An iTRAQ Based Comparative Proteomic Profiling of Thermotolerant Saccharomyces cerevisiae JRC6 in Response to High Temperature Fermentation

Author(s): Jairam Choudhary, Surender Singh*, Rameshwar Tiwari, Renu Goel, Lata Nain.

Journal Name: Current Proteomics

Volume 16 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Bioethanol derived from lignocellulosic biomass can supplement the ethanol supplies in a sustainable manner. However, the bioethanol production process is still not cost effective and researchers are looking for novel strategies like simultaneous saccharification fermentation to cut down the production cost. Thermotolerant yeast Saccharomyces cerevisiae JRC6 is reported to improve the fermentation efficiency under SSF. However, the mechanism of thermotolerance of the strain is unknown which is important for developing more robust yeast strains for simultaneous saccharification and fermentation.

Objective: To identify proteomic changes responsible for imparting thermotolerance by iTRAQ based profiling of Saccharomyces cerevisiae JRC6 by growing at optimum (30°C) and high temperature (40°C).

Methods: iTRAQ labeling followed by electrospray ionization based tandem mass spectrometry using SCIEX 5600 Triple-TOF Mass Spectrometer (MS).

Results: A total of 582 proteins involved in heat shock, metabolism, biosynthesis, transport of biomolecules, cell division, etc. were identified. Cells grown at 40°C showed many-fold increase in the expression for many proteins involved in different functions specially biosynthesis, heat stress and metabolism. At 40°C heat shock proteins (78), prefoldin subunit (6), DNA binding protein SNT1, J type co-chaperone JAC1, elongation factor 1-β, glutathione synthase, malate synthase (2), purine biosynthesis protein ADE17, SSD1 protein, alcohol dehydrogenase 1, 3, 60S ribosomal protein L35-B, mitochondrial import protein MAS5 and many other proteins were significantly upregulated.

Conclusion: The iTRAQ analysis revealed many heat shock proteins and heat stable alcohol dehydrogenases which can be exploited to develop a more robust yeast strain suitable for simultaneous saccharification and fermentation or consolidated bioprocessing.

Keywords: iTRAQ, heat shock proteins, proteome, Saccharomyces, fermentation, mass spectrometry.

