Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Alkynes as Privileged Synthons in Selected Organic Name Reactions

Author(s): Majid M. Heravi*, Mahzad Dehghani, Vahideh Zadsirjan* and Manijheh Ghanbarian

Volume 16, Issue 2, 2019

Page: [205 - 243] Pages: 39

DOI: 10.2174/1570179416666190126100744

Price: $65

Abstract

Background: Alkynes are actually basic chemicals, serving as privileged synthons for planning new organic reactions for assemblage of a reactive motif, which easily undergoes a further desirable transformation. Name reactions, in organic chemistry are referred to those reactions which are well-recognized and reached to such status for being called as their explorers, discoverers or developers. Alkynes have been used in various name reactions. In this review, we try to underscore the applications of alkynes as privileged synthons in prevalent name reactions such as Huisgen 1,3-dipolar cycloaddtion via Click reaction, Sonogashira reaction, and Hetero Diels-Alder reaction.

Objective: In this review, we try to underscore the applications of alkynes as privileged synthons in the formation of heterocycles, focused on the selected reactions of alkynes as a synthon or impending utilization in synthetic organic chemistry, which have reached such high status for being included in the list of name reactions in organic chemistry.

Conclusion: Alkynes (including acetylene) are an unsaturated hydrocarbon bearing one or more triple C-C bond. Remarkably, alkynes and their derivatives are frequently being used as molecular scaffolds for planning new organic reactions and installing reactive functional group for further reaction. It is worth mentioning that in general, the terminal alkynes are more useful and more frequently being used in the art of organic synthesis. Remarkably, alkynes have found different applications in pharmacology, nanotechnology, as well as being known as appropriate starting precursors for the total synthesis of natural products and biologically active complex compounds. They are predominantly applied in various name reactions such as Sonogashira, Glaser reaction, Friedel-crafts reaction, Castro-Stephens coupling, Huisgen 1.3-dipolar cycloaddtion reaction via Click reaction, Sonogashira reaction, hetero-Diels-Alder reaction. In this review, we tried to impress the readers by presenting selected name reactions, which use the alkynes as either stating materials or precursors. We disclosed the applications of alkynes as a privileged synthons in several popular reactions, which reached to such high status being classified as name reactions. They are thriving and well known and established name reactions in organic chemistry such as Regioselective, 1,3-dipolar Huisgen cycloaddtion reaction via Click reaction, Sonogashira reaction and Diels-Alder reaction.

Keywords: Alkynes, huisgen 1, 3-dipolar cycloaddtion, click reaction, sonogashira reaction, hetero-diels-alder reaction, heterocycles.

Graphical Abstract
[1]
Gleiter, R.; Werz, D.B. Alkynes between main group elements: From dumbbells via rods to squares and tubes. Chem. Rev., 2010, 110(7), 4447-4488.
[2]
Godoi, B.; Schumacher, R.F.; Zeni, G. Synthesis of heterocycles via electrophilic cyclization of alkynes containing heteroatom. Chem. Rev., 2011, 111(4), 2937-2980.
[3]
Wille, U. Radical cascades initiated by intermolecular radical addition to alkynes and related triple bond systems. Chem. Rev., 2012, 113(1), 813-853.
[4]
Trost, B.M.; Li, C-J. Modern alkyne chemistry: Catalytic and atom-economic transformations; John Wiley & Sons, 2014.
[5]
Stang, P.J.; Diederich, F. Modern acetylene chemistry; John Wiley & Sons, 2008.
[6]
Schobert, H. Production of acetylene and acetylene-based chemicals from coal. Chem. Rev., 2013, 114(3), 1743-1760.
[7]
Trotuş, I-T.; Zimmermann, T.; Schüth, F. Catalytic reactions of acetylene: a feedstock for the chemical industry revisited. Chem. Rev., 2013, 114(3), 1761-1782.
[8]
Chinchilla, R.; Najera, C. Chemicals from alkynes with palladium catalysts. Chem. Rev., 2013, 114(3), 1783-1826.
[9]
Sobenina, L.N.; Tomilin, D.N.; Trofimov, B.A. C-Ethynylpyrroles: synthesis and reactivity. Russ. Chem. Rev., 2014, 83(6), 475.
[10]
Salvio, R.; Moliterno, M.; Bella, M. Alkynes in organocatalysis. Asian J. Org. Chem., 2014, 3(4), 340-351.
[11]
Heravi, M.M.; Asadi, S.; Nazari, N.; Malekzadeh Lashkariani, B. Developments of Corey-Fuchs reaction in organic and total synthesis of natural products. Curr. Org. Chem., 2015, 19(22), 2196-2219.
[12]
Seyferth, D.; Marmor, R.S.; Hilbert, P. Reactions of dimethylphosphono-substituted diazoalkanes.(MeO) 2P (O) CR transfer to olefins and 1, 3-dipolar additions of (MeO) 2P(O)C(N2) R. J. Org. Chem., 1971, 36(10), 1379-1386.
[13]
Gilbert, J.; Weerasooriya, U. Diazoethenes: their attempted synthesis from aldehydes and aromatic ketones by way of the Horner-Emmons modification of the Wittig reaction. A facile synthesis of alkynes. J. Org. Chem., 1982, 47(10), 1837-1845.
[14]
Fritsch, P. Fritsch-buttenberg-wiechell rearrangement. Liebigs Ann. Chem., 1894, 279, 319-324.
[15]
Buttenberg, W. Condensation des Dichloracetals mit Phenol und Toluol. Justus Liebigs Ann. Chem., 1894, 279(3), 324-337.
[16]
Wiechell, H. Condensation des dichloracetals mit anisol und phenetol. Justus Liebigs Ann. Chem., 1894, 279(3), 337-344.
[17]
Köbrich, G. Eliminations from olefins. Angew. Chem. Int. Ed., 1965, 4(1), 49-68.
[18]
Sonogashira, K. Development of Pd–Cu catalyzed cross-coupling of terminal acetylenes with sp2-carbon halides. J. Organomet. Chem., 2002, 653(1-2), 46-49.
[19]
Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett., 1975, 16(50), 4467-4470.
[20]
Siemsen, P.; Livingston, R.C.; Diederich, F. Acetylenic coupling: A powerful tool in molecular construction. Angew. Chem. Int. Ed., 2000, 39(15), 2632-2657.
[21]
Glaser, C. Untersuchungen über einige Derivate der Zimmtsäure. Justus Liebigs Ann. Chem., 1870, 154(2), 137-171.
[22]
Glaser, C. Beiträge zur kenntniss des acetenylbenzols. Ber. Deutsch. Chem. Ges., 1869, 2(1), 422-424.
[23]
Eglinton, G.; Galbraith, A. Macrocyclic acetylenic compounds. Part I. Cyclo tetradeca-1: 3-diyne and related compounds. J. Chem. Soc., 1959, 889-896.
[24]
Gore, P. The Friedel-Crafts acylation reaction and its application to polycyclic aromatic hydrocarbons. Chem. Rev., 1955, 55(2), 229-281.
[25]
McKay, C.S.; Kennedy, D.C.; Pezacki, J.P. Studies of multicomponent Kinugasa reactions in aqueous media. Tetrahedron Lett., 2009, 50(17), 1893-1896.
[26]
Engel, D.A.; Dudley, G.B. The Meyer–Schuster rearrangement for the synthesis of α, β-unsaturated carbonyl compounds. Org. Biomol. Chem., 2009, 7(20), 4149-4158.
