Zinc-dependent Deacetylase (HDAC) Inhibitors with Different Zinc Binding Groups

Author(s): Yan Li , Fang Wang , Xiaoxue Chen , Jie Wang , Yonglong Zhao , Yongjun Li , Bin He* .

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The state of histone acetylation plays a very crucial role in carcinogenesis and its development by chromatin remodeling and thus altering transcription of oncogenes and tumor suppressor genes. Such epigenetic regulation was controlled by zinc-dependent histone deacetylases (HDACs), one of the major regulators. Due to the therapeutic potential of HDACs as one of the promising drug targets in cancer, HDAC inhibitors have been intensively investigated over the last few decades. Notably, there are five HDAC inhibitors already approved to the market. Vorinostat (SAHA), Belinostat (PXD-101) and Romidepsin (FK228) have been approved by Food and Drug Administration (FDA) in USA for treating cutaneous T-cell lymphoma (CTCL) or peripheral T cell lymphoma (PTCL) while Panbinostat (LBH-589) has also been approved by the FDA for the treatment of multiple myeloma. Recently, Chidamide was approved by China Food and Drug Administration (CFDA) for the treatment of PTCL. The structural feature of almost all HDAC inhibitors consists of Cap group, linker, and zinc-binding group (ZBG). The binding of ZBG groups to zinc ion plays a decisive role in the inhibition of HDAC. Therefore, we will summarize the developed HDAC inhibitors according to different ZBG groups and discuss their binding mode with zinc ion.

Keywords: Histone deacetylases, HDAC, HDAC inhibitor, Zinc binding group (ZBG), Cancer, Acetylation.

[1]
Khorasanizadeh, S. The nucleosome: from genomic organization to genomic regulation. Cell, 2004, 116(2), 259-272. [http://dx.doi.org/10.1016/S0092-8674(04)00044-3]. [PMID: 14744436].
[2]
Egger, G.; Liang, G.; Aparicio, A.; Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature, 2004, 429(6990), 457-463. [http://dx.doi.org/10.1038/nature02625]. [PMID: 15164071].
[3]
Esteller, M. Epigenetics in cancer. N. Engl. J. Med., 2008, 358(11), 1148-1159. [http://dx.doi.org/10.1056/NEJMra072067]. [PMID: 18337604].
[4]
Tessarz, P.; Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol., 2014, 15(11), 703-708. [http://dx.doi.org/10.1038/nrm3890]. [PMID: 25315270].
[5]
Kumar, S.; Ahmad, M.K.; Waseem, M.; Pandey, A.K. Drug targets for cancer treatment: An overview. Med. Chem., 2015, 5, 115-123.
[6]
Bernstein, B.E.; Tong, J.K.; Schreiber, S.L. Genomewide studies of histone deacetylase function in yeast. Proc. Natl. Acad. Sci. USA, 2000, 97(25), 13708-13713. [http://dx.doi.org/10.1073/ pnas.250477697]. [PMID: 11095743].
[7]
de Ruijter, A.J.M.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370(Pt 3), 737-749. [http://dx.doi.org/10.1042/bj20021321]. [PMID: 12429021].
[8]
Glozak, M.A.; Sengupta, N.; Zhang, X.; Seto, E. Acetylation and deacetylation of non-histone proteins. Gene, 2005, 363, 15-23. [http://dx.doi.org/10.1016/j.gene.2005.09.010]. [PMID: 16289629].
[9]
Sangwan, R.; Rajan, R.; Mandal, P.K. HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors. Eur. J. Med. Chem., 2018, 158, 620-706. [http://dx.doi.org/ 10.1016/j.ejmech.2018.08.073]. [PMID: 30245394].
[10]
Gregoretti, I.V.; Lee, Y-M.; Goodson, H.V. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J. Mol. Biol., 2004, 338(1), 17-31. [http://dx.doi.org/10.1016/j.jmb.2004.02.006]. [PMID: 15050820].
[11]
Haigis, M.C.; Guarente, L.P. Mammalian sirtuins-Emerging roles in physiology, aging, and calorie restriction. Genes Dev., 2006, 20(21), 2913-2921. [http://dx.doi.org/10.1101/gad.1467506]. [PMID: 17079682].
[12]
Weichert, W.; Röske, A.; Gekeler, V.; Beckers, T.; Ebert, M.P.; Pross, M.; Dietel, M.; Denkert, C.; Röcken, C. Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: A retrospective analysis. Lancet Oncol., 2008, 9(2), 139-148. [http://dx.doi.org/10.1016/S1470-2045(08)70004-4]. [PMID: 18207460].
[13]
Weichert, W.; Röske, A.; Gekeler, V.; Beckers, T.; Stephan, C.; Jung, K.; Fritzsche, F.R.; Niesporek, S.; Denkert, C.; Dietel, M.; Kristiansen, G. Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy. Br. J. Cancer, 2008, 98(3), 604-610. [http://dx.doi.org/10.1038/ sj.bjc.6604199]. [PMID: 18212746].
[14]
Sudo, T.; Mimori, K.; Nishida, N.; Kogo, R.; Iwaya, T.; Tanaka, F.; Shibata, K.; Fujita, H.; Shirouzu, K.; Mori, M. Histone deacetylase 1 expression in gastric cancer. Oncol. Rep., 2011, 26(4), 777-782. [PMID: 21725604].
[15]
Oehme, I.; Deubzer, H.E.; Wegener, D.; Pickert, D.; Linke, J.P.; Hero, B.; Kopp-Schneider, A.; Westermann, F.; Ulrich, S.M.; von Deimling, A.; Fischer, M.; Witt, O. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin. Cancer Res., 2009, 15(1), 91-99. [http://dx.doi.org/10.1158/1078-0432.CCR-08-0684]. [PMID: 19118036].
[16]
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest., 2014, 124(1), 30-39. [http://dx.doi.org/10.1172/JCI69738]. [PMID: 24382387].
[17]
Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov., 2014, 13(9), 673-691. [http://dx.doi.org/ 10.1038/nrd4360]. [PMID: 25131830].
[18]
Li, Y.; Seto, E. HDACs and HDAC Inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831. [http://dx.doi.org/10.1101/cshperspect.a026831]. [PMID: 27599530].
[19]
Duvic, M.; Talpur, R.; Ni, X.; Zhang, C.; Hazarika, P.; Kelly, C.; Chiao, J.H.; Reilly, J.F.; Ricker, J.L.; Richon, V.M.; Frankel, S.R. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood, 2007, 109(1), 31-39. [http://dx.doi.org/10.1182/blood-2006-06-025999]. [PMID: 16960145].
[20]
Piekarz, R.L.; Frye, R.; Turner, M.; Wright, J.J.; Allen, S.L.; Kirschbaum, M.H.; Zain, J.; Prince, H.M.; Leonard, J.P.; Geskin, L.J.; Reeder, C.; Joske, D.; Figg, W.D.; Gardner, E.R.; Steinberg, S.M.; Jaffe, E.S.; Stetler-Stevenson, M.; Lade, S.; Fojo, A.T.; Bates, S.E. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol., 2009, 27(32), 5410-5417. [http://dx.doi.org/10.1200/JCO.2008.21.6150]. [PMID: 19826128].
[21]
Molife, L.R.; de Bono, J.S. Belinostat: Clinical applications in solid tumors and lymphoma. Expert Opin. Investig. Drugs, 2011, 20(12), 1723-1732. [http://dx.doi.org/10.1517/13543784.2011.629604]. [PMID: 22046971].
[22]
Libby, E.N.; Becker, P.S.; Burwick, N.; Green, D.J.; Holmberg, L.; Bensinger, W.I. Panobinostat: A review of trial results and future prospects in multiple myeloma. Expert Rev. Hematol., 2015, 8(1), 9-18. [http://dx.doi.org/10.1586/17474086.2015.983065]. [PMID: 25410127].
[23]
Li, Y.; Chen, K.; Zhou, Y.; Xiao, Y.; Deng, M.; Jiang, Z.; Ye, W.; Wang, X.; Wei, X.; Li, J.; Liang, J.; Zheng, Z.; Yao, Y.; Wang, W.; Li, P.; Xu, B. A new strategy to target acute myeloid leukemia stem and progenitor cells using chidamide, A histone deacetylase inhibitor. Curr. Cancer Drug Targets, 2015, 15(6), 493-503. [http://dx.doi.org/10.2174/156800961506150805153230]. [PMID: 26282548].
[24]
Somoza, J.R.; Skene, R.J.; Katz, B.A.; Mol, C.; Ho, J.D.; Jennings, A.J.; Luong, C.; Arvai, A.; Buggy, J.J.; Chi, E.; Tang, J.; Sang, B.C.; Verner, E.; Wynands, R.; Leahy, E.M.; Dougan, D.R.; Snell, G.; Navre, M.; Knuth, M.W.; Swanson, R.V.; McRee, D.E.; Tari, L.W. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure, 2004, 12(7), 1325-1334. [http://dx.doi.org/10.1016/j.str.2004.04.012]. [PMID: 15242608].
[25]
Cole, K.E.; Dowling, D.P.; Boone, M.A.; Phillips, A.J.; Christianson, D.W. Structural basis of the antiproliferative activity of largazole, A depsipeptide inhibitor of the histone deacetylases. J. Am. Chem. Soc., 2011, 133(32), 12474-12477. [http://dx.doi.org/ 10.1021/ja205972n]. [PMID: 21790156].
