Stimulus Sensitive Smart Nanoplatforms: An Emerging Paradigm for the Treatment of Skin Diseases

Author(s): Divya, Gurpreet Kaur*.

Journal Name: Current Drug Delivery

Volume 16 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Over the past century, the prevalence of skin diseases has substantially increased. These diseases present a significant physical, emotional and socio-economic burden to the society. Such conditions are also associated with a multitude of psychological traumas to the suffering patients.

The effective treatment strategy implicates targeting of drugs to the skin. The field of drug targeting has been revolutionized with the advent of nanotechnology. The emergence of stimulus-responsive nanoplatforms has provided remarkable control over fundamental polymer properties for external triggers. This enhanced control has empowered pioneering approaches in the treatment of chronic inflammatory skin diseases.

Objective: Our aim was to investigate the studies on smart nanoplatforms that exploit the altered skin physiology under diseased conditions and provide site-specific controlled drug delivery.

Method: All literature search regarding the advances in stimulus sensitive smart nanoplatforms for skin diseases was done using Google Scholar and Pubmed.

Conclusion: Various stimuli explored lately for such nano platforms are pH, temperature, light and magnet. Although, the scientists have actively taken up this research topic but there are still certain lacunaes associated which have been discussed in this review. Further, an interdisciplinary collaboration between the healthcare providers and pharmacists is a pivotal requirement for such systems to be available for patients.

Keywords: LCST, magnetic field, photosensitive, pH responsive, polymers, stimuli sensitive, temperature responsive.

