Design, synthesis and insulin-sensitising effects of novel PTP1B inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(8), 2313-2318.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.073] [PMID: 23499238]
[93]
Nilkanth, A.G.; Bhooshan, K.; Hyeongjin, C. Thiazolidinone Derivatives as Competitive Inhibitors of Pro-tein Tyrosine Phosphatase 1B (PTP1B). Bulletin of the Korean Chemical Society., 2013, 34(4), 1275-1277.
[94]
Cui, L.; Na, M.; Oh, H.; Bae, E.Y.; Jeong, D.G.; Ryu, S.E.; Kim, S.; Kim, B.Y.; Oh, W.K.; Ahn, J.S. Protein tyrosine phosphatase 1B inhibitors from Morus root bark. Bioorg. Med. Chem. Lett., 2006, 16(5), 1426-1429.
[http://dx.doi.org/10.1016/j.bmcl.2005. 11.071] [PMID: 16356713]
[95]
Na, M.; Yang, S.; He, L.; Oh, H.; Kim, B.S.; Oh, W.K.; Kim, B.Y.; Ahn, J.S. Inhibition of protein tyrosine phosphatase 1B by ursane-type triterpenes isolated from Symplocos paniculata. Planta Med., 2006, 72(3), 261-263.
[http://dx.doi.org/10.1055/s-2005-873194] [PMID: 16534732]
[96]
Na, M.; Cui, L.; Min, B.S.; Bae, K.; Yoo, J.K.; Kim, B.Y.; Oh, W.K.; Ahn, J.S. Protein tyrosine phosphatase 1B inhibitory activity of triterpenes isolated from Astilbe koreana. Bioorg. Med. Chem. Lett., 2006, 16(12), 3273-3276.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.036] [PMID: 16580200]
[97]
Na, M.; Cui, L.; Min, B.S.; Bae, K.; Yoo, J.K.; Kim, B.Y.; Oh, W.K.; Ahn, J.S. Protein tyrosine phosphatase 1B inhibitory activity of triterpenes isolated from Astilbe koreana. Bioorg. Med. Chem. Lett., 2006, 16(12), 3273-3276.
[http://dx.doi.org/10.1016/j.bmcl.2006.03.036] [PMID: 16580200]
[98]
Kim, S.; Na, M.; Oh, H.; Jang, J.; Sohn, C.B.; Kim, B.Y.; Oh, W.K.; Ahn, J.S. PTP1B inhibitory activity of kaurane diterpenes isolated from Siegesbeckia glabrescens. J. Enzyme Inhib. Med. Chem., 2006, 21(4), 379-383.
[http://dx.doi.org/10.1080/14756360600741560] [PMID: 17059169]
[99]
Na, M.; Kim, K.A.; Oh, H.; Kim, B.Y.; Oh, W.K.; Ahn, J.S. Protein tyrosine phosphatase 1B inhibitory activity of amentoflavone and its cellular effect on tyrosine phosphorylation of insulin receptors. Biol. Pharm. Bull., 2007, 30(2), 379-381.
[http://dx.doi.org/ 10.1248/bpb.30.379] [PMID: 17268085]
[100]
Steinmann, D.; Baumgartner, R.R.; Heiss, E.H.; Bartenstein, S.; Atanasov, A.G.; Dirsch, V.M.; Ganzera, M.; Stuppner, H. Bioguided isolation of (9Z)-octadec-9-enoic acid from Phellodendron amurense Rupr. and identification of fatty acids as PTP1B inhibitors. Planta Med., 2012, 78(3), 219-224.
[http://dx.doi.org/10.1055/s-0031-1280377] [PMID: 22124950]
[101]
Yang, S.; Na, M.K.; Jang, J.P.; Kim, K.A.; Kim, B.Y.; Sung, N.J.; Oh, W.K.; Ahn, J.S. Inhibition of protein tyrosine phosphatase 1B by lignans from Myristica fragrans. Phytother. Res., 2006, 20(8), 680-682.