[26]
Whitehead, L.; Dobler, M.R.; Radetich, B.; Zhu, Y.; Atadja, P.W.; Claiborne, T.; Grob, J.E.; McRiner, A.; Pancost, M.R.; Patnaik, A.; Shao, W.; Shultz, M.; Tichkule, R.; Tommasi, R.A.; Vash, B.; Wang, P.; Stams, T. Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors. Bioorg. Med. Chem., 2011, 19(15), 4626-4634. [http://dx.doi.org/10.1016/j.bmc.2011.06.030]. [PMID: 21723733].
[27]
Finnin, M.S.; Donigian, J.R.; Cohen, A.; Richon, V.M.; Rifkind, R.A.; Marks, P.A.; Breslow, R.; Pavletich, N.P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature, 1999, 401(6749), 188-193. [http://dx.doi.org/ 10.1038/43710]. [PMID: 10490031].
[28]
Vanommeslaeghe, K.; De Proft, F.; Loverix, S.; Tourwé, D.; Geerlings, P. Theoretical study revealing the functioning of a novel combination of catalytic motifs in histone deacetylase. Bioorg. Med. Chem., 2005, 13(12), 3987-3992. [http://dx.doi.org/ 10.1016/j.bmc.2005.04.001]. [PMID: 15878665].
[29]
Corminboeuf, C.; Hu, P.; Tuckerman, M.E.; Zhang, Y. Unexpected deacetylation mechanism suggested by a density functional theory QM/MM study of histone-deacetylase-like protein. J. Am. Chem. Soc., 2006, 128(14), 4530-4531. [http://dx.doi.org/10.1021/ ja0600882]. [PMID: 16594663].
[30]
Decroos, C.; Bowman, C.M.; Moser, J.A.; Christianson, K.E.; Deardorff, M.A.; Christianson, D.W. Compromised structure and function of HDAC8 mutants identified in cornelia de lange syndrome spectrum disorders. ACS Chem. Biol., 2014, 9(9), 2157-2164. [http://dx.doi.org/10.1021/cb5003762]. [PMID: 25075551].
[31]
Millard, C.J.; Watson, P.J.; Celardo, I.; Gordiyenko, Y.; Cowley, S.M.; Robinson, C.V.; Fairall, L.; Schwabe, J.W.; Class, I.; Class, I. HDACs share a common mechanism of regulation by inositol phosphates. Mol. Cell, 2013, 51(1), 57-67. [http://dx.doi.org/ 10.1016/j.molcel.2013.05.020]. [PMID: 23791785].
[32]
Bressi, J.C.; Jennings, A.J.; Skene, R.; Wu, Y.; Melkus, R.; De Jong, R.; O’Connell, S.; Grimshaw, C.E.; Navre, M.; Gangloff, A.R. Exploration of the HDAC2 foot pocket: Synthesis and SAR of substituted N-(2-aminophenyl)benzamides. Bioorg. Med. Chem. Lett., 2010, 20(10), 3142-3145. [http://dx.doi.org/10.1016/ j.bmcl.2010.03.091]. [PMID: 20392638].
[33]
Lauffer, B.E.; Mintzer, R.; Fong, R.; Mukund, S.; Tam, C.; Zilberleyb, I.; Flicke, B.; Ritscher, A.; Fedorowicz, G.; Vallero, R.; Ortwine, D.F.; Gunzner, J.; Modrusan, Z.; Neumann, L.; Koth, C.M.; Lupardus, P.J.; Kaminker, J.S.; Heise, C.E.; Steiner, P. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J. Biol. Chem., 2013, 288(37), 26926-26943. [http://dx.doi.org/10.1074/jbc.M113.490706]. [PMID: 23897821].
[34]
Watson, P.J.; Fairall, L.; Santos, G.M.; Schwabe, J.W. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature, 2012, 481(7381), 335-340. [http://dx.doi.org/10.1038/nature10728]. [PMID: 22230954].
[35]
Bottomley, M.J.; Lo Surdo, P.; Di Giovine, P.; Cirillo, A.; Scarpelli, R.; Ferrigno, F.; Jones, P.; Neddermann, P.; De Francesco, R.; Steinkühler, C.; Gallinari, P.; Carfí, A. Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J. Biol. Chem., 2008, 283(39), 26694-26704. [http://dx.doi.org/10.1074/jbc.M803514200]. [PMID: 18614528].
[36]
Bürli, R.W.; Luckhurst, C.A.; Aziz, O.; Matthews, K.L.; Yates, D.; Lyons, K.A.; Beconi, M.; McAllister, G.; Breccia, P.; Stott, A.J.; Penrose, S.D.; Wall, M.; Lamers, M.; Leonard, P.; Müller, I.; Richardson, C.M.; Jarvis, R.; Stones, L.; Hughes, S.; Wishart, G.; Haughan, A.F.; O’Connell, C.; Mead, T.; McNeil, H.; Vann, J.; Mangette, J.; Maillard, M.; Beaumont, V.; Munoz-Sanjuan, I.; Dominguez, C. Design, synthesis, and biological evaluation of potent and selective class IIa histone deacetylase (HDAC) inhibitors as a potential therapy for Huntington’s disease. J. Med. Chem., 2013, 56(24), 9934-9954. [http://dx.doi.org/10.1021/jm4011884]. [PMID: 24261862].
[37]
Schuetz, A.; Min, J.; Allali-Hassani, A.; Schapira, M.; Shuen, M.; Loppnau, P.; Mazitschek, R.; Kwiatkowski, N.P.; Lewis, T.A.; Maglathin, R.L.; McLean, T.H.; Bochkarev, A.; Plotnikov, A.N.; Vedadi, M.; Arrowsmith, C.H. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J. Biol. Chem., 2008, 283(17), 11355-11363. [http://dx.doi.org/10.1074/jbc.M707362200]. [PMID: 18285338].
[38]
Lobera, M.; Madauss, K.P.; Pohlhaus, D.T.; Wright, Q.G.; Trocha, M.; Schmidt, D.R.; Baloglu, E.; Trump, R.P.; Head, M.S.; Hofmann, G.A.; Murray-Thompson, M.; Schwartz, B.; Chakravorty, S.; Wu, Z.; Mander, P.K.; Kruidenier, L.; Reid, R.A.; Burkhart, W.; Turunen, B.J.; Rong, J.X.; Wagner, C.; Moyer, M.B.; Wells, C.; Hong, X.; Moore, J.T.; Williams, J.D.; Soler, D.; Ghosh, S.; Nolan, M.A. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol., 2013, 9(5), 319-325. [http://dx.doi.org/10.1038/nchembio.1223]. [PMID: 23524983].
[39]
Vannini, A.; Volpari, C.; Gallinari, P.; Jones, P.; Mattu, M.; Carfí, A.; De Francesco, R.; Steinkühler, C.; Di Marco, S. Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8-substrate complex. EMBO Rep., 2007, 8(9), 879-884. [http://dx.doi.org/10.1038/sj.embor.7401047]. [PMID: 17721440].
[40]
Somoza, J.R.; Skene, R.J.; Katz, B.A.; Mol, C.; Ho, J.D.; Jennings, A.J.; Luong, C.; Arvai, A.; Buggy, J.J.; Chi, E.; Tang, J.; Sang, B.C.; Verner, E.; Wynands, R.; Leahy, E.M.; Dougan, D.R.; Snell, G.; Navre, M.; Knuth, M.W.; Swanson, R.V.; McRee, D.E.; Tari, L.W. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure, 2004, 12(7), 1325-1334. [http://dx.doi.org/10.1016/j.str.2004.04.012]. [PMID: 15242608].
[41]
Vannini, A.; Volpari, C.; Filocamo, G.; Casavola, E.C.; Brunetti, M.; Renzoni, D.; Chakravarty, P.; Paolini, C.; De Francesco, R.; Gallinari, P.; Steinkühler, C.; Di Marco, S. Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc. Natl. Acad. Sci. USA, 2004, 101(42), 15064-15069. [http://dx.doi.org/10.1073/ pnas.0404603101]. [PMID: 15477595].
[42]
Dowling, D.P.; Gattis, S.G.; Fierke, C.A.; Christianson, D.W. Structures of metal-substituted human histone deacetylase 8 provide mechanistic inferences on biological function. Biochemistry, 2010, 49(24), 5048-5056. [http://dx.doi.org/10.1021/bi1005046]. [PMID: 20545365].
[43]
Dowling, D.P.; Gantt, S.L.; Gattis, S.G.; Fierke, C.A.; Christianson, D.W. Structural studies of human histone deacetylase 8 and its site-specific variants complexed with substrate and inhibitors. Biochemistry, 2008, 47(51), 13554-13563. [http://dx.doi.org/10.1021/bi801610c]. [PMID: 19053282].
[44]
Schäfer, S.; Saunders, L.; Eliseeva, E.; Velena, A.; Jung, M.; Schwienhorst, A.; Strasser, A.; Dickmanns, A.; Ficner, R.; Schlimme, S.; Sippl, W.; Verdin, E.; Jung, M. Phenylalanine-containing hydroxamic acids as selective inhibitors of class IIb histone deacetylases (HDACs). Bioorg. Med. Chem., 2008, 16(4), 2011-2033. [http://dx.doi.org/10.1016/j.bmc.2007.10.092]. [PMID: 18054239].