[27]
Masson, G.; Housseman, C.; Zhu, J. The enantioselective Morita–Baylis–Hillman reaction and its aza counterpart. Angew. Chem. Int. Ed., 2007, 46(25), 4614-4628.
[28]
Kouznetsov, V.V. Recent synthetic developments in a powerful imino Diels–Alder reaction (Povarov reaction): application to the synthesis of N-polyheterocycles and related alkaloids. Tetrahedron, 2009, 14(65), 2721-2750.
[29]
Heravi, M.M.; Sadjadi, S. Recent advances in the application of the Sonogashira method in the synthesis of heterocyclic compounds. Tetrahedron, 2009, 37(65), 7761-7775.
[30]
Heravi, M.M.; Ghanbarian, M.; Ghalavand, N.; Nazari, N. Current applications of the sonogashira reaction in the synthesis of heterocyclic compounds: An update. Curr. Org. Chem., 2018, 22(14), 1420-1457.
[31]
Heravi, M.M.; Vavsari, V.F. Recent applications of intramolecular Diels–Alder reaction in total synthesis of natural products. RSC Advances, 2015, 5(63), 50890-50912.
[32]
Brummond, K.M.; Kent, J.L. Recent advances in the Pauson–Khand reaction and related [2+ 2+ 1] cycloadditions. Tetrahedron, 2000, 56(21), 3263-3283.
[33]
Rutledge, T.F. Acetylenic Compounds; Preparation And Substitution Reactions; Van Nostromd Reinhold Inc.: US, 1968.
[34]
Rutledge, T.F. Acetylenes and Allenes: Addition, Cyclization, and Polymerization Reactions; Reinhold Book Corp: CA, US, 1969.
[35]
Viehe, H.G. Chemistry of Acetylenes; Marcel Dekker, New York, Vol. 51.. , 1969.
[36]
Brandsma, L. Preparative Acetylenic Chemistry; Elsevier: Amsterdam, Vol. 34.. , 2013.
[37]
Hickinbottom, W.J. Reactions of Organic Compounds; Longmans, Green, 1957.
[38]
Migrdichian, V. Organic Synthesis: Open-chain Saturated Compounds; Reinhold Publishing Corporation: London, Vol. 1. , 1957.
[39]
Buehler, C.; Pearson, D. Survey of Organic Syntheses; New Jersey, USA, Vol 1-2. , 1970.
[40]
Hilgetag, G.; Martini, A. Weygand/Hilgetag Preparative Organic Chemistry; John Wiley & Sons: Toronoto, Canada, 1972.
[41]
House, H.O. Modern Synthetic Reactions., 1972.
[42]
Seyferth, D. New Applications of Organometallic Reagents in Organic Synthesis; Elsevier Scientific Pub. Co., 1976.
[43]
Hudrlik, P.F.; Hudrlik, A.M. Applications of acetylenes in organic synthesis. The Carbon–Carbon Triple Bond (1978) Part 1 1978, 1 199-273
[44]
Gilmore, K.; Alabugin, I.V. Cyclizations of alkynes: Revisiting Baldwin’s rules for ring closure. Chem. Rev., 2011, 111(11), 6513-6556.
[45]
Heravi, M.M.; Kivanloo, A.; Rahimzadeh, M.; Bakavoli, M.; Ghassemzadeh, M.; Neumüller, B. Regioselective synthesis of 6-benzylthiazolo [3, 2-b] 1, 2, 4-triazoles during Sonogashira coupling. Tetrahedron Lett., 2005, 46(10), 1607-1610.
[46]
Heravi, M.M.; Ghalavand, N.; Ghanbarian, M.; Mohammadkhani, L. Applications of Mitsunobu Reaction in total synthesis of natural products. Appl. Organomet. Chem., 2018, 32(9), e4464.
[47]
Heravi, M.M.; Mohammadkhani, L. Recent applications of Stille reaction in total synthesis of natural products: An update. J. Organomet. Chem., 2018, 869.
[48]
Heravi, M.M.; Zadsirjan, V.; Malmir, M. Application of the Asymmetric Pictet–Spengler Reaction in the total synthesis of natural products and relevant biologically active compounds. Molecules, 2018, 23(4), 943.
[49]
Koshvandi, A.T.K.; Heravi, M.M.; Momeni, T. Current applications of suzuki–miyaura coupling reaction in the total synthesis of natural products: An update. Appl. Organomet. Chem., 2018, 32(3), e4210.
[50]
Heravi, M.M.; Lashaki, T.B.; Fattahi, B.; Zadsirjan, V. Application of asymmetric Sharpless aminohydroxylation in total synthesis of natural products and some synthetic complex bio-active molecules. RSC Advances, 2018, 8(12), 6634-6659.
[51]
Heravi, M.M.; Zadsirjan, V.; Esfandyari, M.; Lashaki, T.B. Applications of sharpless asymmetric dihydroxylation in the total synthesis of natural products. Tetrahedron Asymmetry, 2017, 28(8), 987-1043.
[52]
Heravi, M.M.; Rohani, S.; Zadsirjan, V.; Zahedi, N. Fischer indole synthesis applied to the total synthesis of natural products. RSC Advances, 2017, 7(83), 52852-52887.
[53]
Heravi, M.M.; Zadsirjan, V.; Farajpour, B. Applications of oxazolidinones as chiral auxiliaries in the asymmetric alkylation reaction applied to total synthesis. RSC Advances, 2016, 6(36), 30498-30551.
[54]
Heravi, M.M.; Lashaki, T.B.; Poorahmad, N. Applications of sharpless asymmetric epoxidation in total synthesis. Tetrahedron Asymmetry, 2015, 26(8-9), 405-495.
[55]
Heravi, M.M.; Ahmadi, T.; Ghavidel, M.; Heideri, B.; Hamidi, H. Recent applications of the hetero Diels–Alder reaction in the total synthesis of natural products. RSC Advances, 2015, 5(123), 101999-102075.
[56]
Heravi, M.M.; Nazari, N. Bischler-Napieralski reaction in total synthesis of isoquinoline-based natural products. An old reaction, a new application. Curr. Org. Chem., 2015, 19(24), 2358-2408.
[57]
Heravi, M.M.; Hashemi, E.; Azimian, F. Recent developments of the Stille reaction as a revolutionized method in total synthesis. Tetrahedron, 2014, 1(70), 7-21.
[58]
M, Heravi. M.; Zadsirjan, V.; Bozorgpour Savadjani, Z. Applications of Mannich reaction in total syntheses of natural products. Curr. Org. Chem., 2014, 18(22), 2857-2891.
[59]
Heravi, M.M.; Hashemi, E. Recent applications of the Suzuki reaction in total synthesis. Tetrahedron, 2012, 45(68), 9145-9178.
[60]
Heravi, M.M.; Fazeli, A. Recent advances in the application of the Heck reaction in the synthesis of heterocyclic compounds. Heterocycles, 2010, 81(9), 1979-2026.
[61]
Heravi, M.M.; Moradi, R.; Malmir, M. Recent advances in the application of the Heck reaction in the synthesis of heterocyclic compounds: An update. Curr. Org. Chem., 2018, 22(2), 165-198.
[62]
Heravi, M.M.; Moradi, R.; Mohammadkhani, L.; Moradi, B. Current progress in asymmetric Biginelli reaction: An update. Mol. Divers., 2018, 22(3), 751-767.