[1]
Celleno, L.; Tamburi, F. Structure and function of the skin: In: Nutritional Cosmetics, 1st Edition, Tabor, A.; Blair, R.M., eds.; Elsevier: North Carolina, USA. 2009, pp. 3-45.
[2]
Honari, G.; Maibach, H. Skin structure and function. In: Applied Dermatotoxicology; Academic Press: Elsevier: San Francisco, USA, 2014; pp. 1-10.
[3]
Kohen, R. Skin antioxidants: Their role in aging and in oxidative stress- new approaches for their evaluation. Biomed. Pharmacother., 1999, 53(4), 181-192.
[4]
Sand, M.; Gambichler, T.; Sand, D.; Skrygan, M.; Altmeyer, P.; Bechara, F.G. MicroRNAs and the skin: Tiny players in the body’s largest organ. J. Dermatol. Sci., 2009, 53, 69-175.
[5]
Raskin, R.E.; Meyer, D. Skin and subcutaneous tissues. In: Canine and Feline Cytology, 3rd ed; Elsevier: USA, 2010; pp. 26-76.
[6]
Kanitakis, J. Anatomy, histology and immunohistochemistry of normal human skin. Eur. J. Dermatol., 2002, 12(4), 390-401.
[7]
Fisher, G.J.; Quan, T.; Purohit, T.; Shao, Y.; Cho, M.K.; He, T.; Varani, J.; Kang, S.; Voorhees, J.J. Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. Am. J. Pathol., 2009, 174(1), 101-114.
[8]
Schallreute, K.U.; Wood, J.M. Free radical reduction in the human epidermis. Free Radic. Biol. Med., 1989, 6(5), 519-532.
[9]
Hay, R.J.; Johns, N.E.; Williams, H.C.; Bolliger, I.W.; Dellavalle, R.P.; Margolis, D.J.; Marks, R.; Naldi, L.; Weinstock, M.A.; Wulf, S.K.; Michaud, C.; Murray, C.J.L.; Naghavi, M. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. J. Invest. Dermatol., 2014, 134(6), 1527-1534.
[10]
Karimkhani, C.; Dellavalle, R.P.; Coffeng, L.E.; Flohr, C.; Hay, R.J.; Langan, S.M.; Nsoesie, E.O.; Ferrari, A.J.; Erskine, H.E.; Silverberg, J.I.; Vos, T.; Naghavi, M. Global skin disease morbidity and mortality: An update from the global burden of disease study 2013. JAMA Dermatol., 2017, 153, 406-412.
[11]
Kathe, K.; Kathpalia, H. Film forming systems for topical and transdermal drug delivery. Asian J. Pharm. Sci, 2017, 12(6), 487-497.
[12]
Mura, P.; Faucci, M.T.; Bramanti, G.; Corti, P. Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations. Eur. J. Pharm. Sci., 2000, 9, 365-372.
[13]
Yu, M.; Ma, H.; Lei, M.; Li, N.; Tan, F. In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea properties. Eur. J. Pharm. Biopharm., 2014, 88(1), 92-103.
[14]
Alvarez-Román, R.; Naik, A.; Kalia, Y.N.; Guy, R.H.; Fessi, H. Skin penetration and distribution of polymeric nanoparticles. J. Control. Release, 2004, 99(1), 53-62.
[15]
Kumar, N.; Goindi, S. Statistically designed nonionic surfactant vesicles for dermal delivery of itraconazole: Characterization and in vivo evaluation using a standardized Tinea pedis infection model. Int. J. Pharm., 2014, 472(1-2), 224-240.
[16]
Malik, D.S.; Kaur, G. Nanostructured gel for topical delivery of azelaic acid: Designing, characterization, and in-vitro evaluation. J. Drug Deliv. Sci. Technol., 2018, 47, 123-136.
[17]
Elnaggar, Y.S.R.; El-Refaie, W.M.; El-Massik, M.A.; Abdallah, O.Y. Lecithin-based nanostructured gels for skin delivery: An update on state of art and recent applications. J. Control. Release, 2014, 180(1), 10-24.
[18]
Erdogan, M.; Wright, J.R.; McAlister, V.C. Liposomal tacrolimus lotion as a novel topical agent for treatment of immune-mediated skin disorders: Experimental studies in a murine model. Br. J. Dermatol., 2002, 146(6), 964-967.
[19]