[45]
Nielsen, T.K.; Hildmann, C.; Riester, D.; Wegener, D.; Schwienhorst, A.; Ficner, R. Complex structure of a bacterial class 2 histone deacetylase homologue with a trifluoromethylketone inhibitor. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2007, 63(Pt 4), 270-273. [http://dx.doi.org/10.1107/S1744309107012377]. [PMID: 17401192].
[46]
Nielsen, T.K.; Hildmann, C.; Dickmanns, A.; Schwienhorst, A.; Ficner, R. Crystal structure of a bacterial class 2 histone deacetylase homologue. J. Mol. Biol., 2005, 354(1), 107-120. [http://dx.doi.org/10.1016/j.jmb.2005.09.065]. [PMID: 16242151].
[47]
Micelli, C.; Rastelli, G. Histone deacetylases: Structural determinants of inhibitor selectivity. Drug Discov. Today, 2015, 20(6), 718-735. [http://dx.doi.org/10.1016/j.drudis.2015.01.007]. [PMID: 25687212].
[48]
Zhang, L.; Zhang, J.; Jiang, Q.; Zhang, L.; Song, W. Zinc binding groups for histone deacetylase inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 714-721. [http://dx.doi.org/10.1080/14756366.2017.1417274]. [PMID: 29616828].
[49]
Li, Y.; Woster, P.M. Discovery of a new class of histone deacetylase inhibitors with a novel zinc binding group. MedChemComm, 2015, 6(4), 613-618. [http://dx.doi.org/10.1039/C4MD00401A]. [PMID: 26005563].
[50]
Zhang, L.; Han, Y.; Jiang, Q.; Wang, C.; Chen, X.; Li, X.; Xu, F.; Jiang, Y.; Wang, Q.; Xu, W. Trend of histone deacetylase inhibitors in cancer therapy: isoform selectivity or multitargeted strategy. Med. Res. Rev., 2015, 35(1), 63-84. [http://dx.doi.org/10.1002/med.21320]. [PMID: 24782318].
[51]
Frey, R.R.; Wada, C.K.; Garland, R.B.; Curtin, M.L.; Michaelides, M.R.; Li, J.; Pease, L.J.; Glaser, K.B.; Marcotte, P.A.; Bouska, J.J.; Murphy, S.S.; Davidsen, S.K. Trifluoromethyl ketones as inhibitors of histone deacetylase. Bioorg. Med. Chem. Lett., 2002, 12(23), 3443-3447. [http://dx.doi.org/10.1016/S0960-894X(02)00754-0]. [PMID: 12419380].
[52]
Reiter, L.A.; Robinson, R.P.; McClure, K.F.; Jones, C.S.; Reese, M.R.; Mitchell, P.G.; Otterness, I.G.; Bliven, M.L.; Liras, J.; Cortina, S.R.; Donahue, K.M.; Eskra, J.D.; Griffiths, R.J.; Lame, M.E.; Lopez-Anaya, A.; Martinelli, G.J.; McGahee, S.M.; Yocum, S.A.; Lopresti-Morrow, L.L.; Tobiassen, L.M.; Vaughn-Bowser, M.L. Pyran-containing sulfonamide hydroxamic acids: potent MMP inhibitors that spare MMP-1. Bioorg. Med. Chem. Lett., 2004, 14(13), 3389-3395. [http://dx.doi.org/10.1016/j.bmcl.2004.04.083]. [PMID: 15177439].
[53]
Farkas, E.; Katz, Y.; Bhusare, S.; Reich, R.; Röschenthaler, G.V.; Königsmann, M.; Breuer, E. Carbamoylphosphonate-based matrix metalloproteinase inhibitor metal complexes: solution studies and stability constants. Towards a zinc-selective binding group. J. Biol. Inorg. Chem., 2004, 9(3), 307-315. [http://dx.doi.org/10.1007/ s00775-004-0524-5]. [PMID: 14762707].
[54]
O’Brien, E.C.; Farkas, E.; Gil, M.J.; Fitzgerald, D.; Castineras, A.; Nolan, K.B. Metal complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid and benzohydroxamic acid. Crystal and molecular structure of [Cu(phen)2(Cl)]Cl x H2Sha, a model for a peroxidase-inhibitor complex. J. Inorg. Biochem., 2000, 79(1-4), 47-51. [http://dx.doi.org/10.1016/S0162-0134(99)00245-7]. [PMID: 10830846].
[55]
Clawson, G.A. Histone deacetylase inhibitors as cancer therapeutics. Ann. Transl. Med., 2016, 4(15), 287. [http://dx.doi.org/ 10.21037/atm.2016.07.22]. [PMID: 27568481].
[56]
Suzuki, T.; Miyata, N. Non-hydroxamate histone deacetylase inhibitors. Curr. Med. Chem., 2005, 12(24), 2867-2880. [http://dx.doi.org/10.2174/092986705774454706]. [PMID: 16305476].
[57]
Tsuji, N.; Kobayashi, M.; Nagashima, K.; Wakisaka, Y.; Koizumi, K. A new antifungal antibiotic, trichostatin. J. Antibiot. (Tokyo), 1976, 29(1), 1-6. [http://dx.doi.org/10.7164/antibiotics.29.1]. [PMID: 931784].
[58]
Yoshida, M.; Kijima, M.; Akita, M.; Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem., 1990, 265(28), 17174-17179. [PMID: 2211619].
[59]
Bradner, J.E.; West, N.; Grachan, M.L.; Greenberg, E.F.; Haggarty, S.J.; Warnow, T.; Mazitschek, R. Chemical phylogenetics of histone deacetylases. Nat. Chem. Biol., 2010, 6(3), 238-243. [http://dx.doi.org/10.1038/nchembio.313]. [PMID: 20139990].
[60]
Paris, M.; Porcelloni, M.; Binaschi, M.; Fattori, D. Histone deacetylase inhibitors: From bench to clinic. J. Med. Chem., 2008, 51(6), 1505-1529. [http://dx.doi.org/10.1021/jm7011408]. [PMID: 18247554].
[61]
Tam, G.W.; van de Lagemaat, L.N.; Redon, R.; Strathdee, K.E.; Croning, M.D.; Malloy, M.P.; Muir, W.J.; Pickard, B.S.; Deary, I.J.; Blackwood, D.H.; Carter, N.P.; Grant, S.G. Confirmed rare copy number variants implicate novel genes in schizophrenia. Biochem. Soc. Trans., 2010, 38(2), 445-451. [http://dx.doi.org/ 10.1042/BST0380445]. [PMID: 20298200].
[62]
Khan, N.; Jeffers, M.; Kumar, S.; Hackett, C.; Boldog, F.; Khramtsov, N.; Qian, X.; Mills, E.; Berghs, S.C.; Carey, N.; Finn, P.W.; Collins, L.S.; Tumber, A.; Ritchie, J.W.; Jensen, P.B.; Lichenstein, H.S.; Sehested, M. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J., 2008, 409(2), 581-589. [http://dx.doi.org/ 10.1042/BJ20070779]. [PMID: 17868033].
[63]
Richon, V.M.; Emiliani, S.; Verdin, E.; Webb, Y.; Breslow, R.; Rifkind, R.A.; Marks, P.A. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl. Acad. Sci. USA, 1998, 95(6), 3003-3007. [http://dx.doi.org/ 10.1073/pnas.95.6.3003]. [PMID: 9501205].
[64]
Bian, J.; Zhang, L.; Han, Y.; Wang, C.; Zhang, L. Histone deacetylase inhibitors: potent anti-leukemic agents. Curr. Med. Chem., 2015, 22(17), 2065-2074. [http://dx.doi.org/ 10.2174/0929867322666150416094720]. [PMID: 25876840].
[65]
Giannini, G.; Cabri, W.; Fattorusso, C.; Rodriquez, M. Histone deacetylase inhibitors in the treatment of cancer: Cverview and perspectives. Future Med. Chem., 2012, 4(11), 1439-1460. [http://dx.doi.org/10.4155/fmc.12.80]. [PMID: 22857533].
[66]
Benedetti, R.; Conte, M.; Altucci, L. Targeting histone deacetylases in diseases: Where are we? Antioxid. Redox Signal., 2015, 23(1), 99-126. [http://dx.doi.org/10.1089/ars.2013.5776]. [PMID: 24382114].
[67]
Kazantsev, A.G.; Thompson, L.M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat. Rev. Drug Discov., 2008, 7(10), 854-868. [http://dx.doi.org/ 10.1038/nrd2681]. [PMID: 18827828].
[68]
Santo, L.; Hideshima, T.; Kung, A.L.; Tseng, J.C.; Tamang, D.; Yang, M.; Jarpe, M.; van Duzer, J.H.; Mazitschek, R.; Ogier, W.C.; Cirstea, D.; Rodig, S.; Eda, H.; Scullen, T.; Canavese, M.; Bradner, J.; Anderson, K.C.; Jones, S.S.; Raje, N. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood, 2012, 119(11), 2579-2589. [http://dx.doi.org/10.1182/blood-2011-10-387365]. [PMID: 22262760].