[63]
Heravi, M.M.; Hashemi, E. Recent advances in application of intramolecular Suzuki cross-coupling in cyclization and heterocyclization. Monatsh. Chem., 2012, 143(6), 861-880.
[64]
Sadjadi, S.; Heravi, M.M.; Malmir, M. Pd@ HNTs-CDNS-gC 3 N 4: A novel heterogeneous catalyst for promoting ligand and copper-free Sonogashira and Heck coupling reactions, benefits from halloysite and cyclodextrin chemistry and gC3N4 contribution to suppress Pd leaching. Carbohydr. Polym., 2018, 186, 25-34.
[65]
Sadjadi, S.; Heravi, M.M.; Raja, M. Combination of carbon nanotube and cyclodextrin nanosponge chemistry to develop a heterogeneous Pd-based catalyst for ligand and copper free C-C coupling reactions. Carbohydr. Polym., 2018, 185, 48-55.
[66]
Sadjadi, S.; Malmir, M.; Heravi, M.M.; Kahangi, F.G. Biocompatible starchhalloysite hybrid: An efficient support for immobilizing Pd species and developing a heterogeneous catalyst for ligand and copper free coupling reactions. Int. J. Biol. Macromol, 2018, 118 (Pt B), 1903-1911.
[67]
Sadjadi, S.; Heravi, M.M.; Kazemi, S.S. Ionic liquid decorated chitosan hybridized with clay: A novel support for immobilizing Pd nanoparticles. Carbohydr. Polym., 2018, 200, 183-190.
[68]
Sadjadi, S.; Lazzara, G.; Malmir, M.; Heravi, M.M. Pd nanoparticles immobilized on the poly-dopamine decorated halloysite nanotubes hybridized with N-doped porous carbon monolayer: A versatile catalyst for promoting Pd catalyzed reactions. J. Catal., 2018, 366, 245-257.
[69]
Heravi, M.M.; Hashemi, E.; Beheshtiha, Y.S.; Ahmadi, S.; Hosseinnejad, T. PdCl2 on modified poly (styrene-co-maleic anhydride): A highly active and recyclable catalyst for the Suzuki–Miyaura and Sonogashira reactions. J. Mol. Catal.A Chem., 2014, 394, 74-82.
[70]
Hosseinnejad, T.; Heravi, M.M.; Firouzi, R. Regioselectivity in Sonogashira synthesis of 6-(4-nitrobenzyl)-2-phenylthiazolo [3, 2-b] 1, 2, 4-triazole: a quantum chemistry study. J. Mol. Model., 2013, 19(2), 951-961.
[71]
Heravi, M.M.; Hamidi, H.; Zadsirjan, V. Recent applications of click reaction in the syntheses of 1, 2, 3-triazoles. Curr. Org. Synth., 2014, 11(5), 647-675.
[72]
Heravi, M.M.; Hajiabbasi, P. Recent advances in C-heteroatom bond forming by asymmetric Michael addition. Mol. Divers., 2014, 18(2), 411-439.
[73]
Heravi, M.M.; Hashemi, E.; Ghobadi, N. Development of recent total syntheses based on the Heck reaction. Curr. Org. Chem., 2013, 17(19), 2192-2224.
[74]
Heravi, M.M.; Faghihi, Z. McMurry coupling of aldehydes and ketones for the formation of heterocyles via olefination. Curr. Org. Chem., 2012, 16(18), 2097.
[75]
Heravi, M.M.; Asadi, S.; Azarakhshi, F. Recent applications of Doebner, Doebner-von Miller and Knoevenagel-Doebner reactions in organic syntheses. Curr. Org. Synth., 2014, 11(5), 701-731.
[76]
Heravi, M.M.; Bakhtiari, A.; Faghihi, Z. Applications of Barton-McCombie reaction in total syntheses. Curr. Org. Synth., 2014, 11(6), 787-823.
[77]
Heravi, M.M.; Khaghaninejad, S.; Mostofi, M. Pechmann reaction in the synthesis of coumarin derivatives. In: Advances in Heterocyclic Chemistry; Elsevier, 2014; pp. 1-50.
[78]
Huisgen, R.; Szeimies, G.; Möbius, L. 1.3‐Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC‐Mehrfachbin-dungen. Chem. Ber., 1967, 100(8), 2494-2507.
[79]
Wang, Q.; Chittaboina, S.; Barnhill, H.N. Highlights in organic chemistry advances in 1, 3-dipolar cycloaddition reaction of azides and alkynes-a prototype of “click” chemistry. Lett. Org. Chem., 2005, 2(4), 293-301.
[80]
Heravi, M.M.; Tajbakhsh, M.; Rahimizadeh, M.; Davoodnia, A.; Aghapoor, K. Acid catalyzed, regioselective synthesis of 2-substituted 5-methylthia-zolo [3, 2-B]-S-triazoles. Synth. Commun., 1999, 29(24), 4417-4422.
[81]
Heravi, M.M.; Tajbakhsh, M. Sodium hydroxide: A mild and inexpensive catalyst for the regioselective synthesis of 2-substituted 5-methylthiazolo [3, 2-b]-s-triazoles. J. Chem. Res., 1998, (8), 488-489.
[82]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper (I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem., 2002, 114(14), 2708-2711.
[83]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase:[1, 2, 3]-triazoles by regiospecific copper (I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[84]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper (I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[85]
Rodionov, V.O.; Fokin, V.V.; Finn, M. Mechanism of the ligand‐free cui‐catalyzed azide–alkyne cycloaddition reaction. Angew. Chem., 2005, 117(15), 2250-2255.
[86]
Lewis, W.G.; Magallon, F.G.; Fokin, V.V.; Finn, M. Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching. J. Am. Chem. Soc., 2004, 126(30), 9152-9153.
[87]
Heravi, M.M.; Bakavoli, M. Synthesis of a novel heterocyclic system, thiazolo [3, 2-d][1, 2, 4] triazine. 1995, J. Chem. Res. Synopses, (11), 1995, 480- 481
[88]
Hotha, S.; Anegundi, R.I.; Natu, A.A. Expedient synthesis of 1, 2, 3-triazole-fused tetracyclic compounds by intramolecular Huisgen (‘click’) reactions on carbohydrate-derived azido-alkynes. Tetrahedron Lett., 2005, 46(27), 4585-4588.
[89]
Tron, G.C.; Pirali, T.; Billington, R.A.; Canonico, P.L.; Sorba, G.; Genazzani, A.A. Click chemistry reactions in medicinal chemistry: Applications of the 1, 3‐dipolar cycloaddition between azides and alkynes. Med. Res. Rev., 2008, 28(2), 278-308.
[90]
Caramella, P.; Grunanger, P. 1, 3-Dipolar Cycloaddition Chemistry; Padwa, A. New York: Wiley:. , 1984. Vol. 1.
[91]
Sarkar, A.; Mukherjee, T.; Kapoor, S. PVP-stabilized copper nanoparticles: A reusable catalyst for “click” reaction between terminal alkynes and azides in nonaqueous solvents. J. Phys. Chem. C, 2008, 112(9), 3334-3340.
[92]
Borah, B.J.; Dutta, D.; Saikia, P.P.; Barua, N.C.; Dutta, D.K. Stabilization of Cu (0)-nanoparticles into the nanopores of modified montmorillonite: An implication on the catalytic approach for “Click” reaction between azides and terminal alkynes. Green Chem., 2011, 13(12), 3453-3460.