Honeywell-Nguyen, P.L.; Bouwstra, J.A. Vesicles as a tool for transdermal and dermal delivery. Drug Discov. Today. Technol., 2005, 2(1), 67-74.
[20]
Israelachvili, J. The science and applications of emulsions—an overview. Colloids Surf. A Physicochem. Eng. Asp., 1994, 91, 1-8.
[21]
Lawrence, M.J.; Rees, G.D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev., 2000, 45(1), 89-121.
[22]
Schafer-Korting, M.; Mehnert, W.; Korting, H.C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev., 2007, 59(6), 427-443.
[23]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[24]
Bonifacio, B.V.; Silva, P.B.; Ramos, M.; Negri, K.; Bauab, T.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine, 2013, 9, 1-15.
[25]
Zhai, Y.; Zhai, G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J. Control. Release, 2014, 193, 90-99.
[26]
Pople, P.V.; Singh, K.K. Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis - Part II: In vivo assessment of dermatopharmacokinetics, biodistribution and efficacy. Int. J. Pharm., 2012, 434(1-2), 70-79.
[27]
Rahimpour, Y.; Hamishehkar, H. Niosomes as Carrier in Dermal Drug Delivery; Recent Adv. Nov. Drug Carr. Sys, 2012, p. DOI: 10.5772/51729.
[28]
Raza, K.; Singh, B.; Singal, P.; Wadhwa, S.; Katare, O.P. Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf. B Biointerfaces, 2013, 105, 67-74.
[29]
Soppimath, K.S.; Aminabhavi, T.M.; Dave, A.M.; Kumbar, S.G.; Rudzinski, W.E. Stimulus-responsive ‘smart’ hydrogels as novel drug delivery systems. Drug Dev. Ind. Pharm., 2002, 28(8), 957-974.
[30]
Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9), 1306-1323.
[31]
Torchilin, V.P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov., 2014, 13(11), 813-827.
[32]
Kim, Y.J.; Matsunaga, Y.T. Thermo-responsive polymers and their application as smart biomaterials. J. Mater. Chem. B, 2017, 5(23), 4307-4321.
[33]
Hoogenboom, R.; Schlaad, H. Thermoresponsive poly (2-oxazoline)s, polypeptoids, and polypeptides. Polym. Chem., 2017, 8(1), 24-40.
[34]
Rao, K.M.; Rao, V.K.; Ha, C.S. Stimuli responsive poly (vinyl caprolactam) gels for biomedical applications. Gels, 2016, 2(1), 6.
[35]
Yang, J.; Van Lith, R.; Baler, K.; Hoshi, R.A.; Ameer, G.A. A thermoresponsive biodegradable polymer with intrinsic antioxidant properties. Biomacromolecules, 2014, 15(11), 3942-3952.
[36]
He, C.; Kim, S.W.; Lee, D.S. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J. Control. Release, 2008, 127(3), 189-207.
[37]
Bloksma, M.M.; Paulus, R.M.; Kuringen, H.P.; Van der Woerdt, F.; Lambermont Thijs, H.M.; Schubert, U.S.; Hoogenboom, R. Thermoresponsive Poly (2-oxazine)s. Macromol. Rapid Commun., 2012, 33(1), 92-96.
[38]
Moon, H.J.; Ko, D.Y.; Park, M.H.; Joo, M.K.; Jeong, B. Temperature-responsive compounds as in situ gelling biomedical materials. Chem. Soc. Rev., 2012, 41(14), 4860.
[39]
Ding, K.; Zhang, Y.L.; Yang, Z.; Xu, J.Z. A promising injectable scaffold: The biocompatibility and effect on osteogenic differentiation of mesenchymal stem cells. Biotechnol. Bioprocess Eng., 2013, 18, 155-163.
[40]
Monti, D.; Burgalassi, S.; Rossato, M.S.; Albertini, B.; Passerini, N.; Rodriguez, L.; Chetoni, P. Poloxamer 407 microspheres for orotransmucosal drug delivery. Part II: In vitro/in vivo evaluation. Int. J. Pharm., 2010, 400(1-2), 32-36.
[41]
Lima, L.H.; Morales, Y.; Cabral, T. Poly-N-isopropylacrylamide (pNIPAM): A reversible bioadhesive for sclerotomy closure. Int. J. Retina Vitreous, 2016, 2, 23.
[42]