[69]
Novotny-Diermayr, V.; Sangthongpitag, K.; Hu, C.Y.; Wu, X.; Sausgruber, N.; Yeo, P.; Greicius, G.; Pettersson, S.; Liang, A.L.; Loh, Y.K.; Bonday, Z.; Goh, K.C.; Hentze, H.; Hart, S.; Wang, H.; Ethirajulu, K.; Wood, J.M. SB939, a novel potent and orally active histone deacetylase inhibitor with high tumor exposure and efficacy in mouse models of colorectal cancer. Mol. Cancer Ther., 2010, 9(3), 642-652. [http://dx.doi.org/10.1158/1535-7163.MCT-09-0689]. [PMID: 20197387].
[70]
Zorzi, A.P.; Bernstein, M.; Samson, Y.; Wall, D.A.; Desai, S.; Nicksy, D.; Wainman, N.; Eisenhauer, E.; Baruchel, S. A phase I study of histone deacetylase inhibitor, pracinostat (SB939), in pediatric patients with refractory solid tumors: IND203 a trial of the NCIC IND program/C17 pediatric phase I consortium. Pediatr. Blood Cancer, 2013, 60(11), 1868-1874. [http://dx.doi.org/ 10.1002/pbc.24694]. [PMID: 23893953].
[71]
Mandl-Weber, S.; Meinel, F.G.; Jankowsky, R.; Oduncu, F.; Schmidmaier, R.; Baumann, P. The novel inhibitor of histone deacetylase resminostat (RAS2410) inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells. Br. J. Haematol., 2010, 149(4), 518-528. [http://dx.doi.org/10.1111/j.1365-2141.2010.08124.x]. [PMID: 20201941].
[72]
Tambo, Y.; Hosomi, Y.; Sakai, H.; Nogami, N.; Atagi, S.; Sasaki, Y.; Kato, T.; Takahashi, T.; Seto, T.; Maemondo, M.; Nokihara, H.; Koyama, R.; Nakagawa, K.; Kawaguchi, T.; Okamura, Y.; Nakamura, O.; Nishio, M.; Tamura, T. Phase I/II study of docetaxel combined with resminostat, an oral hydroxamic acid HDAC inhibitor, for advanced non-small cell lung cancer in patients previously treated with platinum-based chemotherapy. Invest. New Drugs, 2017, 35(2), 217-226. [http://dx.doi.org/10.1007/s10637-017-0435-2]. [PMID: 28138828].
[73]
Buggy, J.J.; Cao, Z.A.; Bass, K.E.; Verner, E.; Balasubramanian, S.; Liu, L.; Schultz, B.E.; Young, P.R.; Dalrymple, S.A. CRA-024781: A novel synthetic inhibitor of histone deacetylase enzymes with antitumor activity in vitro and in vivo. Mol. Cancer Ther., 2006, 5(5), 1309-1317. [http://dx.doi.org/10.1158/1535-7163.MCT-05-0442]. [PMID: 16731764].
[74]
Child, F.; Ortiz-Romero, P.L.; Alvarez, R.; Bagot, M.; Stadler, R.; Weichenthal, M.; Alves, R.; Quaglino, P.; Beylot-Barry, M.; Cowan, R.; Geskin, L.J.; Pérez-Ferriols, A.; Hellemans, P.; Elsayed, Y.; Phelps, C.; Forslund, A.; Kamida, M.; Zinzani, P.L. Phase II multicentre trial of oral quisinostat, a histone deacetylase inhibitor, in patients with previously treated stage IB-IVA mycosis fungoides/Sézary syndrome. Br. J. Dermatol., 2016, 175(1), 80-88. [http://dx.doi.org/10.1111/bjd.14427]. [PMID: 26836950].
[75]
Arts, J.; King, P.; Mariën, A.; Floren, W.; Beliën, A.; Janssen, L.; Pilatte, I.; Roux, B.; Decrane, L.; Gilissen, R.; Hickson, I.; Vreys, V.; Cox, E.; Bol, K.; Talloen, W.; Goris, I.; Andries, L.; Du Jardin, M.; Janicot, M.; Page, M.; van Emelen, K.; Angibaud, P. JNJ-26481585, A novel “second-generation” oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity. Clin. Cancer Res., 2009, 15(22), 6841-6851. [http://dx.doi.org/ 10.1158/1078-0432.CCR-09-0547]. [PMID: 19861438].
[76]
Kouraklis, G.; Theocharis, S. Histone deacetylase inhibitors: a novel target of anticancer therapy.(review). Oncol. Rep., 2006, 15(2), 489-494. [PMID: 16391874].
[77]
Moffat, D.; Patel, S.; Day, F.; Belfield, A.; Donald, A.; Rowlands, M.; Wibawa, J.; Brotherton, D.; Stimson, L.; Clark, V.; Owen, J.; Bawden, L.; Box, G.; Bone, E.; Mortenson, P.; Hardcastle, A.; van Meurs, S.; Eccles, S.; Raynaud, F.; Aherne, W. Discovery of 2-(6-[(6-fluoroquinolin-2-yl) methyl] amino bicyclo [3.1.0] hex-3-yl)-Nhydroxypyrimidine-5-carboxamide (CHR-3996), A class I selective orally active histone deacetylase inhibitor. J. Med. Chem., 2010, 53, 8663-8678. [http://dx.doi.org/10.1021/jm101177s]. [PMID: 21080647].
[78]
Banerji, U.; van Doorn, L.; Papadatos-Pastos, D.; Kristeleit, R.; Debnam, P.; Tall, M.; Stewart, A.; Raynaud, F.; Garrett, M.D.; Toal, M.; Hooftman, L.; De Bono, J.S.; Verweij, J.; Eskens, F.A. A phase I pharmacokinetic and pharmacodynamic study of CHR-3996, an oral class I selective histone deacetylase inhibitor in refractory solid tumors. Clin. Cancer Res., 2012, 18(9), 2687-2694. [http://dx.doi.org/10.1158/1078-0432.CCR-11-3165]. [PMID: 22553374].
[79]
Ossenkoppele, G.J.; Lowenberg, B.; Zachee, P.; Vey, N.; Breems, D.; Van de Loosdrecht, A.A.; Davidson, A.H.; Wells, G.; Needham, L.; Bawden, L.; Toal, M.; Hooftman, L.; Debnam, P.M. A phase I first-in-human study with tefinostat - a monocyte/macrophage targeted histone deacetylase inhibitor - in patients with advanced haematological malignancies. Br. J. Haematol., 2013, 162(2), 191-201. [http://dx.doi.org/10.1111/bjh.12359]. [PMID: 23647373].
[80]
Jacob, A.; Oblinger, J.; Bush, M.L.; Brendel, V.; Santarelli, G.; Chaudhury, A.R.; Kulp, S.; La Perle, K.M.; Chen, C.S.; Chang, L.S.; Welling, D.B. Preclinical validation of AR42, a novel histone deacetylase inhibitor, as treatment for vestibular schwannomas. Laryngoscope, 2012, 122(1), 174-189. [http://dx.doi.org/10.1002/lary.22392]. [PMID: 22109824].
[81]
Pili, R.; Salumbides, B.; Zhao, M.; Altiok, S.; Qian, D.; Zwiebel, J.; Carducci, M.A.; Rudek, M.A. Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br. J. Cancer, 2012, 106(1), 77-84. [http://dx.doi.org/10.1038/bjc.2011.527]. [PMID: 22134508].
[82]
Galloway, T.J.; Wirth, L.J.; Colevas, A.D.; Gilbert, J.; Bauman, J.E.; Saba, N.F.; Raben, D.; Mehra, R.; Ma, A.W.; Atoyan, R.; Wang, J.; Burtness, B.; Jimeno, A. A phase I study of CUDC-101, a multitarget inhibitor of HDACs, EGFR, and HER2, in combination with chemoradiation in patients with head and neck squamous cell carcinoma. Clin. Cancer Res., 2015, 21(7), 1566-1573. [http://dx.doi.org/10.1158/1078-0432.CCR-14-2820]. [PMID: 25573383].
[83]
Mottamal, M.; Zheng, S.; Huang, T.L.; Wang, G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules, 2015, 20(3), 3898-3941. [http://dx.doi.org/10.3390/molecules20033898]. [PMID: 25738536].
[84]
Fleming, C.L.; Ashton, T.D.; Gaur, V.; McGee, S.L.; Pfeffer, F.M. Improved synthesis and structural reassignment of MC1568: A class IIa selective HDAC inhibitor. J. Med. Chem., 2014, 57(3), 1132-1135. [http://dx.doi.org/10.1021/jm401945k]. [PMID: 24450497].
[85]
Lee, H.Y.; Tsai, A.C.; Chen, M.C.; Shen, P.J.; Cheng, Y.C.; Kuo, C.C.; Pan, S.L.; Liu, Y.M.; Liu, J.F.; Yeh, T.K.; Wang, J.C.; Chang, C.Y.; Chang, J.Y.; Liou, J.P. Azaindolylsulfonamides, with a more selective inhibitory effect on histone deacetylase 6 activity, exhibit antitumor activity in colorectal cancer HCT116 cells. J. Med. Chem., 2014, 57(10), 4009-4022. [http://dx.doi.org/ 10.1021/jm401899x]. [PMID: 24766560].
[86]
Di Pompo, G.; Salerno, M.; Rotili, D.; Valente, S.; Zwergel, C.; Avnet, S.; Lattanzi, G.; Baldini, N.; Mai, A. Novel histone deacetylase inhibitors induce growth arrest, apoptosis, and differentiation in sarcoma cancer stem cells. J. Med. Chem., 2015, 58(9), 4073-4079. [http://dx.doi.org/10.1021/acs.jmedchem.5b00126]. [PMID: 25905694].
[87]
Yang, F.; Zhang, T.; Wu, H.; Yang, Y.; Liu, N.; Chen, A.; Li, Q.; Li, J.; Qin, L.; Jiang, B.; Wang, X.; Pang, X.; Yi, Z.; Liu, M.; Chen, Y. Design and optimization of novel hydroxamate-based histone deacetylase inhibitors of Bis-substituted aromatic amides bearing potent activities against tumor growth and metastasis. J. Med. Chem., 2014, 57(22), 9357-9369. [http://dx.doi.org/ 10.1021/jm5012148]. [PMID: 25360834].
[88]
Abeywickrama, C.; Bradner, J.E.; Ponnala, S. Dana-farber cancer institute. selective inhibitors for histone deacetylase 6 and method thereof US, 20150197497, August 16 2015.
[89]
Qin, H-T.; Li, H-Q.; Liu, F. Trustees of boston university. selective histone deacetylase 8 inhibitors US, 20150352079, December 10 2015.
[90]
Dominguez, C.; Muñoz-Sanjuán, I.; Maillard, M.; Raphy, G.; Haughan, A.F.; Luckhurst, C.A.; Jarvis, R.E.; Bürli, R.W.; Breccia, P.; Wishart, G.; Hughes, S.J.; Allen, D.R.; Penrose, S.D. CHDI Foundation Inc.Histone deacetylase inhibitors and compositions and methods of use thereof US, 20160031863, February 4 2016.
[91]
Dominguez, C.; Muñoz-Sanjuán, I.; Maillard, M.; Raphy, G.; Haughan, A.F.; Luckhurst, C.A.; Jarvis, R.E.; Bürli, R.W.; Wishart, G.; Hughes, S.J.; Allen, D.R.; Penrose, S.D. Breccia, P. CHDI Foundation Inc. Histone deacetylase inhibitors and compositions and methods of use thereof US, 20160039745, February 11 2016.
[92]
Chen, Y.; Wang, X.; Xiang, W.; He, L.; Tang, M.; Wang, F.; Wang, T.; Yang, Z.; Yi, Y.; Wang, H.; Niu, T.; Zheng, L.; Lei, L.; Li, X.; Song, H.; Chen, L. Development of purine-based hydroxamic acid derivatives: potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities. J. Med. Chem., 2016, 59(11), 5488-5504. [http://dx.doi.org/10.1021/ acs.jmedchem.6b00579]. [PMID: 27186676].
[93]
Chou, C.J.; Herman, D.; Gottesfeld, J.M. Pimelic diphenylamide 106 is a slow, tight-binding inhibitor of class I histone deacetylases. J. Biol. Chem., 2008, 283(51), 35402-35409. [http://dx.doi.org/ 10.1074/jbc.M807045200]. [PMID: 18953021].
[94]
Khan, N.; Jeffers, M.; Kumar, S.; Hackett, C.; Boldog, F.; Khramtsov, N.; Qian, X.; Mills, E.; Berghs, S.C.; Carey, N.; Finn, P.W.; Collins, L.S.; Tumber, A.; Ritchie, J.W.; Jensen, P.B.; Lichenstein, H.S.; Sehested, M. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J., 2008, 409(2), 581-589. [http://dx.doi.org/ 10.1042/BJ20070779]. [PMID: 17868033].
[95]
Wagner, F.F.; Weïwer, M.; Steinbacher, S.; Schomburg, A.; Reinemer, P.; Gale, J.P.; Campbell, A.J.; Fisher, S.L.; Zhao, W.N.; Reis, S.A.; Hennig, K.M.; Thomas, M.; Müller, P.; Jefson, M.R.; Fass, D.M.; Haggarty, S.J.; Zhang, Y.L.; Holson, E.B. Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors. Bioorg. Med. Chem., 2016, 24(18), 4008-4015. [http://dx.doi.org/10.1016/j.bmc.2016.06.040]. [PMID: 27377864].
[96]
Gojo, I.; Jiemjit, A.; Trepel, J.B.; Sparreboom, A.; Figg, W.D.; Rollins, S.; Tidwell, M.L.; Greer, J.; Chung, E.J.; Lee, M.J.; Gore, S.D.; Sausville, E.A.; Zwiebel, J.; Karp, J.E. Phase 1 and pharmacologic study of MS-275, A histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood, 2007, 109(7), 2781-2790. [PMID: 17179232].
[97]
Bonfils, C.; Kalita, A.; Dubay, M.; Siu, L.L.; Carducci, M.A.; Reid, G.; Martell, R.E.; Besterman, J.M.; Li, Z. Evaluation of the pharmacodynamic effects of MGCD0103 from preclinical models to human using a novel HDAC enzyme assay. Clin. Cancer Res., 2008, 14(11), 3441-3449. [http://dx.doi.org/10.1158/1078-0432.CCR-07-4427]. [PMID: 18519775].
[98]
Blum, K.A.; Advani, A.; Fernandez, L.; Van Der Jagt, R.; Brandwein, J.; Kambhampati, S.; Kassis, J.; Davis, M.; Bonfils, C.; Dubay, M.; Dumouchel, J.; Drouin, M.; Lucas, D.M.; Martell, R.E.; Byrd, J.C. Phase II study of the histone deacetylase inhibitor MGCD0103 in patients with previously treated chronic lymphocytic leukaemia. Br. J. Haematol., 2009, 147(4), 507-514. [http://dx.doi.org/10.1111/j.1365-2141.2009.07881.x]. [PMID: 19747365].
[99]
Garcia-Manero, G.; Assouline, S.; Cortes, J.; Estrov, Z.; Kantarjian, H.; Yang, H.; Newsome, W.M.; Miller, W.H., Jr; Rousseau, C.; Kalita, A.; Bonfils, C.; Dubay, M.; Patterson, T.A.; Li, Z.; Besterman, J.M.; Reid, G.; Laille, E.; Martell, R.E.; Minden, M. Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia. Blood, 2008, 112(4), 981-989. [http://dx.doi.org/10.1182/blood-2007-10-115873]. [PMID: 18495956].
[100]
Holson, E.; Wagner, F.F.; Haggarty, S.J.; Zhang, Y-L.; Lundh, M.; Wagner, B.; Lewis, M.C. The general hospital corporation d/b/a massachusetts general hospital. inhibitors of histone deacetylase US, 20150191427, August 9, 2015.
[101]
Harrington, P. 4-carboxy-benzylamino derivatives as histone deacetylase inhibitors US, 20130137690, May 30 2013.
[102]
Malvaez, M.; McQuown, S.C.; Rogge, G.A.; Astarabadi, M.; Jacques, V.; Carreiro, S.; Rusche, J.R.; Wood, M.A. HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proc. Natl. Acad. Sci. USA, 2013, 110(7), 2647-2652. [http://dx.doi.org/10.1073/pnas.1213364110]. [PMID: 23297220].
[103]
Grigg, R.E.; Inman, M.; Packham, G. Cancer research technology Ltd. N-(2-aminophenyl) benzamide derivatives as histone deacetylase inhibitors US, 20140135327, February 6, 2014.
[104]
Marson, C.M.; Matthews, C.J.; Atkinson, S.J.; Lamadema, N.; Thomas, N.S. Potent and selective inhibitors of histone deacetylase-3 containing chiral oxazoline capping groups and a N-(2-Aminophenyl)-benzamide binding unit. J. Med. Chem., 2015, 58(17), 6803-6818. [http://dx.doi.org/10.1021/ acs.jmedchem.5b00545]. [PMID: 26287310].
[105]
Pavlik, C.M.; Wong, C.Y.B.; Ononye, S.; Lopez, D.D.; Engene, N.; McPhail, K.L.; Gerwick, W.H.; Balunas, M.J. Santacruzamate A, a potent and selective histone deacetylase inhibitor from the Panamanian marine cyanobacterium cf. Symploca sp. J. Nat. Prod., 2013, 76(11), 2026-2033. [http://dx.doi.org/10.1021/np400198r]. [PMID: 24164245].
[106]
Balunas, M.J. PAVLIK, C.M.; Gerwick, W.H. University of connecticut. santacruzamate a composition and analogs and methods of use W0, 2014018913, January 30 2014.
[107]
Jacques, V.; Rusche, J.R.; Peet, N.P.; Singh, J. Repligen corporation. histone deacetylase inhibitor US, 20140051680, February 20 2014.
[108]
Jia, H.; Pallos, J.; Jacques, V.; Lau, A.; Tang, B.; Cooper, A.; Syed, A.; Purcell, J.; Chen, Y.; Sharma, S.; Sangrey, G.R.; Darnell, S.B.; Plasterer, H.; Sadri-Vakili, G.; Gottesfeld, J.M.; Thompson, L.M.; Rusche, J.R.; Marsh, J.L.; Thomas, E.A. Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiol. Dis., 2012, 46(2), 351-361. [http://dx.doi.org/10.1016/j.nbd.2012.01.016]. [PMID: 22590724].
[109]
Wong, J.C.; Tang, G.; Wu, X.; Liang, C.; Zhang, Z.; Guo, L.; Peng, Z.; Zhang, W.; Lin, X.; Wang, Z.; Mei, J.; Chen, J.; Pan, S.; Zhang, N.; Liu, Y.; Zhou, M.; Feng, L.; Zhao, W.; Li, S.; Zhang, C.; Zhang, M.; Rong, Y.; Jin, T.G.; Zhang, X.; Ren, S.; Ji, Y.; Zhao, R.; She, J.; Ren, Y.; Xu, C.; Chen, D.; Cai, J.; Shan, S.; Pan, D.; Ning, Z.; Lu, X.; Chen, T.; He, Y.; Chen, L. Pharmacokinetic optimization of class-selective histone deacetylase inhibitors and identification of associated candidate predictive biomarkers of hepatocellular carcinoma tumor response. J. Med. Chem., 2012, 55(20), 8903-8925. [http://dx.doi.org/10.1021/jm3011838]. [PMID: 23061376].
[110]
Valente, S.; Trisciuoglio, D.; De Luca, T.; Nebbioso, A.; Labella, D.; Lenoci, A.; Bigogno, C.; Dondio, G.; Miceli, M.; Brosch, G.; Del Bufalo, D.; Altucci, L.; Mai, A. 1,3,4-Oxadiazole-containing histone deacetylase inhibitors: anticancer activities in cancer cells. J. Med. Chem., 2014, 57(14), 6259-6265. [http://dx.doi.org/ 10.1021/jm500303u]. [PMID: 24972008].
[111]
Cole, K.E.; Dowling, D.P.; Boone, M.A.; Phillips, A.J.; Christianson, D.W. Structural basis of the antiproliferative activity of largazole, a depsipeptide inhibitor of the histone deacetylases. J. Am. Chem. Soc., 2011, 133(32), 12474-12477. [http://dx.doi.org/ 10.1021/ja205972n]. [PMID: 21790156].
[112]
Li, X.; Tu, Z.; Li, H.; Liu, C.; Li, Z.; Sun, Q.; Yao, Y.; Liu, J.; Jiang, S. Biological evaluation of new largazole analogues: alteration of macrocyclic scaffold with click chemistry. ACS Med. Chem. Lett., 2012, 4(1), 132-136. [http://dx.doi.org/10.1021/ml300371t]. [PMID: 24900575].
[113]
Chen, F.; Chai, H.; Su, M.B.; Zhang, Y.M.; Li, J.; Xie, X.; Nan, F.J. Potent and orally efficacious bisthiazole-based histone deacetylase inhibitors. ACS Med. Chem. Lett., 2014, 5(6), 628-633. [http://dx.doi.org/10.1021/ml400470s]. [PMID: 24944733].
[114]
Gong, C.J.; Gao, A.H.; Zhang, Y.M.; Su, M.B.; Chen, F.; Sheng, L.; Zhou, Y.B.; Li, J.Y.; Li, J.; Nan, F.J. Design, synthesis and biological evaluation of bisthiazole-based trifluoromethyl ketone derivatives as potent HDAC inhibitors with improved cellular efficacy. Eur. J. Med. Chem., 2016, 112, 81-90. [http://dx.doi.org/ 10.1016/j.ejmech.2016.02.003]. [PMID: 26890114].
[115]
Suzuki, T.; Kouketsu, A.; Matsuura, A.; Kohara, A.; Ninomiya, S.; Kohda, K.; Miyata, N. Thiol-based SAHA analogues as potent histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(12), 3313-3317. [http://dx.doi.org/10.1016/j.bmcl.2004.03.063]. [PMID: 15149697].
[116]
Nishino, N.; Jose, B.; Okamura, S.; Ebisusaki, S.; Kato, T.; Sumida, Y.; Yoshida, M. Cyclic tetrapeptides bearing a sulfhydryl group potently inhibit histone deacetylases. Org. Lett., 2003, 5(26), 5079-5082. [http://dx.doi.org/10.1021/ol036098e]. [PMID: 14682769].
[117]
Wen, J.; Niu, Q.; Liu, J.; Bao, Y.; Yang, J.; Luan, S.; Fan, Y.; Liu, D.; Zhao, L. Novel thiol-based histone deacetylase inhibitors bearing 3-phenyl-1H-pyrazole-5-carboxamide scaffold as surface recognition motif: Design, synthesis and SAR study. Bioorg. Med. Chem. Lett., 2016, 26(2), 375-379. [http://dx.doi.org/ 10.1016/j.bmcl.2015.12.007]. [PMID: 26706171].
[118]
Suzuki, T.; Kouketsu, A.; Itoh, Y.; Hisakawa, S.; Maeda, S.; Yoshida, M.; Nakagawa, H.; Miyata, N. Highly potent and selective histone deacetylase 6 inhibitors designed based on a small-molecular substrate. J. Med. Chem., 2006, 49(16), 4809-4812. [http://dx.doi.org/10.1021/jm060554y]. [PMID: 16884291].
[119]
Giannini, G.; Vesci, L.; Battistuzzi, G.; Vignola, D.; Milazzo, F.M.; Guglielmi, M.B.; Barbarino, M.; Santaniello, M.; Fantò, N.; Mor, M.; Rivara, S.; Pala, D.; Taddei, M.; Pisano, C.; Cabri, W. ST7612AA1, a thioacetate-ω(γ-lactam carboxamide) derivative selected from a novel generation of oral HDAC inhibitors. J. Med. Chem., 2014, 57(20), 8358-8377. [http://dx.doi.org/ 10.1021/jm5008209]. [PMID: 25233084].
[120]
Vesci, L.; Bernasconi, E.; Milazzo, F.M.; De Santis, R.; Gaudio, E.; Kwee, I.; Rinaldi, A.; Pace, S.; Carollo, V.; Giannini, G.; Bertoni, F. Preclinical antitumor activity of ST7612AA1: a new oral thiol-based histone deacetylase (HDAC) inhibitor. Oncotarget, 2015, 6(8), 5735-5748. [http://dx.doi.org/ 10.18632/oncotarget.3240]. [PMID: 25671299].
[121]
Battistuzzi, G.; Giannini, G. Synthesis of ST7612AA1, A novel oral HDAC inhibitor, via radical thioacetic acid addition. Curr. Bioact. Compd., 2016, 12(4), 282-288. [http://dx.doi.org/10.2174/ 1573407212666160504160556]. [PMID: 27917100].
[122]
Millard, C.J.; Watson, P.J.; Celardo, I.; Gordiyenko, Y.; Cowley, S.M.; Robinson, C.V.; Fairall, L.; Schwabe, J.W.R.; Class, I.; Class, I. HDACs share a common mechanism of regulation by inositol phosphates. Mol. Cell, 2013, 51(1), 57-67. [http://dx.doi.org/ 10.1016/j.molcel.2013.05.020]. [PMID: 23791785].
[123]
Watson, P.J.; Fairall, L.; Santos, G.M.; Schwabe, J.W. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature, 2012, 481(7381), 335-340. [http://dx.doi.org/10.1038/nature10728]. [PMID: 22230954].
[124]
Nielsen, T.K.; Hildmann, C.; Dickmanns, A.; Schwienhorst, A.; Ficner, R. Crystal structure of a bacterial class 2 histone deacetylase homologue. J. Mol. Biol., 2005, 354(1), 107-120. [http://dx.doi.org/10.1016/j.jmb.2005.09.065]. [PMID: 16242151].
[125]
Krauze, A.V.; Myrehaug, S.D.; Chang, M.G.; Holdford, D.J.; Smith, S.; Shih, J.; Tofilon, P.J.; Fine, H.A.; Camphausen, K. A phase 2 study of concurrent radiation therapy, temozolomide, and the histone deacetylase inhibitor valproic acid for patients with glioblastoma. Int. J. Radiat. Oncol. Biol. Phys., 2015, 92(5), 986-992. [http://dx.doi.org/10.1016/j.ijrobp.2015.04.038]. [PMID: 26194676].
[126]
Tassara, M.; Döhner, K.; Brossart, P.; Held, G.; Götze, K.; Horst, H.A.; Ringhoffer, M.; Köhne, C.H.; Kremers, S.; Raghavachar, A.; Wulf, G.; Kirchen, H.; Nachbaur, D.; Derigs, H.G.; Wattad, M.; Koller, E.; Brugger, W.; Matzdorff, A.; Greil, R.; Heil, G.; Paschka, P.; Gaidzik, V.I.; Göttlicher, M.; Döhner, H.; Schlenk, R.F. Valproic acid in combination with all-trans retinoic acid and intensive therapy for acute myeloid leukemia in older patients. Blood, 2014, 123(26), 4027-4036. [http://dx.doi.org/10.1182/blood-2013-12-546283]. [PMID: 24797300].
[127]
Aviram, A.; Zimrah, Y.; Shaklai, M.; Nudelman, A.; Rephaeli, A. Comparison between the effect of butyric acid and its prodrug pivaloyloxymethylbutyrate on histones hyperacetylation in an HL-60 leukemic cell line. Int. J. Cancer, 1994, 56(6), 906-909. [http://dx.doi.org/10.1002/ijc.2910560625]. [PMID: 8119779].
[128]
Kusaczuk, M.; Krętowski, R.; Bartoszewicz, M.; Cechowska-Pasko, M. Phenylbutyrate-a pan-HDAC inhibitor-suppresses proliferation of glioblastoma LN-229 cell line. Tumour Biol., 2016, 37(1), 931-942. [http://dx.doi.org/10.1007/s13277-015-3781-8]. [PMID: 26260271].
[129]
Reiter, L.A.; Robinson, R.P.; McClure, K.F.; Jones, C.S.; Reese, M.R.; Mitchell, P.G.; Otterness, I.G.; Bliven, M.L.; Liras, J.; Cortina, S.R.; Donahue, K.M.; Eskra, J.D.; Griffiths, R.J.; Lame, M.E.; Lopez-Anaya, A.; Martinelli, G.J.; McGahee, S.M.; Yocum, S.A.; Lopresti-Morrow, L.L.; Tobiassen, L.M.; Vaughn-Bowser, M.L. Pyran-containing sulfonamide hydroxamic acids: potent MMP inhibitors that spare MMP-1. Bioorg. Med. Chem. Lett., 2004, 14(13), 3389-3395. [http://dx.doi.org/10.1016/ j.bmcl.2004.04.083]. [PMID: 15177439].
[130]
Farkas, E.; Katz, Y.; Bhusare, S.; Reich, R.; Röschenthaler, G.V.; Königsmann, M.; Breuer, E. Carbamoylphosphonate-based matrix metalloproteinase inhibitor metal complexes: Solution studies and stability constants. Towards a zinc-selective binding group. J. Biol. Inorg. Chem., 2004, 9(3), 307-315. [http://dx.doi.org/10.1007/s 00775-004-0524-5]. [PMID: 14762707].
[131]
O’Brien, E.C.; Farkas, E.; Gil, M.J.; Fitzgerald, D.; Castineras, A.; Nolan, K.B. Metal complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid and benzohydroxamic acid. Crystal and molecular structure of [Cu(phen)2(Cl)]Cl x H2Sha, a model for a peroxidase-inhibitor complex. J. Inorg. Biochem., 2000, 79(1-4), 47-51. [http://dx.doi.org/10.1016/S0162-0134(99)00245-7]. [PMID: 10830846].
[132]
Suzuki, T.; Miyata, N. Non-hydroxamate histone deacetylase inhibitors. Curr. Med. Chem., 2005, 12(24), 2867-2880. [http://dx.doi.org/10.2174/092986705774454706]. [PMID: 16305476].
[133]
Zhang, L.; Zhang, J.; Jiang, Q.; Zhang, L.; Song, W. Zinc binding groups for histone deacetylase inhibitors. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 714-721. [http://dx.doi.org/ 10.1080/14756366.2017.1417274]. [PMID: 29616828].
[134]
Roche, J.; Bertrand, P. Inside HDACs with more selective HDAC inhibitors. Eur. J. Med. Chem., 2016, 121, 451-483. [http://dx.doi.org/10.1016/j.ejmech.2016.05.047]. [PMID: 27318122].
[135]
Hu, E.; Dul, E.; Sung, C.M.; Chen, Z.; Kirkpatrick, R.; Zhang, G.F.; Johanson, K.; Liu, R.; Lago, A.; Hofmann, G.; Macarron, R.; de los Frailes, M.; Perez, P.; Krawiec, J.; Winkler, J.; Jaye, M. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J. Pharmacol. Exp. Ther., 2003, 307(2), 720-728. [http://dx.doi.org/10.1124/jpet.103.055541]. [PMID: 12975486].
[136]
Kleinschek, A.; Meyners, C.; Digiorgio, E.; Brancolini, C.; Meyer-Almes, F.J. Potent and selective non-hydroxamate histone deacetylase 8 inhibitors. ChemMedChem, 2016, 11(23), 2598-2606. [http://dx.doi.org/10.1002/cmdc.201600528]. [PMID: 27860422].
[137]
Ononye, S.N.; VanHeyst, M.D.; Oblak, E.Z.; Zhou, W.; Ammar, M.; Anderson, A.C.; Wright, D.L. Tropolones as lead-like natural products: the development of potent and selective histone deacetylase inhibitors. ACS Med. Chem. Lett., 2013, 4(8), 757-761. [http://dx.doi.org/10.1021/ml400158k]. [PMID: 24900743].
[138]
Patil, V.; Sodji, Q.H.; Kornacki, J.R.; Mrksich, M.; Oyelere, A.K. 3-Hydroxypyridin-2-thione as novel zinc binding group for selective histone deacetylase inhibition. J. Med. Chem., 2013, 56(9), 3492-3506. [http://dx.doi.org/10.1021/jm301769u]. [PMID: 23547652].
[139]
Attenni, B.; Ontoria, J.M.; Cruz, J.C.; Rowley, M.; Schultz-Fademrecht, C.; Steinkühler, C.; Jones, P. Histone deacetylase inhibitors with a primary amide zinc binding group display antitumor activity in xenograft model. Bioorg. Med. Chem. Lett., 2009, 19(11), 3081-3084. [http://dx.doi.org/10.1016/j.bmcl.2009.04.011]. [PMID: 19410459].
[140]
Valente, S.; Conte, M.; Tardugno, M.; Nebbioso, A.; Tinari, G.; Altucci, L.; Mai, A. Developing novel non-hydroxamate histone deacetylase inhibitors: the chelidamic warhead. MedChemComm, 2012, 3, 298-304. [http://dx.doi.org/10.1039/C1MD00249J].
[141]
Wang, Y.; Stowe, R.L.; Pinello, C.E.; Tian, G.; Madoux, F.; Li, D.; Zhao, L.Y.; Li, J.L.; Wang, Y.; Wang, Y.; Ma, H.; Hodder, P.; Roush, W.R.; Liao, D. Identification of histone deacetylase inhibitors with benzoylhydrazide scaffold that selectively inhibit class I histone deacetylases. Chem. Biol., 2015, 22(2), 273-284. [http://dx.doi.org/10.1016/j.chembiol.2014.12.015]. [PMID: 25699604].
[142]
McClure, J.J.; Zhang, C.; Inks, E.S.; Peterson, Y.K.; Li, J.; Chou, C.J. Development of allosteric hydrazide-containing class I histone deacetylase inhibitors for use in acute myeloid leukemia. J. Med. Chem., 2016, 59(21), 9942-9959. [http://dx.doi.org/ 10.1021/acs.jmedchem.6b01385]. [PMID: 27754681].
[143]
Goracci, L.; Deschamps, N.; Randazzo, G.M.; Petit, C.; Dos Santos Passos, C.; Carrupt, P.A.; Simões-Pires, C.; Nurisso, A. A rational approach for the identification of non-hydroxamate hdac6-selective inhibitors. Sci. Rep., 2016, 6, 29086. [http://dx.doi.org/ 10.1038/srep29086]. [PMID: 27404291].
[144]
Lobera, M.; Madauss, K.P.; Pohlhaus, D.T.; Wright, Q.G.; Trocha, M.; Schmidt, D.R.; Baloglu, E.; Trump, R.P.; Head, M.S.; Hofmann, G.A.; Murray-Thompson, M.; Schwartz, B.; Chakravorty, S.; Wu, Z.; Mander, P.K.; Kruidenier, L.; Reid, R.A.; Burkhart, W.; Turunen, B.J.; Rong, J.X.; Wagner, C.; Moyer, M.B.; Wells, C.; Hong, X.; Moore, J.T.; Williams, J.D.; Soler, D.; Ghosh, S.; Nolan, M.A. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol., 2013, 9(5), 319-325. [http://dx.doi.org/10.1038/nchembio.1223]. [PMID: 23524983].
[145]
Hou, X.; Du, J.; Liu, R.; Zhou, Y.; Li, M.; Xu, W.; Fang, H. Enhancing the sensitivity of pharmacophore-based virtual screening by incorporating customized ZBG features: A case study using histone deacetylase 8. J. Chem. Inf. Model., 2015, 55(4), 861-871. [http://dx.doi.org/10.1021/ci500762z]. [PMID: 25757142].
[146]
Gong, C.J.; Gao, A.H.; Zhang, Y.M.; Su, M.B.; Chen, F.; Sheng, L.; Zhou, Y.B.; Li, J.Y.; Li, J.; Nan, F.J. Design, synthesis and biological evaluation of bisthiazole-based trifluoromethyl ketone derivatives as potent HDAC inhibitors with improved cellular efficacy. Eur. J. Med. Chem., 2016, 112, 81-90. [http://dx.doi.org/ 10.1016/j.ejmech.2016.02.003]. [PMID: 26890114].
[147]
Li, Y.; Woster, P.M. Discovery of a new class of histone deacetylase inhibitors with a novel zinc binding group. MedChemComm, 2015, 6(4), 613-618. [http://dx.doi.org/10.1039/C4MD00401A]. [PMID: 26005563].
[148]
Kemp, M.M.; Wang, Q.; Fuller, J.H.; West, N.; Martinez, N.M.; Morse, E.M.; Weïwer, M.; Schreiber, S.L.; Bradner, J.E.; Koehler, A.N. A novel HDAC inhibitor with a hydroxy-pyrimidine scaffold. Bioorg. Med. Chem. Lett., 2011, 21(14), 4164-4169. [http://dx.doi.org/10.1016/j.bmcl.2011.05.098]. [PMID: 21696956].
[149]
Zhou, J.; Li, M.; Chen, N.; Wang, S.; Luo, H.B.; Zhang, Y.; Wu, R. Computational design of a time-dependent histone deacetylase 2 selective inhibitor. ACS Chem. Biol., 2015, 10(3), 687-692. [http://dx.doi.org/10.1021/cb500767c]. [PMID: 25546141].
[150]
Boskovic, Z.V.; Kemp, M.M.; Freedy, A.M.; Viswanathan, V.S.; Pop, M.S.; Fuller, J.H.; Martinez, N.M.; Figueroa Lazú, S.O.; Hong, J.A.; Lewis, T.A.; Calarese, D.; Love, J.D.; Vetere, A.; Almo, S.C.; Schreiber, S.L.; Koehler, A.N. Figueroa, Lazú, S.O.; Hong, J.A.; Lewis, T.A.; Calarese, D.; Love, J.D.; Vetere, A.; Almo, S.C.; Schreiber, S.L.; Koehler, A.N. Inhibition of zinc-dependent histone deacetylases with a chemically triggered electrophile. ACS Chem. Biol., 2016, 11(7), 1844-1851. [http://dx.doi.org/10.1021/acschembio.6b00012]. [PMID: 27064299].
[151]
Orlikova, B.; Schnekenburger, M.; Zloh, M.; Golais, F.; Diederich, M.; Tasdemir, D. Natural chalcones as dual inhibitors of HDACs and NF-κB. Oncol. Rep., 2012, 28(3), 797-805. [http://dx.doi.org/10.3892/or.2012.1870]. [PMID: 22710558].
[152]
Berger, A.; Venturelli, S.; Kallnischkies, M.; Böcker, A.; Busch, C.; Weiland, T.; Noor, S.; Leischner, C.; Weiss, T.S.; Lauer, U.M.; Bischoff, S.C.; Bitzer, M. Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J. Nutr. Biochem., 2013, 24(6), 977-985. [http://dx.doi.org/ 10.1016/j.jnutbio.2012.07.001]. [PMID: 23159065].
[153]
Senawong, T.; Misuna, S.; Khaopha, S.; Nuchadomrong, S.; Sawatsitang, P.; Phaosiri, C.; Surapaitoon, A.; Sripa, B. Histone deacetylase (HDAC) inhibitory and antiproliferative activities of phenolic-rich extracts derived from the rhizome of Hydnophytum formicarum Jack.: sinapinic acid acts as HDAC inhibitor. BMC Complement. Altern. Med., 2013, 13, 232. [http://dx.doi.org/10.1186/1472-6882-13-232]. [PMID: 24053181].
[154]
Venturelli, S.; Berger, A.; Böcker, A.; Busch, C.; Weiland, T.; Noor, S.; Leischner, C.; Schleicher, S.; Mayer, M.; Weiss, T.S.; Bischoff, S.C.; Lauer, U.M.; Bitzer, M. Resveratrol as a pan-HDAC inhibitor alters the acetylation status of histone [corrected] proteins in human-derived hepatoblastoma cells. PLoS One, 2013, 8(8), e73097. [http://dx.doi.org/10.1371/journal.pone.0073097]. [PMID: 24023672].
[155]
McKnight, G.S.; Hager, L.; Palmiter, R.D. Butyrate and related inhibitors of histone deacetylation block the induction of egg white genes by steroid hormones. Cell, 1980, 22(2 Pt 2), 469-477. [http://dx.doi.org/10.1016/0092-8674(80)90357-8]. [PMID: 7448870].
[156]
Losson, H.; Schnekenburger, M.; Dicato, M.; Diederich, M. Natural compound histone deacetylase inhibitors (hdaci): synergy with inflammatory signaling pathway modulators and clinical applications in cancer. Molecules, 2016, 21(11), E1608. [http://dx.doi.org/10.3390/molecules21111608]. [PMID: 27886118].
[157]
Ryu, H.W.; Lee, D.H.; Shin, D.H.; Kim, S.H.; Kwon, S.H. Aceroside VIII is a new natural selective HDAC6 inhibitor that synergistically enhances the anticancer activity of HDAC inhibitor in HT29 cells. Planta Med., 2015, 81(3), 222-227. [http://dx.doi.org/10.1055/s-0034-1396149]. [PMID: 25590368].
[158]
Jones, P.; Altamura, S.; Chakravarty, P.K.; Cecchetti, O.; De Francesco, R.; Gallinari, P.; Ingenito, R.; Meinke, P.T.; Petrocchi, A.; Rowley, M.; Scarpelli, R.; Serafini, S.; Steinkühler, C. A series of novel, potent, and selective histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(23), 5948-5952. [http://dx.doi.org/10.1016/j.bmcl.2006.09.002]. [PMID: 16987657].
[159]
Maulucci, N.; Chini, M.G.; Micco, S.D.; Izzo, I.; Cafaro, E.; Russo, A.; Gallinari, P.; Paolini, C.; Nardi, M.C.; Casapullo, A.; Riccio, R.; Bifulco, G.; Riccardis, F.D. Molecular insights into azumamide e histone deacetylases inhibitory activity. J. Am. Chem. Soc., 2007, 129(10), 3007-3012. [http://dx.doi.org/10.1021/ja0686256]. [PMID: 17311384].
[160]
De Schepper, S.; Bruwiere, H.; Verhulst, T.; Steller, U.; Andries, L.; Wouters, W.; Janicot, M.; Arts, J.; Van Heusden, J. Inhibition of histone deacetylases by chlamydocin induces apoptosis and proteasome-mediated degradation of survivin. J. Pharmacol. Exp. Ther., 2003, 304(2), 881-888. [http://dx.doi.org/10.1124/jpet.102.042903]. [PMID: 12538846].
[161]
Itazaki, H.; Nagashima, K.; Sugita, K.; Yoshida, H.; Kawamura, Y.; Yasuda, Y.; Matsumoto, K.; Ishii, K.; Uotani, N.; Nakai, H.; Terui, A.; Yoshimatsu, S.; Ikenishi, Y.; Nakagawa, Y. Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J. Antibiot. (Tokyo), 1990, 43(12), 1524-1532. [http://dx.doi.org/10.7164/antibiotics.43.1524]. [PMID: 2276972].
[162]
Li, L.; Dai, H.J.; Ye, M.; Wang, S.L.; Xiao, X.J.; Zheng, J.; Chen, H.Y.; Luo, Y.H.; Liu, J. Lycorine induces cell-cycle arrest in the G0/G1 phase in K562 cells via HDAC inhibition. Cancer Cell Int., 2012, 12(1), 49. [http://dx.doi.org/10.1186/1475-2867-12-49]. [PMID: 23176676].
[163]
Parolin, C.; Calonghi, N.; Presta, E.; Boga, C.; Caruana, P.; Naldi, M.; Andrisano, V.; Masotti, L.; Sartor, G. Mechanism and stereoselectivity of HDAC I inhibition by (R)-9-hydroxystearic acid in colon cancer. Biochim. Biophys. Acta, 2012, 1821(10), 1334-1340. [http://dx.doi.org/10.1016/j.bbalip.2012.07.007]. [PMID: 22814230].
[164]
Ghosh, A.K.; Kulkarni, S. Enantioselective total synthesis of (+)-largazole, A potent inhibitor of histone deacetylase. Org. Lett., 2008, 10(17), 3907-3909. [http://dx.doi.org/10.1021/ol8014623]. [PMID: 18662003].
[165]
Druesne, N.; Pagniez, A.; Mayeur, C.; Thomas, M.; Cherbuy, C.; Duée, P.H.; Martel, P.; Chaumontet, C. Diallyl disulfide (DADS) increases histone acetylation and p21(waf1/cip1) expression in human colon tumor cell lines. Carcinogenesis, 2004, 25(7), 1227-1236. [http://dx.doi.org/10.1093/carcin/bgh123]. [PMID: 14976134].
[166]
Lea, M.A.; Rasheed, M.; Randolph, V.M.; Khan, F.; Shareef, A.; desBordes, C. Induction of histone acetylation and inhibition of growth of mouse erythroleukemia cells by S-allylmercaptocysteine. Nutr. Cancer, 2002, 43(1), 90-102. [http://dx.doi.org/ 10.1207/S15327914NC431_11]. [PMID: 12467140].
[167]
Porter, N.J.; Christianson, D.W. Binding of the microbial cyclic tetrapeptide trapoxin A to the class I histone deacetylase HDAC8. ACS Chem. Biol., 2017, 12(9), 2281-2286. [http://dx.doi.org/ 10.1021/acschembio.7b00330]. [PMID: 28846375].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 3
Year: 2019
Page: [223 - 241]
Pages: 19
DOI: 10.2174/1568026619666190122144949
Price: $58

Article Metrics

PDF: 34
HTML: 4