[93]
Heravi, M.M.; Beheshtiha, Y.S.; Nami, N.; Ghassemzadeh, M. A simple and efficient method for the unusual regioselective synthesis of thiazolopyrimidines. Phosphorus Sulfur Silicon Relat. Elem., 2000, 161(1), 71-74.
[94]
Nakamura, T.; Terashima, T.; Ogata, K.; Fukuzawa, S-I. Copper (I) 1, 2, 3-triazol-5-ylidene complexes as efficient catalysts for click reactions of azides with alkynes. Org. Lett., 2011, 13(4), 620-623.
[95]
Liang, L.; Ruiz, J.; Astruc, D. The efficient Copper (I)(hexabenzyl) tren catalyst and dendritic analogues for green “click” reactions between azides and alkynes in organic solvent and in water: positive dendritic effects and monometallic mechanism. Adv. Synth. Catal., 2011, 353(18), 3434-3450.
[96]
Wrona-Piotrowicz, A.; Plażuk, D.; Domagała, S.; Zakrzewski, J. Synthesis of ferrocenyl-and pyrenyl-thioimidates of terminal acetylenes.” Click” reaction with 3-azido-3-deoxythymidine affording redox-active and fluorescent thymidine conjugates. ARKIVOC, 2012, 412-420.
[97]
Kónya, K.; Fekete, S.; Ábrahám, A.; Patonay, T. α-Azido ketones. Part 7: synthesis of 1, 4-disubstituted triazoles by the “click” reaction of various terminal acetylenes with phenacyl azides or α-azidobenzo (hetera) cyclanones. Mol. Divers., 2012, 16(1), 91-102.
[98]
Liu, J.; Liu, M.; Yue, Y.; Yao, M.; Zhuo, K. Environmental friendly azide‐alkyne cycloaddition reaction of azides, alkynes, and organic halides or epoxides in water: efficient” Click” synthesis of 1, 2, 3‐triazole derivatives by Cu catalyst. Chin. J. Chem., 2012, 30(3), 644-650.
[99]
Evangelio, E.; Rath, N.P.; Mirica, L.M. Cycloaddition reactivity studies of first-row transition metal-azide complexes and alkynes: An inorganic click reaction for metalloenzyme inhibitor synthesis. Dalton Trans., 2012, 41(26), 8010-8021.
[100]
Kemmerich, T.; Nelson, J.H.; Takach, N.E.; Boebme, H.; Jablonski, B.; Beck, W. 1, 3-Dipolar cycloadditions to coordinated azide in cobalt chelate complexes of the type LCo (chelate) N3. Inorg. Chem., 1982, 21(3), 1226-1232.
[101]
Bing-tai, H.; Nelson, J.H.; Milosavljević, E.B.; Beck, W.; Kemmerich, T. Kinetics of 1, 3-dipolar cycloadditions of dimethylacetylenedicarboxylate to LCo (AcAc) 2N3. Inorg. Chim. Acta, 1987, 133(2), 267-274.
[102]
Paul, P.; Nag, K. Sulfur-nitrogen-bonded metal chelates. 18. 1, 3-Dipolar cycloadditions to coordinated azide in nickel (II) complexes of the types [Ni (SNN)(N3)] and [SNN) Ni (N3) Ni (NNS)](ClO4. Inorg. Chem., 1987, 26(18), 2969-2974.
[103]
Herberhold, M.; Goller, A.; Milius, W. Pentamethylcyclopentadienyl‐tantal (V)‐Komplexe (Cp* Ta) mit 1, 2, 3‐Triazolato‐Liganden. Z. Anorg. Allg. Chem., 2003, 629(7‐8), 1162-1168.
[104]
Chang, C-W.; Lee, G-H. Synthesis of ruthenium triazolato and tetrazolato complexes by 1, 3-dipolar cycloadditions of ruthenium azido complex with alkynes and alkenes and regiospecific alkylation of triazolates. Organometallics, 2003, 22(15), 3107-3116.
[105]
Busetto, L.; Marchetti, F.; Zacchini, S.; Zanotti, V. Diiron and diruthenium aminocarbyne complexes containing pseudohalides: Stereochemistry and reactivity. Inorg. Chim. Acta, 2005, 358(4), 1204-1216.
[106]
Singh, K.S.; Svitlyk, V.; Mozharivskyj, Y. Mono and dinuclear areneruthenium (II) triazoles by 1, 3-dipolar cycloadditions to a coordinated azide in ruthenium (II) compounds. Dalton Trans., 2011, 40(5), 1020-1023.
[107]
Bauer, J.A.K.; Becker, T.M.; Orchin, M. The preparation and crystal structures of some tricarbonylmanganese (I) octahedral complexes containing the 1, 1-dimethylamino-2, 2-diphenylphosphinoethane ligand. J. Chem. Crystallogr., 2004, 34(12), 843-849.
[108]
Partyka, D.V. et al. Carbon− Gold Bond Formation through [3+ 2] Cycloaddition Reactions of Gold (I) Azides and Terminal Alkynes. Organometallics, 2007, 26(1), 183-186.
[109]
Partyka, D.V.; Updegraff, J.B.; Zeller, M.; Hunter, A.D.; Gray, T.G. Carbon- gold bond formation through [3+ 2] cycloaddition reactions of gold (I) azides and terminal alkynes. Organometallics, 2007, 26(1), 183-186.
[110]
Pachhunga, K.; Carroll, P.J.; Rao, K.M. Reactivity study of cyclopentadienyl osmium (II) bisphosphine azido complexes with activated alkynes and nitriles: Isolation of osmium triazolato and tetrazolato complexes by 1, 3-dipolar addition. Inorg. Chim. Acta, 2008, 361(7), 2025-2031.
[111]
Liu, F-C.; Lin, Y-L.; Yang, P-S.; Lee, G-H.; Peng, S-M. [3+2] Cycloadditions of molybdenum (II) azide complexes with nitriles and an alkyne. Organometallics, 2010, 29(19), 4282-4290.
[112]
Del Castillo, T.J.; Sarkar, S.; Abboud, K.A.; Veige, A.S. 1, 3-Dipolar cycloaddition between a metal–azide (Ph3PAuN3) and a metal–acetylide (Ph3PAuC [triple bond, length as m-dash] CPh): An inorganic version of a click reaction. Dalton Trans., 2011, 40(32), 8140-8144.
[113]
Grapperhaus, C.A.; Mienert, B.; Bill, E.; Weyhermüller, T.; Wieghardt, K. Mononuclear (nitrido) iron (V) and (oxo) iron (IV) complexes via photolysis of [(cyclam-acetato) FeIII (N3)]+ and ozonolysis of [(cyclam-acetato) FeIII (O3SCF3)]+ in water/acetone mixtures. Inorg. Chem., 2000, 39(23), 5306-5317.
[114]
Meza-Aviña, M.E.; Patel, M.K.; Lee, C.B.; Dietz, T.J.; Croatt, M.P. Selective formation of 1, 5-substituted sulfonyl triazoles using acetylides and sulfonyl azides. Org. Lett., 2011, 13(12), 2984-2987.
[115]
Hyatt, I.D.; Meza-Aviña, M.E.; Croatt, M.P. Alkynes and azides: Not just for click reactions. Synlett, 2012, 23(20), 2869.
[116]
Boren, B.C.; Narayan, S.; Rasmussen, L.K.; Zhang, L.; Zhao, H.; Lin, Z.; Jia, G.; Fokin, V.V. Ruthenium-catalyzed azide-alkyne cycloaddition: Scope and mechanism. J. Am. Chem. Soc., 2008, 130(28), 8923-8930.
