Comparative iTRAQ Proteomics Identified Myocardium Proteins Associated with Hypoxia of Yak

Author(s): Asma Babar, Tserang Donko Mipam, Shixin Wu, Chuanfei Xu, Mujahid Ali Shah, Kifayatullah Mengal, Chuanping Yi, Hui Luo, Wangsheng Zhao, Xin Cai*, Xuegang Luo*.

Journal Name: Current Proteomics

Volume 16 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Yaks inhabit high-altitude are well-adapted to the hypoxic environments. Though, the mechanisms involved in regulatory myocardial protein expression at high-altitude were not completely understood.

Objective: To revel the molecular mechanism of hypoxic adaptation in yak, here we have applied comparative myocardial proteomics in between yak and cattle by isobaric Tag for Relative and Absolute Quantitation (iTRAQ) labelling.

Methods: To understand the systematic protein expression variations in myocardial tissues that explain the hypoxic adaptation in yak, we have performed iTRAQ analysis combined with Liquid Chromatography- Tandem Mass Spectrometry (LC-MS/MS). Bioinformatics analysis was performed to find the association of these Differentially Expressed Proteins (DEPs) in different functions and pathways. Protein to protein interaction was analyzed by using STRING database.

Results: 686 Differentially Expressed Proteins (DEPs) were identified in yak with respect to cattle. From which, 480 DEPs were up-regulated and 206 were down-regulated in yak. Upregulated expression of ASB4, STAT, HRG, RHO and TSP4 in yak may be associated with angiogenesis, cardiovascular development, response to pressure overload to heart and regulation of myocardial contraction in response to increased oxygen tension. The up-regulation of mitochondrial proteins, ACAD8, GPDH-M, PTPMT1, and ALDH2, may have contributed to oxidation within mitochondria, hypoxia-induced cell metabolism and protection of heart against cardiac ischemic injuries. Further, the upregulated expression of SAA1, PTX, HP and MBL2 involved in immune response potentially helpful in myocardial protection against ischemic injuries, extracellular matrix remodeling and free heme neutralization/ clearance in oxygen-deficient environment.

Conclusion: Therefore, the identification of these myocardial proteins in will be conducive to investigation of the molecular mechanisms involved in hypoxic adaptations of yaks at high-altitude condition.

Keywords: Yak, cattle, myocardium, proteome, hypoxic adaptation, ribs.