[http://dx.doi.org/10.1002/ptr.1935] [PMID: 16752372]
[102]
Na, M.; Jang, J.; Njamen, D.; Mbafor, J.T.; Fomum, Z.T.; Kim, B.Y.; Oh, W.K.; Ahn, J.S. Protein tyrosine phosphatase-1B inhibitory activity of isoprenylated flavonoids isolated from Erythrina mildbraedii. J. Nat. Prod., 2006, 69(11), 1572-1576.
[http://dx.doi.org//10.1021/np0601861] [PMID: 17125223]
[103]
Na, M.; Hoang, D.M.; Njamen, D.; Mbafor, J.T.; Fomum, Z.T.; Thuong, P.T.; Ahn, J.S.; Oh, W.K. Inhibitory effect of 2-arylbenzofurans from Erythrina addisoniae on protein tyrosine phosphatase-1B. Bioorg. Med. Chem. Lett., 2007, 17(14), 3868-3871.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.005] [PMID: 17517504]
[104]
Cui, L.; Ndinteh, D.T.; Na, M.; Thuong, P.T.; Silike-Muruumu, J.; Njamen, D.; Mbafor, J.T.; Fomum, Z.T.; Ahn, J.S.; Oh, W.K. Isoprenylated flavonoids from the stem bark of Erythrina abyssinica. J. Nat. Prod., 2007, 70(6), 1039-1042.
[http://dx.doi.org/ 10.1021/np060477+] [PMID: 17489632]
[105]
Jang, J.; Na, M.; Thuong, P.T.; Njamen, D.; Mbafor, J.T.; Fomum, Z.T.; Woo, E-R.; Oh, W.K. Prenylated flavonoids with PTP1B inhibitory activity from the root bark of Erythrina mildbraedii. Chem. Pharm. Bull. (Tokyo), 2008, 56(1), 85-88.
[http://dx.doi.org/ 10.1248/cpb.56.85] [PMID: 18175982]
[106]
Qin, J.; Su, H.; Zhang, Y.; Gao, J.; Zhu, L.; Wu, X.; Pan, H.; Li, X. Highly brominated metabolites from marine red alga Laurencia similis inhibit protein tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett., 2010, 20(23), 7152-7154.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.144] [PMID: 20961755]
[107]
Moon, H.E.; Islam, N.; Ahn, B.R.; Chowdhury, S.S.; Sohn, H.S.; Jung, H.A.; Choi, J.S. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory Phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Biosci. Biotechnol. Biochem., 2011, 75(8), 1472-1480.
[http://dx.doi.org/10.1271/bbb.110137] [PMID: 21821954]
[108]
Chen, Y-P.; Yang, C-G.; Wei, P-Y.; Li, L.; Luo, D-Q.; Zheng, Z-H.; Lu, X.H. Penostatin derivatives, a novel kind of protein phosphatase 1b inhibitors isolated from solid cultures of the entomogenous fungus Isaria tenuipes. Molecules, 2014, 19(2), 1663-1671.
[http://dx.doi.org/10.3390/molecules19021663] [PMID: 24481115]
[109]
Quang, T.H.; Ngan, N.T.; Yoon, C.S. Kim Protein Tyrosine Phosphatase 1B Inhibitors from the Roots of Cudrania tricuspidata. Molecules, 2015, 20, 11173-11183.
[110]
Lee, B.W.; Lee, J.H.; Lee, S.T.; Lee, H.S.; Lee, W.S.; Jeong, T.S.; Park, K.H. Antioxidant and cytotoxic activities of xanthones from Cudrania tricuspidata. Bioorg. Med. Chem. Lett., 2005, 15(24), 5548-5552.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.099] [PMID: 16203143]
[111]
Lee, B.W.; Gal, S.W.; Park, K.M.; Park, K.H. Cytotoxic xanthones from Cudrania tricuspidata. J. Nat. Prod., 2005, 68(3), 456-458.
[http://dx.doi.org/10.1021/np030481a] [PMID: 15787460]
[112]
Hwang, J.H.; Hong, S.S.; Han, X.H.; Hwang, J.S.; Lee, D.; Lee, H.; Yun, Y.P.; Kim, Y.; Ro, J.S.; Hwang, B.Y. Prenylated xanthones from the root bark of Cudrania tricuspidata. J. Nat. Prod., 2007, 70(7), 1207-1209.