[117]
Krasiński, A.; Fokin, V.V.; Sharpless, K.B. Direct synthesis of 1, 5-disubstituted-4-magnesio-1, 2, 3-triazoles, revisited. Org. Lett., 2004, 6(8), 1237-1240.
[118]
Kwok, S.W.; Fotsing, J.R.; Fraser, R.J.; Rodionov, V.O.; Fokin, V.V. Transition-metal-free catalytic synthesis of 1, 5-diaryl-1, 2, 3-triazoles. Org. Lett., 2010, 12(19), 4217-4219.
[119]
Cassidy, M.P.; Raushel, J.; Fokin, V.V. Practical synthesis of amides from in situ generated copper (I) acetylides and sulfonyl azides. Angew. Chem., 2006, 118(19), 3226-3229.
[120]
Yoo, E.J.; Ahlquist, M.R.; Bae, I.; Sharpless, K.B.; Fokin, V.V.; Chang, S. Mechanistic studies on the Cu-catalyzed three-component reactions of sulfonyl azides, 1-alkynes and amines, alcohols, or water: dichotomy via a common pathway. J. Org. Chem., 2008, 73(14), 5520-5528.
[121]
Yoo, E.J.; Chang, S. A new route to indolines by the Cu-catalyzed cyclization reaction of 2-ethynylanilines with sulfonyl azides. Org. Lett., 2008, 10(6), 1163-1166.
[122]
Yamauchi, M.; Miura, T.; Murakami, M. Preparation of 2-sulfonyl-1, 2, 3-triazoles by base-promoted 1, 2-rearrangement of a sulfonyl group. Heterocycles, 2010, 80(1), 177-181.
[123]
Loren, J.C.; Sharpless, K.B. The banert cascade: A synthetic sequence to polyfunctional NH-1, 2, 3-triazoles. Synthesis, 2005, 2005(09), 1514-1520.
[124]
Mukherjee, N.; Ahammed, S.; Bhadra, S.; Ranu, B.C. Solvent-free one-pot synthesis of 1, 2, 3-triazole derivatives by the ‘Click’reaction of alkyl halides or aryl boronic acids, sodium azide and terminal alkynes over a Cu/Al2O3 surface under ball-milling. Green Chem., 2013, 15(2), 389-397.
[125]
Fazeli, A.; Oskooie, H.A.; Beheshtiha, Y.S.; Heravi, M.M.; Moghaddam, F.M.; Foroushani, B.K. Synthesis of 1, 4-disubstituted 1, 2, 3-triazoles from aromatic a-bromoketones, sodium azide and terminal acetylenes via cu/cu (otf) 2-catalyzed click reaction under microwave irradiation. Z. Naturforsch. B, 2013, 68(4), 391-396.
[126]
Kolb, H.C.; Finn, M.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[127]
Siemeling, U.; Rother, D. Evaluation of heterocumulenic ferrocene derivatives for “click” chemistry type reactions. J. Organomet. Chem., 2009, 694(7-8), 1055-1058.
[128]
Bakavoli, M.; Davoodnia, A.; Rahimizadeh, M.; Heravi, M.M. Synthesis of Novel [1, 2, 4] triazolo [3, 2-b][2, 4, 6] benzothiadiazocin-11 (5H, 10H)-One Derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177(10), 2303-2308.
[129]
Casarrubios, L.; de la Torre, M.C.; Sierra, M.A. The “Click” reaction involving metal azides, metal alkynes, or both: An exploration into multimetal structures. Chem. Eur. J, 2013, 19(11), 3534-3541.
[130]
Pellico, D.; Gómez‐Gallego, M.; Ramírez‐López, P.; Mancheño, M.J.; Sierra, M.A.; Torres, M.R. The sequential building of chiral macrocyclic bis‐β‐lactams by double Staudinger–Cu‐catalyzed azide–alkyne cycloadditions. Chem. Eur. J., 2010, 16(5), 1592-1600.
[131]
Yamamoto, Y.; Kinpara, K.; Saigoku, T.; Nishiyama, H.; Itoh, K. Synthesis of benzo-fused lactams and lactones via Ru (II)-catalyzed cycloaddition of amide-and ester-tethered α, ω-diynes with terminal alkynes: electronic directing effect of internal conjugated carbonyl group. Org. Biomol. Chem., 2004, 2(9), 1287-1294.
[132]
Gauthier, S.; Weisbach, N.; Bhuvanesh, N.; Gladysz, J.A. “Click” Chemistry in metal coordination spheres: Copper (I)-catalyzed 3+ 2 cycloadditions of benzyl azide and platinum polyynyl complexes trans-(C6F5)(p-tol3P)2Pt (C=C)n H(n= 2-6). Organometallics, 2009, 28(19), 5597-5599.
[133]
Gao, M.; He, C.; Chen, H.; Bai, R.; Cheng, B.; Lei, A. Synthesis of pyrroles by Click reaction: Silver‐catalyzed cycloaddition of terminal alkynes with isocyanides. Angew. Chem., 2013, 125(27), 7096-7099.
[134]
Yoshida, S.; Hatakeyama, Y.; Johmoto, K.; Uekusa, H.; Hosoya, T. Transient protection of strained alkynes from Click reaction via complexation with copper. J. Am. Chem. Soc., 2014, 136(39), 13590-13593.
[135]
Rodionov, V.O.; Presolski, S.I.; Díaz Díaz, D.; Fokin, V.V.; Finn, M. Ligand-accelerated Cu-catalyzed azide-alkyne cycloaddition: A mechanistic report. J. Am. Chem. Soc., 2007, 129(42), 12705-12712.
[136]
Wang, X.; Hu, H.; Wang, W.; Qin, A.; Sun, J.Z.; Tang, B.Z. A throughway to functional poly (disubstituted acetylenes): a combination of the activated ester strategy with click reaction. Polym. Chem., 2015, 6(46), 7958-7963.
[137]
Tong, L.; Qin, A.; Zhang, X.; Mao, Y.; Sun, J.; Tang, B.Z. Post-functionalization of disubstituted polyacetylenes via click chemistry. Sci. China Chem., 2011, 54(12), 1948-1954.
[138]
Elamari, H.; Jlalia, I.; Louet, C.; Herscovici, J.; Meganem, F.; Girard, C. On the reactivity of activated alkynes in copper and solvent-free Huisgen’s reaction. Tetrahedron Asymmetry, 2010, 21(9-10), 1179-1183.
[139]
Wang, M.; Zhu, R.; Fan, Z.; Fu, Y.; Feng, L.; Yao, J.; Maggiani, A.; Xia, Y.; Qu, F.; Peng, L. Bitriazolyl acyclonucleosides synthesized via Huisgen reaction using internal alkynes show antiviral activity against tobacco mosaic virus. Bioorg. Med. Chem. Lett., 2011, 21(1), 354-357.
[140]
Zhu, R.; Wang, M.; Xia, Y.; Qu, F.; Neyts, J.; Peng, L. Arylethynyltriazole acyclonucleosides inhibit hepatitis C virus replication. Bioorg. Med. Chem. Lett., 2008, 18(11), 3321-3327.
[141]
Wang, M.; Xia, Y.; Fan, Y.; Rocchi, P.; Qu, F.; Iovanna, J.L.; Peng, L. A novel arylethynyltriazole acyclonucleoside inhibits proliferation of drug-resistant pancreatic cancer cells. Bioorg. Med. Chem. Lett., 2010, 20(20), 5979-5983.