Pawar, M.D.; Rathna, G.V.N.; Agrawal, S.; Kuchekar, B.S. Bioactive thermoresponsive polyblend nanofiber formulations for wound healing. Mater. Sci. Eng. C, 2015, 48, 126-137.
[43]
Yu, L.; Hu, H.; Chen, L.; Bao, X.; Li, Y.; Chen, L.; Xu, G.; Ye, X.; Ding, J. Comparative studies of thermogels in preventing post-operative adhesions and corresponding mechanisms. Biomater. Sci., 2014, 2(8), 1100-1109.
[44]
Kabanov, A.; Vinogradov, S. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew. Chem., 2009, 48(30), 5418-5429.
[45]
Oh, J.K.; Lee, D.I.; Park, J.M. Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polym. Sci., 2009, 34(12), 1261-1282.
[46]
Neamtu, I.; Rusu, A.G.; Diaconu, A.; Nita, L.E.; Chiriac, A.P. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv., 2017, 24(1), 539-557.
[47]
Singka, G.S.L.; Samah, N.A.; Zulfakar, M.H.; Yurdasiper, A.; Heard, C.M. Enhanced topical delivery and anti-inflammatory activity of methotrexate from an activated nanogel. Eur. J. Pharm. Biopharm., 2010, 76(2), 275-281.
[48]
James, C.; Johnson, A.L.; Jenkins, A.T.A. Antimicrobial surface grafted thermally responsive PNIPAM-co-ALA nano-gels. Chem. Commun., 2011, 47(48), 12777-12779.
[49]
Pearson, H.A.; Sahukhal, G.S.; Elasri, M.O.; Urban, M.W. Phage-bacterium war on polymeric surfaces: Can surface-anchored bacteriophages eliminate microbial infections? Biomacromolecules, 2013, 14(5), 1257-1261.
[50]
Hathaway, H.; Alves, D.R.; Bean, J.; Esteban, P.P.; Ouadi, K.; Sutton, J.; Jenkins, A.T.A. Poly(N-isopropylacrylamide-co-allylamine) (PNIPAM-co-ALA) nanospheres for the thermally triggered release of Bacteriophage K. Eur. J. Pharm. Biopharm., 2015, 96, 437-441.
[51]
Pierre, M.B.R.; Costa, I. Liposomal systems as drug delivery vehicles for dermal and transdermal applications. Arch. Dermatol. Res., 2011, 303, 607-621.
[52]
Li, J.; Wang, X.; Zhang, T.; Wang, C.; Huang, Z.; Luo, X.; Deng, Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci., 2014, 10(2), 81-98.
[53]
Dicheva, B.M.; Hagen, T.L.M.; Seynhaeve, A.L.B.; Amin, M.; Eggermont, A.M.M.; Koning, G.A. Enhanced specificity and drug delivery in tumors by cRGD - anchoring thermosensitive liposomes. Pharm. Res., 2015, 32(12), 3862-3876.
[54]
Asadian-Birjand, M.; Bergueiro, J.; Rancan, F.; Cuggino, J.C.; Mutihac, R.C.; Achazi, K.; Dernedde, J.; Blume-Peytayi, U.; Vogt, A.; Calderon, M. Engineering thermoresponsive polyether-based nanogels for temperature dependent skin penetration. Polym. Chem., 2015, 6(32), 5827-5831.
[55]
Rancan, F.; Asadian-Birjand, M.; Dogan, S.; Graf, C.; Cuellar, L.; Lommatzsch, S.; Blume-Peytavi, U.; Calderón, M.; Vogt, A. Effects of thermoresponsivity and softness on skin penetration and cellular uptake of polyglycerol-based nanogels. J. Control. Release, 2016, 228, 159-169.
[56]
Gerecke, C.; Edlich, A.; Giulbudagian, M.; Schumacher, F.; Zhang, N.; Said, A.; Yealland, G.; Lohan, S.B.; Neumann, F.; Meinke, M.C.; Ma, N.; Calderon, M.; Hedtrich, S.; Schafer-Korting, M.; Kleuser, B. Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes. Nanotoxicol, 2017, 11, 267-277.
[57]
Rancan, F.; Giulbudagian, M.; Jurisch, J.; Blume-Peytavi, U.; Calderón, M.; Vogt, A. Drug delivery across intact and disrupted skin barrier: identification of cell populations interacting with penetrated thermoresponsive nanogels. Eur. J. Pharm. Biopharm., 2017, 116, 4-11.
[58]
Reyes-Ortega, F. pH-responsive polymers: Properties, synthesis and applications: In: Smart Polymers and their Applications., Woodhead Publishing: Spain. 2014, pp.45-92.