[http://dx.doi.org/10.1021/np070059k] [PMID: 17608532]
[113]
Lee, I.K.; Kim, C.J.; Song, K.S.; Kim, H.M.; Koshino, H.; Uramoto, M.; Yoo, I.D. Cytotoxic benzyl dihydroflavonols from Cudrania tricuspidata. Phytochemistry, 1996, 41(1), 213-216.
[http://dx.doi.org/10.1016/0031-9422(95)00609-5] [PMID: 8588866]
[114]
Lee, I.K.; Kim, C.J.; Song, K.S.; Kim, H.M.; Yoo, I.D.; Koshino, H.; Esumi, Y.; Uramoto, M. Two benzylated dihydroflavonols from Cudrania tricuspidata. J. Nat. Prod., 1995, 58, 1614-1617.
[http://dx.doi.org/10.1021/np50124a024]
[115]
Lei, C.; Liu, C.C.; Pi, E.H.; Hou, A.J. New Isoprenylated Xanthones from Cudrania tricuspidata. Helv. Chim. Acta, 2014, 97, 1683-1688.
[http://dx.doi.org/10.1002/hlca.201400096]
[116]
Liang, B.; Li, H.R.; Xu, L.Z.; Yang, S.L. Xanthones from the roots of Cudrania fruticosa Wight. J. Asian Nat. Prod. Res., 2007, 9(3-5), 393-397.
[http://dx.doi.org/10.1080/10286020600782355] [PMID: 17613626]
[117]
Zou, Y.S.; Hou, A.J.; Zhu, G.F.; Chen, Y.F.; Sun, H.D.; Zhao, Q.S. Cytotoxic isoprenylated xanthones from Cudrania tricuspidata. Bioorg. Med. Chem., 2004, 12(8), 1947-1953.
[http://dx.doi.org/ 10.1016/j.bmc.2004.01.030] [PMID: 15051062]
[118]
Ryu, Y.B.; Curtis-Long, M.J.; Lee, J.W.; Kim, J.H.; Kim, J.Y.; Kang, K.Y.; Lee, W.S.; Park, K.H. Characteristic of neuraminidase inhibitory xanthones from Cudrania tricuspidata. Bioorg. Med. Chem., 2009, 17(7), 2744-2750.
[http://dx.doi.org/ 10.1016/j.bmc.2009.02.042] [PMID: 19285413]
[119]
Jo, Y.H.; Shin, B.; Liu, Q.; Lee, K.Y.; Oh, D.C.; Hwang, B.Y.; Lee, M.K. Antiproliferative prenylated xanthones and benzophenones from the roots of Cudrania tricuspidata in HSC-T6 cells. J. Nat. Prod., 2014, 77(11), 2361-2366.
[http://dx.doi.org/ 10.1021/np5002797] [PMID: 25322455]
[120]
Nomura, T.; Fukai, T.; Katayanagi, M.; Kuwanon, A.A.B. C and oxydihydromorusin, four new flavones from the root bark of the cultivated mulberry tree (Morus alba L.). Chem. Pharm. Bull. (Tokyo), 1997, 25, 529-532.
[http://dx.doi.org/10.1248/cpb.25.529]
[121]
Wang, Y.; Yuk, H.J.; Kim, J.Y.; Kim, D.W.; Song, Y.H.; Tan, X.F.; Curtis-Long, M.J.; Park, K.H. Novel chromenedione derivatives displaying inhibition of protein tyrosine phosphatase 1B (PTP1B) from Flemingia philippinensis. Bioorg. Med. Chem. Lett., 2016, 26(2), 318-321.
[http://dx.doi.org/10.1016/j.bmcl.2015. 12.021] [PMID: 26704263]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 4
Year: 2019
Page: [246 - 263]
Pages: 18
DOI: 10.2174/1568026619666190201152153
Price: $58

Article Metrics

PDF: 34
HTML: 2