[142]
Hohloch, S.; Scheiffele, D.; Sarkar, B. Activating azides and alkynes for the Click reaction with [Cu(aNHC)2I] or [Cu(aNHC)2]+(aNHC = Triazole‐Derived Abnormal Carbenes): Structural characterization and catalytic properties. Eur. J. Inorg. Chem., 2013, 2013(22‐23), 3956-3965.
[143]
Chakraborty, A.; Dey, S.; Sawoo, S.; Adarsh, N.; Sarkar, A. Regioselective 1, 3-dipolar cycloaddition reaction of azides with alkoxy alkynyl fischer carbene complexes. Organometallics, 2010, 29(23), 6619-6622.
[144]
Suzuki, N.; Yasaki, S.; Yasuhara, A.; Sakamoto, T. Convenient indole synthesis from 2-iodoanilines and terminal alkynes by the sequential Sonogashira reaction and the cyclization reaction promoted by tetrabutylammonium fluoride (TBAF). Chem. Pharm. Bull., 2003, 51(10), 1170-1173.
[145]
Miao, H.; Yang, Z. Regiospecific carbonylative annulation of iodophenol acetates and acetylenes to construct the flavones by a new catalyst of palladium-thiourea-dppp complex. Org. Lett., 2000, 2(12), 1765-1768.
[146]
Feuerstein, M.; Doucet, H.; Santelli, M. Sonogashira reaction of heteroaryl halides with alkynes catalysed by a palladium-tetraphosphine complex. J. Mol. Catal.A Chem., 2006, 256(1-2), 75-84.
[147]
Luo, Y.; Wu, J. Copper-free Sonogashira reactions of 4-hydroxycoumarins with alkynes. Tetrahedron, 2009, 65(34), 6810-6814.
[148]
Wu, J.; Liao, Y.; Yang, Z. Synthesis of 4-substituted coumarins via the palladium-catalyzed cross-couplings of 4-tosylcoumarins with terminal acetylenes and organozinc reagents. J. Org. Chem., 2001, 66(10), 3642-3645.
[149]
Gelman, D.; Buchwald, S.L. Efficient palladium‐catalyzed coupling of aryl chlorides and tosylates with terminal alkynes: Use of a copper cocatalyst inhibits the reaction. Angew. Chem., 2003, 115(48), 6175-6178.
[150]
Tougerti, A.; Negri, S.; Jutand, A. Mechanism of the copper‐free palladium‐catalyzed Sonagashira reactions: multiple role of amines. Chem. Eur. J., 2007, 13(2), 666-676.
[151]
Tougerti, A.; S , Negri.; A, Jutand. Mechanism of the Copper‐Free Palladium‐Catalyzed Sonagashira Reactions: Multiple Role of Amines. Chem.–A Eur. J., 2007, 13(2), 666-676.
[152]
Alves, D.; dos Reis, J.S.; Luchese, C.; Nogueira, C.W.; Zeni, G. Synthesis of 3‐alkynylselenophene derivatives by a copper‐free Sonogashira cross‐coupling reaction. Eur. J. Org. Chem., 2008, 2008(2), 377-382.
[153]
Ren, T.; Zhang, Y.; Zhu, W.; Zhou, J. Copper‐free, efficient, palladium (II)‐catalyzed coupling of unactivated aryl iodides with terminal alkynes. Synth. Commun., 2007, 37(19), 3279-3290.
[154]
Wu, Y.; Xing, Y.; Wang, J.; Sun, Q.; Kong, W.; Suzenet, F. Palladium-catalyzed desulfurative Sonogashira cross-coupling reaction of 3-cyano assisted thioamide-type quinolone derivatives with alkynes. RSC Advances, 2015, 5(60), 48558-48562.
[155]
Jones, R.C.; Canty, A.J.; Caradoc-Davies, T.; Davies, N.W.; Gardiner, M.G.; Marriott, P.J.; Rühle, C.P.; Tolhurst, V-A. A new mechanistic pathway under Sonogashira reaction protocol involving multiple acetylene insertions. Dalton Trans., 2010, 39(16), 3799-3801.
[156]
Kloetzel, M.C. The Diels-Alder reactions with maleic anhydride. Org. React., 1948, 4, 1-59.
[157]
Holmes, H. The D iels‐A lder reaction ethylenic and acetylenic dienophiles. Org. React., 2004, 4, 60-173.
[158]
Roush, W.R. Intramolecular Diels–Alder Reactions; Pergamon Press: Oxford, 1991.
[159]
Greico, P.; Larsen, S. Iminium ion based Diels-Alder reactions: N-Benzyl-2-Azanorbornene. Org. Synth., 1993, 8(31), 1990.
[160]
Zweifel, G.S.; Nantz, M.H.; Somfai, P. Modern organic synthesis: An introduction; John Wiley & Sons, 2017.
[161]
Sarel, S.; Breuer, E. A novel conjugative 1,5-addition reaction involving the vinylcyclopropane system. J. Am. Chem. Soc., 1959, 81(24), 6522-6523.
[162]
Wender, P.A.; Takahashi, H.; Witulski, B. Transition metal catalyzed [5+2] cycloadditions of vinylcyclopropanes and alkynes: A homolog of the Diels-Alder reaction for the synthesis of seven-membered rings. J. Am. Chem. Soc., 1995, 117(16), 4720-4721.
[163]
Hilt, G.; Korn, T.J. An efficient cobalt catalyst for the neutral Diels–Alder reaction of acyclic 1, 3-dienes with internal alkynes. Tetrahedron Lett., 2001, 42(15), 2783-2785.
[164]
Birch, A.J. The Birch reduction in organic synthesis. Pure Appl. Chem., 1996, 68(3), 553-556.
[165]
Rabideau, P.W. The metal-ammonia reduction of aromatic compounds. Tetrahedron, 1989, 45(6), 1579-1603.
[166]
Hilt, G.; Smolko, K.I.; Lotsch, B.V. Cobalt (I)-catalyzed neutral Diels-Alder reactions of oxygen-functionalized acyclic 1, 3-dienes with alkynes. Synlett, 2002, 2002(07), 1081-1084.
[167]
Hilt, G.; Smolko, K.I. Cobalt (I)-catalyzed neutral Diels-Alder reactions of 1, 3-diynes with acyclic 1, 3-dienes Synthesis, 2002, 2002 (05), 0686-0692.
[168]
Makin, S.; Kruglikova, R.; Shavrygina, O.; Chernyshev, A.; Popova, T.; Nguen, F. Chemistry of Enol Ethers. 55. The synthesis and stereochemistry of trimethylsilyloxy-1, 3-dienes, using H-1 And C-13 nuclear magnetic-resonance spectroscopy methods. Zh. Org. Khim., 1982, 18(2), 287-292.
[169]
Shiotsuki, M.; Ura, Y.; Ito, T.; Wada, K.; Kondo, T.; Mitsudo, T-A. Ruthenium-catalyzed formal [4+2] cycloaddition of alkynes with alkenes: formation of cyclohexenedicarboxylates via isomerization of alkynes and successive Diels–Alder reaction. J. Organomet. Chem., 2004, 689(20), 3168-3172.
[170]
Mitsudo, T-A.; Suzuki, T.; Zhang, S-W.; Imai, D.; Fujita, K-I.; Manabe, T.; Shiotsuki, M.; Watanabe, Y.; Wada, K.; Kondo, T. Novel ruthenium complex-catalyzed dimerization of 2, 5-norbornadiene to pentacyclo [6.6 0.02, 6.03, 13.010, 14] tetradeca-4, 11-diene, involving carbon- carbon bond cleavage. J. Am. Chem. Soc., 1999, 121(9), 1839-1850.