[1]
Choudhary, J.; Singh, S.; Nain, L. Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron. J. Biotechnol., 2016, 21, 82-92.
[2]
Shi, J.; Feng, H.; Lee, J.; Chen, W.N. Comparative proteomics profile of lipid-cumulating oleaginous yeast: An iTRAQ-coupled 2-D LC-MS/MS analysis. PLoS One, 2013, 8(12), e85532.
[3]
Choudhary, J.; Singh, S.; Nain, L. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. J. Biosci. Bioeng., 2017, 123(3), 342-346.
[4]
Suutari, M.; Liukkonen, K.; Laakso, S. Temperature adaptation in yeasts: The role of fatty acids. J. Gen. Microbiol., 1990, 136(8), 1469-1474.
[5]
(a)Lindquist, S. Regulation of protein synthesis during heat shock. Nature, 1981, 293, 311.
(b)Piper, P.W. Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev., 1993, 11(4), 339-355.
[6]
Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature, 2003, 422(6928), 198-207.
[7]
Basak, T.; Bhat, A.; Malakar, D.; Pillai, M.; Sengupta, S. In-depth comparative proteomic analysis of yeast proteome using iTRAQ and SWATH based MS. Mol. Biosyst., 2015, 11(8), 2135-2143.
[8]
(a)Ross, P.L.; Huang, Y.N.; Marchese, J.N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; Purkayastha, S.; Juhasz, P.; Martin, S.; Bartlet-Jones, M.; He, F.; Jacobson, A.; Pappin, D.J. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics, 2004, 3(12), 1154-1169.
(b)Zieske, L.R. A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J. Experim. Bot., 2006, 57(7), 1501-1508.
[9]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1), 248-254.
[10]
Goel, R.; Murthy, K.R.; Srikanth, S.M.; Pinto, S.M.; Bhattacharjee, M.; Kelkar, D.S.; Madugundu, A.K.; Dey, G.; Mohan, S.S.; Krishna, V.; Prasad, T.K.; Chakravarti, S.; Harsha, H.; Pandey, A. Characterizing the normal proteome of human ciliary body. Clin. Proteomics, 2013, 10(1), 9.
[11]
Neuhoff, V.; Arold, N.; Taube, D.; Ehrhardt, W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G-250 and R-250. Electrophoresis, 1988, 9(6), 255-262.
[12]
Choudhary, J.; Singh, S.; Tiwari, R.; Sharma, A.; Nain, L. Complementary effect of thermotolerant yeast and cold active cellulase on simultaneous saccharification and fermentation for bioethanol production from rice straw. J. Renew. Sustain. Energy, 2018, 10, 043102.
[13]
Edgardo, A.; Carolina, P.; Manuel, R.; Juanita, F.; Baeza, J. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme Microb. Technol., 2008, 43(2), 120-123.
[14]
Sanchez, Y.; Taulien, J.; Borkovich, K.; Lindquist, S. HSP104 is required for tolerance to many forms of stress. The EMBO J., 1992, 11(6), 2357-2364.
[15]
Glover, J.R.; Lindquist, S. Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell, 1998, 94(1), 73-82.
[16]
Liang, P.; MacRae, T.H. Molecular chaperones and the cytoskeleton. J. Cell Sci., 1997, 110(Pt 13), 1431-1440.
[17]
(a)Brown, C.R.; Doxsey, S.J.; Hong-Brown, L.Q.; Martin, R.L.; Welch, W.J. Molecular chaperones and the centrosome. A role for TCP-1 in microtubule nucleation. J. Biol. Chem., 1996, 271(2), 824-832.
(b)Ursic, D.; Sedbrook, J.C.; Himmel, K.L.; Culbertson, M.R. The essential yeast Tcp1 protein affects actin and microtubules. Mol. Biol. Cell, 1994, 5(10), 1065-1080.
[18]
Oka, M.; Nakai, M.; Endo, T.; Lim, C.R.; Kimata, Y.; Kohno, K. Loss of Hsp70-Hsp40 chaperone activity causes abnormal nuclear distribution and aberrant microtubule formation in M-phase of Saccharomyces cerevisiae. J. Biol. Chem., 1998, 273(45), 29727-29737.
[19]
Holubarova, A.; Muller, P.; Svoboda, A. A response of yeast cells to heat stress: Cell viability and the stability of cytoskeletal structures. Scr., 2000, 73(6), 381-392.
[20]
Pretorius, I.S. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast, 2000, 16(8), 675-729.
[21]
Gibney, P.A.; Lu, C.; Caudy, A.A.; Hess, D.C.; Botstein, D. Yeast metabolic and signaling genes are required for heat-shock survival and have little overlap with the heat-induced genes. Proc. Natl. Acad. Sci. USA, 2013, 110(46), E4393-E4402.
[22]
Shui, W.; Xiong, Y.; Xiao, W.; Qi, X.; Zhang, Y.; Lin, Y.; Guo, Y.; Zhang, Z.; Wang, Q.; Ma, Y. Understanding the mechanism of thermotolerance distinct from heat shock response through proteomic analysis of industrial strains of saccharomyces cerevisiae. Mol. Cell. Proteomics, 2015, 14(7), 188518-188597.
[23]
Haas, A.L. Regulating the regulator: Rsp5 ubiquitinates the proteasome. Mol. Cell, 2010, 38(5), 623-624.
[24]
French, M.E.; Kretzmann, B.R.; Hicke, L. Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site. The J. Biol. Chem., 2009, 284(18), 12071-12079.
[25]
Huang, T.T.; D’Andrea, A.D. Regulation of DNA repair by ubiquitylation. Nat. Rev. Mol. Cell Biol., 2006, 7(5), 323-334.
[26]
Walker, G.M. Yeast physiology and biotechnology; John Wiley & Sons: USA, 1998, p. 362.
[27]
Krzewska, J.; Langer, T.; Liberek, K. Mitochondrial Hsp78, a member of the Clp/Hsp100 family in Saccharomyces cerevisiae, cooperates with Hsp70 in protein refolding. FEBS Lett., 2001, 489(1), 92-96.
[28]
Voisine, C.; Cheng, Y.C.; Ohlson, M.; Schilke, B.; Hoff, K.; Beinert, H.; Marszalek, J.; Craig, E.A. Jac1, a mitochondrial J-type chaperone, is involved in the biogenesis of Fe/S clusters in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 2001, 98(4), 1483-1488.
[29]
Vainberg, I.E.; Lewis, S.A.; Rommelaere, H.; Ampe, C.; Vandekerckhove, J.; Klein, H.L.; Cowan, N.J. Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell, 1998, 93(5), 863-873.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2019
Page: [289 - 296]
Pages: 8
DOI: 10.2174/1570164616666190131145217
Price: $58

Article Metrics

PDF: 42
HTML: 3
EPUB: 1
PRC: 1