[59]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12, 991-1003.
[60]
Sahle, F.F.; Gerecke, C.; Kleuser, B.; Bodmeier, R. Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications. Int. J. Pharm., 2017, 516(1-2), 21-31.
[61]
Parra, J.L.; Paye, M. EEMCO guidance for the in vivo assessment of skin surface pH. Skin Pharmacol. Appl. Skin Physiol., 2003, 16, 188-202.
[62]
Schmid-Wendtner, M.H.; Korting, H.C. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol. Physiol., 2006, 19(6), 296-302.
[63]
Ali, S.M.; Yosipovitch, G. Skin pH: From basic science to basic skin care. Acta Derm. Venereol., 2013, 93, 261-267.
[64]
Divya, G.; Panonnummal, R.; Gupta, S.; Jayakumar, R.; Sabitha, M. Acitretin and aloe-emodin loaded chitin nanogel for the treatment of psoriasis. Eur. J. Pharm. Biopharm., 2016, 107, 97-109.
[65]
Panonnummal, R.; Sabitha, M. Anti-psoriatic and toxicity evaluation of methotrexate loaded chitin nanogel in imiquimod induced mice model. Int. J. Biol. Macromol., 2017, 110, 245-258.
[66]
Panonnummal, R.; Jayakumar, R.; Sabitha, M. Comparative anti-psoriatic efficacy studies of clobetasol loaded chitin nanogel and marketed cream. Eur. J. Pharm. Sci., 2017, 96, 193-206.
[67]
Zhang, W.; Shi, Y.; Chen, Y.; Hao, J.; Sha, X.; Fang, X. The potential of pluronic polymeric micelles encapsulated with paclitaxel for the treatment of melanoma using subcutaneous and pulmonary metastatic mice models. Biomaterials, 2011, 32, 5934-5944.
[68]
Mangalathillam, S.; Rejinold, N.S.; Nair, A.; Lakshmanan, V.K.; Nair, S.V.; Jayakumar, R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale, 2012, 4(1), 239-250.
[69]
Sabitha, M.; Rejinold, N.; Nair, A.; Lakshmanan, V.K.; Nair, S.V.; Jayakumar, R. Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer. Carbohydr. Polym., 2013, 91(1), 48-57.
[70]
Gao, W.; Vecchio, D.; Li, J.; Zhu, J.; Zhang, Q.; Fu, V.; Li, J.; Thamphiwatana, S.; Lu, D.; Zhang, L. Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery. ACS Nano, 2014, 8(3), 2900-2907.
[71]
Reddy, T.L.; Garikapati, K.R.; Reddy, S.G.; Reddy, B.V.S.; Yadav, J.S.; Bhadra, U.; Bhadra, M.P. Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nanocarrier for the synergistic treatment of melanoma. Sci. Rep., 2016, 6, 35223.
[72]
Sawant, V.J.; Bamane, S.R.; Kanase, D.G.; Patil, S.B.; Ghosh, J. Encapsulation of curcumin over carbon dot coated TiO2 nanoparticles for pH sensitive enhancement of anticancer and anti-psoriatic potential. RSC Advances, 2016, 6(71), 66745-66755.
[73]
Kumari, S.; Kondapi, A.K. Lactoferrin nanoparticle mediated targeted delivery of 5-fluorouracil for enhanced therapeutic efficacy. Int. J. Biol. Macromol., 2017, 95, 232-237.
[74]
Sahu, P.; Kashaw, S.K.; Jain, S.; Sau, S.; Iyer, A.K. Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies. J. Control. Release, 2017, 253, 122-136.
[75]
Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364.
[76]
Bechet, D.; Couleaud, P.; Frochot, C.; Viriot, M.L.; Guillemin, F.; Barberi-Heyob, M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol., 2008, 26(11), 612-621.
[77]
Carmen, A.L.; Lev, B.; Angel, C. Light-sensitive intelligent drug delivery systems. Photochem. Photobiol., 2009, 85(4), 848-860.
[78]
Li, L.; Huh, K.M. Polymeric nanocarrier systems for photodynamic therapy. Biomater. Res., 2014, 18(1), 19.
[79]
Pucelik, B.; Arnaut, L.G.; Stochel, G.; Dabrowski, J.M. Design of pluronic-based formulation for enhanced redaporfin-photodynamic therapy against pigmented melanoma. ACS Appl. Mater. Interfaces, 2016, 8(34), 22039-22055.
[80]
Konan, Y.N.; Gurny, R.; Allemann, E. State of the art in the delivery of photosensitizers for photodynamic therapy. J. Photochem. Photobiol. B, 2002, 66(2), 89-106.
[81]
Kolarova, H.; Nevrelova, P.; Bajgar, R.; Jirova, D.; Kejlova, K.; Strnad, M. In vitro photodynamic therapy on melanoma cell lines with phthalocyanine. Toxicol. Vitr, 2007, 21(2), 249-253.
[82]
Kalka, K.; Merk, H.; Mukhtar, H. Photodynamic therapy in dermatology. J. Am. Acad. Dermatol., 2000, 42(3), 389-413.
[83]
Canakis, C.; Livir-Rallatos, C.; Panayiotis, C.; Livir-Rallatos, G.; Persidis, E.; Conway, M.D.; Peyman, G.A. Ocular photodynamic therapy for serous macular detachment in the diffuse retinal pigment epitheliopathy variant of idiopathic central serous chorioretinopathy. Am. J. Ophthalmol., 2003, 136(4), 750-752.
[84]
Prosst, R.L.; Wolfsen, H.C.; Gahlen, J. Photodynamic therapy for esophageal diseases: A clinical update. Endoscopy, 2003, 35(12), 1059-1068.
[85]
Rkein, A.M.; Ozog, D.M. Photodynamic therapy. Dermatol. Clin., 2014, 32(3), 415-425.
[86]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3(11), 397-415.
[87]
Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett., 2012, 7(1), 144.
[88]
Issa, B.; Obaidat, I.M.; Albiss, B.A.; Haik, Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci., 2013, 14(11), 21266-21305.
[89]
Gobbo, O.L.; Sjaastad, K.; Radomski, M.W.; Volkov, Y.; Prina-Mello, A. Magnetic nanoparticles in cancer theranostics. Theranostics, 2015, 5(11), 1249-1263.
[90]
Ghazanfari, M.R.; Kashefi, M.; Shams, S.F.; Jaafari, M.R. Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem. Res. Int., 2016, 7840161.
[91]
Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M.A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci., 2015, 16(4), 8070-8101.
[92]
Kang, T.; Li, F.; Baik, S.; Shao, W.; Ling, D.; Hyeon, T. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials, 2017, 136, 98-114.
[93]
Rahimi, M.; Wadajkar, A.; Subramanian, K.; Yousef, M.; Cui, W.; Hsieh, J.T.; Nguyen, K.T. In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. Nanomed. Nanotechnol. Biol. Med., 2010, 6(5), 672-680.
[94]
Koppolu, B.; Rahimi, M.; Nattama, S.; Wadajkar, A.; Nguyen, K.T. Development of multiple-layer polymeric particles for targeted and controlled drug delivery. Nanomed. Nanotechnol. Biol. Med., 2010, 6(2), 355-361.
[95]
Wadajkar, A.S.; Bhavsar, Z.; Ko, C.Y.; Koppolu, B.; Cui, W.; Tang, L.; Nguyen, K.T. Multifunctional particles for melanoma-targeted drug delivery. Acta Biomater., 2012, 8(8), 2996-3004.
[96]
Rao, Y.F.; Chen, W.; Liang, X.G.; Huang, Y.Z.; Miao, J.; Liu, L.; Lou, Y.; Zhang, X.G.; Wang, B.; Tang, R.K.; Chen, Z.; Lu, X.Y. Epirubicin-loaded superparamagnetic iron-oxide nanoparticles for transdermal delivery: Cancer therapy by circumventing the skin barrier. Small, 2015, 11(2), 239-247.
[97]
Misak, H.; Zacharias, N.; Song, Z.; Hwang, S.; Man, K.P.; Asmatulu, R.; Yang, S.Y. Skin cancer treatment by albumin/5-Fu loaded magnetic nanocomposite spheres in a mouse model. J. Biotechnol., 2013, 164(1), 130-136.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 16
ISSUE: 4
Year: 2019
Page: [295 - 311]
Pages: 17
DOI: 10.2174/1567201816666190123125813
Price: $58

Article Metrics

PDF: 33
HTML: 4
EPUB: 1
PRC: 1