[171]
Shiotsuki, M.; Suzuki, T.; Kondo, T.; Wada, K.; Mitsudo, T-A. Reaction of Ru (1− 6-η-cyclooctatriene)(η2-dimethyl fumarate) 2 with monodentate and bidentate phosphines: A model reaction of catalytic dimerization of alkenes. Organometallics, 2000, 19(26), 5733-5743.
[172]
Kranjc, K.; Kočevar, M. Diels–Alder reaction of highly substituted 2H-pyran-2-ones with alkynes: Reactivity and regioselectivity. New J. Chem., 2005, 29(8), 1027-1034.
[173]
Kepe, V.; Kocevar, M.; Polanc, S.; Verc̈ek, B.; Tis̈ler, M. A simple and general one-pot synthesis of some 2H-pyran-2-ones and fused pyran-2-ones. Tetrahedron, 1990, 46(6), 2081-2088.
[174]
Vraničar, L.; Polanc, S.; Kočevar, M. 2H-Pyran-2-ones as synthons for (E)-α, β-didehydroamino acid derivatives. Tetrahedron, 1999, 55(1), 271-278.
[175]
Kranjc, K.; Kočevar, M. Intensification of a reaction by the addition of a minor amount of solvent: Diels-Alder reaction of 2H-pyran-2-ones with alkynes. Collect. Czech. Chem. Commun., 2006, 71(5), 667-678.
[176]
Pearson, A.J.; Zhou, Y. Diels-Alder reactions of cyclopentadienones with aryl alkynes to form biaryl compounds. J. Org. Chem., 2009, 74(11), 4242-4245.
[177]
Hilt, G.; Janikowski, J. Regiocontrolled cobalt-catalyzed Diels-Alder reactions of silicon-functionalized, terminal, and internal alkynes. Org. Lett., 2009, 11(3), 773-776.
[178]
Fringuelli, F.; Taticchi, A. The Diels-Alder reaction: Selected practical methods; John Wiley & Sons, 2002.
[179]
Nicolaou, K.; Snyder, S.A.; Montagnon, T.; Vassilikogiannakis, G.E. Die Diels‐Alder‐Reaktion in der totalsynthese. Angew. Chem., 2002, 114(10), 1742-1773.
[180]
Lipshutz, B.H. Five-membered heteroaromatic rings as intermediates in organic synthesis. Chem. Rev., 1986, 86(5), 795-819.
[181]
Kappe, C.O.; Murphree, S.S.; Padwa, A. Synthetic applications of furan Diels-Alder chemistry. Tetrahedron, 1997, 53(42), 14179-14233.
[182]
Padwa, A.; Zhang, H. Synthesis of some members of the hydroxylated phenanthridone subclass of the amaryllidaceae alkaloid family. J. Org. Chem., 2007, 72(7), 2570-2582.
[183]
Padwa, A.; Wang, Q. Synthesis of the tetracyclic framework of the Erythrina alkaloids using a [4+ 2]-cycloaddition/Rh (I)-catalyzed cascade of 2-imidofurans. J. Org. Chem., 2006, 71(19), 7391-7402.
[184]
Wang, Q.; Padwa, A. Rh (I)-catalyzed ring opening of an IMDAF-derived oxabicyclo cycloadduct as the key step in the synthesis of (±)-epi-zephyranthine. Org. Lett., 2004, 6(13), 2189-2192.
[185]
Wolkenberg, S.E.; Boger, D.L. Total synthesis of anhydrolycorinone utilizing sequential intramolecular Diels-Alder reactions of a 1,3,4-oxadiazole. J. Org. Chem., 2002, 67(21), 7361-7364.
[186]
Hashmi, A.S.K.; Rudolph, M.; Huck, J.; Frey, W.; Bats, J.W.; Hamzić, M. Gold‐Katalyse: Umlenken des reaktionspfades der furan‐alkin‐cyclisierung. Angew. Chem., 2009, 121(32), 5962-5966.
[187]
Chen, Y.; Lu, Y.; Li, G.; Liu, Y. Gold-catalyzed cascade Friedel-Crafts/furan-alkyne cycloisomerizations for the highly efficient synthesis of arylated (Z)-enones or-enals. Org. Lett., 2009, 11(17), 3838-3841.
[188]
Chen, Y.; Li, G.; Liu, Y. Gold‐catalyzed cascade Friedel–Crafts/furan‐Yne cyclization/heteroenyne metathesis for the highly efficient construction of phenanthrene derivatives. Adv. Synth. Catal., 2011, 353(2‐3), 392-400.
[189]
Martín-Matute, B.; Nevado, C.; Cárdenas, D.J.; Echavarren, A.M. Intramolecular reactions of alkynes with furans and electron rich arenes catalyzed by PtCl2: The role of platinum carbenes as intermediates. J. Am. Chem. Soc., 2003, 125(19), 5757-5766.
[190]
Lohse, A.G.; Hsung, R.P. Thermal Intramolecular [4+2] Cycloadditions of Allenamides: A stereoselective tandem propargyl amide isomerization-cycloaddition. Org. Lett., 2009, 11(15), 3430-3433.
[191]
Wu, H-J.; Ying, F-H.; Shao, W-D. Study on the reaction mechanism of the base-catalyzed intramolecular Diels-Alder reaction of furfuryl propargyl ethers. J. Org. Chem., 1995, 60(19), 6168-6172.
[192]
Wu, H-J.; Shao, W-D.; Ying, F-H. Intramolecular Diels-Alder reaction of furans with allenyl ethers followed by methylthio group 1, 4-rearrangement. Tetrahedron Lett., 1994, 35(5), 729-732.
[193]
Chen, Y.; Wang, L.; Liu, Y.; Li, Y. Grignard reagent acceleration of the intramolecular Diels-Alder reaction of furans with unactivated alkynes: towards structurally complex oxabicyclic alkenes. Chem. Eur. J, 2011, 17(45), 12582-12586.
[194]
Wu, X.; Chen, S-S.; Hu, Y.; Gong, L-Z. Gold-Catalyzed [1,5]-hydride shift onto unactivated alkynes to trigger an intermolecular Diels–Alder reaction. Org. Lett., 2014, 16(14), 3820-3823.
[195]
Lumbroso, A.; Catak, S.; Sulzer-Mossé, S.; De Mesmaeker, A. Cycloaddition of keteniminium with terminal alkynes toward cyclobuteniminium and their use in Diels–Alder reactions. Tetrahedron Lett., 2014, 55(37), 5147-5150.
[196]
Falmagne, J.B.; Escudero, J.; Taleb‐Sahraoui, S.; Ghosez, L. Cyclobutanone and cyclobutenone derivatives by reaction of tertiary amides with alkenes or alkynes. Angew. Chem. Int. Ed., 1981, 20(10), 879-880.
[197]
Hoornaert, C.; Hesbain‐Frisque, A.; Ghosez, L. Cyclobutenylideneammonium salts from the cycloadditions of keteniminium salts to acetylenes. Angew. Chem. Int. Ed., 1975, 14(8), 569-570.
[198]
Zhang, M-X.; Shan, W.; Chen, Z.; Yin, J.; Yu, G.A.; Liu, S.H. Diels–Alder reactions of arynes in situ generated from DA reaction between bis-1, 3-diynes and alkynes. Tetrahedron Lett., 2015, 56(49), 6833-6838.