[1]
Thompson, L.G.; Yao, T.; Mosley-Thompson, E.; Davis, M.; Henderson, K.; Lin, P-N. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science, 2000, 289(5486), 1916-1919.
[2]
Peacock, A.J. ABC of oxygen: Oxygen at high altitude. British Med. J., 1998, 317(7165), 1063.
[3]
Cai, D-W.; Han, L.; Zhang, X-L.; Zhou, H.; Zhu, H. DNA analysis of archaeological sheep remains from China. J. Archaeol. Sci., 2007, 34(9), 1347-1355.
[4]
Wiener, G.; Han, J.; Long, R. The Yak., . 2nd Ed.; FAO regional office for Asia and the Pacific, Bankok, Thailand 2003, 476.
[5]
Long, R.; Apori, S.; Castro, F.; Ørskov, E. Feed value of native forages of the Tibetan Plateau of China. Anim. Feed Sci. Technol., 1999, 80(2), 101-113.
[6]
Simonson, T.S.; Yang, Y.; Huff, C.D.; Yun, H.; Qin, G.; Witherspoon, D.J.; Bai, Z.; Lorenzo, F.R.; Xing, J.; Jorde, L.B. Genetic evidence for high-altitude adaptation in Tibet. Science, 2010, 329(5987), 72-75.
[7]
Durmowicz, A.G.; Hofmeister, S.; Kadyraliev, T.; Aldashev, A.A.; Stenmark, K.R. Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude. J. Appl. Physiol., 1993, 74(5), 2276-2285.
[8]
Gou, W.; Peng, J.; Wu, Q.; Zhang, Q.; Zhang, H.; Wu, C. Expression pattern of heme oxygenase 1 gene and hypoxic adaptation in chicken embryos. Comp. Biochem. Physiol. B, 2014, 174, 23-28.
[9]
Chaillou, T.; Koulmann, N.; Meunier, A.; Malgoyre, A.; Serrurier, B.; Beaudry, M.; Bigard, X. Effect of hypoxia exposure on the phenotypic adaptation in remodelling skeletal muscle submitted to functional overload. Acta Physiol. , 2013, 209(4), 272-282.
[10]
Kon, M.; Ohiwa, N.; Honda, A.; Matsubayashi, T.; Ikeda, T.; Akimoto, T.; Suzuki, Y.; Hirano, Y.; Russell, A.P. Effects of systemic hypoxia on human muscular adaptations to resistance exercise training. Physiol. Rep., 2014, 2(6), e12033.
[11]
Zhang, J.; Chen, L.; Long, K.; Mu, Z. Hypoxia-related gene expression in porcine skeletal muscle tissues at different altitude. Genet. Mol. Res., 2015, 14(3), 11587-11593.
[12]
Qiu, Q.; Zhang, G.; Ma, T.; Qian, W.; Wang, J.; Ye, Z.; Cao, C.; Hu, Q.; Kim, J.; Larkin, D.M. The yak genome and adaptation to life at high altitude. Nat. Genet., 2012, 44(8), 946.
[13]
Ge, R-L.; Cai, Q.; Shen, Y-Y.; San, A.; Ma, L.; Zhang, Y.; Yi, X.; Chen, Y.; Yang, L.; Huang, Y. Draft genome sequence of the Tibetan antelope. Nat. Commun., 2013, 4, 1858.
[14]
Cho, Y.S.; Hu, L.; Hou, H.; Lee, H.; Xu, J.; Kwon, S.; Oh, S.; Kim, H-M.; Jho, S.; Kim, S. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat. Commun., 2013, 4, 1-7.
[15]
Li, M.; Tian, S.; Jin, L.; Zhou, G.; Li, Y.; Zhang, Y.; Wang, T.; Yeung, C.K.; Chen, L.; Ma, J. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat. Genet., 2013, 45(12), 1431.
[16]
Ge, R-L.; Simonson, T.S.; Cooksey, R.C.; Tanna, U.; Qin, G.; Huff, C.D.; Witherspoon, D.J.; Xing, J.; Zhengzhong, B.; Prchal, J.T. Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. Mol. Genet. Metab., 2012, 106(2), 244-247.
[17]
Graf, A.; Krebs, S.; Zakhartchenko, V.; Schwalb, B.; Blum, H.; Wolf, E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc. Natl. Acad. Sci. , 2014, 111(11), 4139-4144.
[18]
Reed, R.D.; Papa, R.; Martin, A.; Hines, H.M.; Counterman, B.A.; Pardo-Diaz, C.; Jiggins, C.D.; Chamberlain, N.L.; Kronforst, M.R.; Chen, R. Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Science, 2011, 333(6046), 1137-1141.
[19]
Petousi, N.; Robbins, P.A. Human adaptation to the hypoxia of high altitude: The Tibetan paradigm from the pregenomic to the postgenomic era. J. Appl. Physiol., 2013, 116(7), 875-884.
[20]
Ream, M.; Ray, A.M.; Chandra, R.; Chikaraishi, D.M. Early fetal hypoxia leads to growth restriction and myocardial thinning. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 295(2), R583-R595.
[21]
Tintu, A.; Rouwet, E.; Verlohren, S.; Brinkmann, J.; Ahmad, S.; Crispi, F.; van Bilsen, M.; Carmeliet, P.; Staff, A.C.; Tjwa, M. Hypoxia induces dilated cardiomyopathy in the chick embryo: Mechanism, intervention, and long-term consequences. PLoS One, 2009, 4(4), e5155.
[22]
Cui, K.; Wang, B.; Zhang, N.; Tu, Y.; Ma, T.; Diao, Q. iTRAQ-based quantitative proteomic analysis of alterations in the intestine of Hu sheep under weaning stress. PLoS One, 2018, 13(7), e0200680.
[23]
Yu, S.; Cai, X.; Sun, L.; Zuo, Z.; Mipam, T.; Cao, S.; Shen, L.; Ren, Z.; Chen, X.; Yang, F. Comparative iTRAQ proteomics revealed proteins associated with spermatogenic arrest of cattle yak. J. Proteomics, 2016, 142, 102-113.
[24]
Wang, X.; Yang, R.; Zhou, Y.; Gu, Z. A comparative transcriptome and proteomics analysis reveals the positive effect of supplementary Ca2+ on soybean sprout yield and nutritional qualities. J. Proteomics, 2016, 143, 161-172.
[25]
Lee, R.C.H.; Chu, J.J.H. Proteomics profiling of chikungunya-infected Aedes albopictus C6/36 cells reveal important mosquito cell factors in virus replication. PLoS Negl. Trop. Dis., 2015, 9(3), e0003544.
[26]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45, D362-D368.
[27]
Ferguson, J.E.; Wu, Y.; Smith, K.; Charles, P.; Powers, K.; Wang, H.; Patterson, C. ASB4 is a hydroxylation substrate of FIH and promotes vascular differentiation via an oxygen-dependent mechanism. Mol. Cell. Biol., 2007, 27(18), 6407-6419.
[28]
Soond, S.M.; Latchman, D.S.; Stephanou, A. STAT signalling in the heart and cardioprotection. Expert Rev. Mol. Med., 2006, 8(15), 1-16.
[29]
Shuai, K.; Liu, B. Regulation of JAK–STAT signaling in the immune system. Nat. Rev. Immunol., 2003, 3(11), 900.
[30]
Kassaar, O.; McMahon, S.A.; Thompson, R.; Botting, C.H.; Naismith, J.H.; Stewart, A.J. Crystal structure of histidine-rich glycoprotein N2 domain reveals redox activity at an interdomain disulfide bridge: Implications for angiogenic regulation. Blood, 2014, 123(12), 1948-1955.
[31]
Vu, T.T.; Zhou, J.; Leslie, B.A.; Stafford, A.R.; Fredenburgh, J.C.; Ni, R.; Qiao, S.; Vaezzadeh, N.; Jahnen-Dechent, W.; Monia, B.P. Arterial thrombosis is accelerated in mice deficient in histidine-rich glycoprotein. Blood, 2015, 125(17), 2712-2719.
[32]
van Buul, J.D.; Geerts, D.; Huveneers, S. Rho GAPs and GEFs: Controling switches in endothelial cell adhesion. Cell Adhes. Migr., 2014, 8(2), 108-124.
[33]
Kutys, M.L.; Yamada, K.M. Rho GEFs and GAPs: Emerging integrators of extracellular matrix signaling. Small GTPases, 2015, 6(1), 16-19.
[34]
Cingolani, O.H.; Kirk, J.A.; Seo, K.; Koitabashi, N.; Lee, D-i.; Ramirez-Correa, G.; Bedja, D.; Barth, A.S.; Moens, A.L.; Kass, D.A. Thrombospondin-4 is required for stretch-mediated contractility augmentation in cardiac muscle. Circ. Res., 2011, 109(12), 1410-1414.
[35]
Frolova, E.G.; Sopko, N.; Blech, L.; Popović, Z.B.; Li, J.; Vasanji, A.; Drumm, C.; Krukovets, I.; Jain, M.K.; Penn, M.S. Thrombospondin-4 regulates fibrosis and remodeling of the myocardium in response to pressure overload. FASEB J., 2012, 26(6), 2363-2373.
[36]
Dorn, G.W.; Vega, R.B.; Kelly, D.P. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev., 2015, 29(19), 1981-1991.
[37]
Roe, C.R.; Cederbaum, S.D.; Roe, D.S.; Mardach, R.; Galindo, A.; Sweetman, L. Isolated isobutyryl-CoA dehydrogenase deficiency: an unrecognized defect in human valine metabolism. Mol. Genet. Metab. Rep., 1998, 65(4), 264-271.
[38]
Wanders, R.J.; Duran, M.; Loupatty, F.J. Enzymology of the branched-chain amino acid oxidation disorders: The valine pathway. J. Inherit. Metab. Dis., 2012, 35(1), 5-12.
[39]
Xu, Q-Q.; Xiao, F-J.; Sun, H-Y.; Shi, X-F.; Wang, H.; Yang, Y-F.; Li, Y-X.; Wang, L-S.; Ge, R-L. Ptpmt1 induced by HIF-2α regulates the proliferation and glucose metabolism in erythroleukemia cells. Biochem. Biophys. Res. Commun., 2016, 471(4), 459-465.
[40]
Gomes, K.M.; Campos, J.C.; Bechara, L.R.; Queliconi, B.; Lima, V.M.; Disatnik, M-H.; Magno, P.; Chen, C-H.; Brum, P.C.; Kowaltowski, A.J. Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling. Cardiovasc. Res., 2014, 103(4), 498-508.
[41]
Sun, A.; Zou, Y.; Wang, P.; Xu, D.; Gong, H.; Wang, S.; Qin, Y.; Zhang, P.; Chen, Y.; Harada, M. Mitochondrial aldehyde dehydrogenase 2 plays protective roles in heart failure after myocardial infarction via suppression of the cytosolic JNK/p53 pathway in mice. J. Am. Heart Assoc., 2014, 3(5), e000779.
[42]
Mráček, T.; Drahota, Z.; Houštěk, J. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim. Biophys. Acta Bioenerget., 2013, 1827(3), 401-410.
[43]
Balaban, R.S. Regulation of oxidative phosphorylation in the mammalian cell. Am. J. Physiol. Cell Physiol., 1990, 258(3), C377-C389.
[44]
Schultz, K.T.; Grieder, F. Structure and function of the immune system. Toxicol. Pathol., 1987, 15(3), 262-264.
[45]
Aly, H.; Hamed, Z.; Mohsen, L.; Ramy, N.; Arnaoot, H.; Lotfy, A. Serum amyloid A protein and hypoxic ischemic encephalopathy in the newborn. J. Perinatol., 2011, 31(4), 263.
[46]
Eklund, K.K.; Niemi, K.; Kovanen, P. Immune functions of serum amyloid A. Crit. Rev. Immunol., 2012, 32(4), 335-348.
[47]
Nebuloni, M.; Pasqualini, F.; Zerbi, P.; Lauri, E.; Mantovani, A.; Vago, L.; Garlanda, C. PTX3 expression in the heart tissues of patients with myocardial infarction and infectious myocarditis. Cardiovasc. Pathol., 2011, 20(1), e27-e35.
[48]
Graves, K.L.; Vigerust, D.J HP: An inflammatory indicator in cardiovascular disease. Future Cardiol., 2016, 12(4), 471-481.
[49]
Pągowska-Klimek, I.; Cedzyński, M. Mannan-binding lectin in cardiovascular disease. BioMed Res. Int., 2014, 2014, 13.
[50]
Busche, M.N.; Pavlov, V.; Takahashi, K.; Stahl, G.L. Myocardial ischemia and reperfusion injury is dependent on both IgM and mannose-binding lectin. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(5), H1853-H1859.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2019
Page: [314 - 329]
Pages: 16
DOI: 10.2174/1570164616666190123151619
Price: $58

Article Metrics

PDF: 37
HTML: 4
EPUB: 1
PRC: 1