[199]
Willoughby, P.H.; Niu, D.; Wang, T.; Haj, M.K.; Cramer, C.J.; Hoye, T.R. Mechanism of the reactions of alcohols with o-benzynes. J. Am. Chem. Soc., 2014, 136(39), 13657-13665.
[200]
Ikawa, T.; Tokiwa, H.; Akai, S. Experimental and theoretical studies on regiocontrol of benzyne reactions using silyl and boryl directing groups. J. Synth. Org. Chem. Jpn., 2012, 70(11), 1123-1133.
[201]
Djeghaba, Z.; Jousseaume, B.; Ratier, M.; Duboudin, J.G. Sulfones organostanniques: synthese et reactivite des trialkystannyl-1 para-toluenesulfonyl-2 acetylenes. J. Organomet. Chem., 1986, 304(1-2), 115-125.
[202]
Williams, R.V.; Chauhan, K.; Gadgil, V.R. 1-Benzenesulfonyl-2-trimethylsilylacetylene: a new acetylene equivalent for the Diels-Alder reaction. J. Chem. Soc. Chem. Commun., 1994, 1994(15), 1739-1740.
[203]
Barbero, A.; Pulido, F.J. Isoxazoles as latent siloxybutadienes: An easy entry to polyfunctionalized benzene systems via Diels-Alder reaction with acetylenes. Synthesis, 2004, 2004(03), 401-404.
[204]
Varma, R.L.; Ganga, V.; Suresh, E. Diels–Alder reactions of bis (spirodienone) derivatives of calix [4] arene with acetylenes: highly regio-and stereoselective synthesis of bisbicyclo [2.2 2] octenone derivatives. Tetrahedron Lett., 2005, 46(17), 3061-3063.
[205]
Kranjc, K.; Kočevar, M. Ethyl vinyl ether as a synthetic equivalent of acetylene in a DABCO-catalyzed microwave-assisted Diels-Alder-elimination reaction sequence starting from 2H-pyran-2-ones. Synlett, 2008, 2008(17), 2613-2616.
[206]
Pozgan, F.; Krejan, M.; Polanc, S. 5-Acyl-2H-pyran-2-ones in the Schmidt reaction: Migration of the pyran-2-one ring. Heterocycles, 2006, 69, 123-132.
[207]
Singh, M.D.; Ningombam, A. Diels-Alder reaction of 9-anthracenemethanol and dimethylacetylene-dicarboxylate; potential route for the synthesis of regiospecific products of 9-substituted anthracene with unsymmetrical acetylenes. Indian J. Chem. Sect. B Org. incl. Med, 2010, 49(1), 77-83.
[208]
Khatri, A.I.; Samant, S.D. Facile, diversity-oriented, normal-electron-demand Diels–Alder reactions of 6-amino-2H-pyran-2-ones with diethyl acetylenedicarboxylate, 1,4-naphthoquinone, and N-phenylmaleimide. Synthesis, 2015, 47(03), 343-350.
[209]
Herai, M.M.; Rajabzadeh, G.; Rahimizadeh, M.; Bakavoli, M.; Ghassemzadeh, M. A convenient and general synthesis of a novel heterocyclic system; 5H-[1, 3, 4] thiadiazolo [2, 3-d][1,2,4] triazin-5-ones. Phosphorus Sulfur Silicon Relat. Elem., 2001, 174(1), 129-132.
[210]
Heravi, M.; Rahimizadeh, M.; Seyf, M.; Davoodnia, A.; Ghassemzadeh, M. Bicyclic Compounds derived from 4-amino-3-mercapto-1, 2, 4-triazoles: facile routes to 1, 2, 4-triazolo [3, 4-b][1, 3, 4] thiadiazoles and 1, 2, 4-triazolo [3, 4-b][1, 3, 4] thiadiazines. Phosphorus Sulfur Silicon Relat. Elem., 2000, 167(1), 211-217.
[211]
Hossaini, Z.; Rostami-Charati, F.; Sheikholeslami-Farahani, F.; Ghasemian, M. Synthesis of functionalized benzene using Diels–Alder reaction of activated acetylenes with synthesized phosphoryl-2-oxo-2H-pyran. Z. Naturforsch. B, 2015, 70(5), 355-360.
[212]
Hilt, G.; du Mesnil, F-X. An improved cobalt catalyst for homo Diels–Alder reactions of acyclic 1, 3-dienes with alkynes. Tetrahedron Lett., 2000, 41(35), 6757-6761.
[213]
Brunner, H.; Reimer, A. Enantioselective catalysis 107: new optically active deltacyclenes as building blocks for the synthesis of expanded phosphanes. Bull. Soc. Chim. Fr., 1997, 3(134), 307-314.
[214]
Rhyoo, H-Y.; Lee, B.Y.; Yu, H.K.B.; Chung, Y.K. Study of the reactivity of ClCo(PPh3)3. J. Mol. Catal., 1994, 92(1), 41-49.
[215]
Tenaglia, A.; Giordano, L. Ruthenium (II)-catalyzed homo-Diels–Alder reactions of disubstituted alkynes and norbornadiene. Tetrahedron Lett., 2004, 45(1), 171-174.
[216]
Fletcher, M.D.; Hurst, T.E.; Miles, T.J.; Moody, C.J. Synthesis of highly-functionalised pyridines via hetero-Diels–Alder methodology: Reaction of 3-siloxy-1-aza-1, 3-butadienes with electron deficient acetylenes. Tetrahedron, 2006, 62(23), 5454-5463.
[217]
Correa, Jr, I.R.; Moran, P.J. Diastereoselective reduction of E and Z α-alkoxyimino-β-ketoesters by sodium borohydride. Tetrahedron, 1999, 55(50), 14221-14232.
[218]
Manley, J.M.; Kalman, M.J.; Conway, B.G.; Ball, C.C.; Havens, J.L.; Vaidyanathan, R. Early amidation approach to 3-[(4-amido) pyrrol-2-yl]-2-indolinones. J. Org. Chem., 2003, 68(16), 6447-6450.
[219]
Igarashi, J-E.; Kawakami, Y.; Kinoshita, T.; Furukawa, S. Correlations between carbon-13 nuclear magnetic resonance chemical shifts and reactivities of siloxybutadienes and siloxyazabutadienes in the Diels-Alder reaction with dimethyl acetylenedicarboxylate. Chem. Pharm. Bull., 1990, 38(7), 1832-1835.
[220]
Tödter, C.; Lackner, H. Synthesis of Azabenzisochromanquinone Antibiotics, I. Hetero Diels‐Alder Reactions of Isochromanquinones with 1‐Aza‐1, 3‐dienes. Liebigs Ann., 1996, 1996(9), 1385-1394.
[221]
Allock, S.J.; Gilchrist, T.L.; King, F.D. Diels-alder cycloaddition reactions of αβ-unsaturated aldehyde acylhydrazones. Tetrahedron Lett., 1991, 32(1), 125-128.
[222]
Allcock, S.J.; Gilchrist, T.L.; Shuttleworth, S.J.; King, F.D. Intramolecular and intermolecular diels-alder reactions of acylhydrazones derived from methacrolein and ethylacrolein. Tetrahedron, 1991, 47(48), 10053-10064.
[223]
Zaky, H. Action of Amines and Grignard reagents on some new narylideneaminophthalimides. Heterocycl. Commun., 2002, 8(4), 355-360.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy