Bromotryptophan and its Analogs in Peptides from Marine Animals

Author(s): Elsie C. Jimenez*.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 4 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Bromotryptophan is a nonstandard amino acid that is rarely incorporated in ribosomally synthesized and post-translationally modified peptides (ribosomal peptides). Bromotryptophan and its analogs sometimes occur in non-ribosomal peptides. This paper presents an overview of ribosomal and non-ribosomal peptides that are known to contain bromotryptophan and its analogs. This work further covers the biological activities and therapeutic potential of some of these peptides.

Keywords: Bromotryptophan and analogs, nonstandard amino acid, proteinogenic and non-proteinogenic amino acids, bromotryptophan- containing peptide, ribosomal and non-ribosomal peptides, conotoxin/conopeptide.

[1]
Ambrogelly, A.; Palioura, S.; Soll, D. Natural expansion of the genetic code. Nat. Chem. Biol., 2007, 3, 29-35.
[2]
Arnison, P.G.; Bibb, M.J.; Bierbaum, G.; Bowers, A.A.; Bugni, T.S.; Bulaj, G.; Camarero, J.A.; Campopiano, D.J.; Challis, G.L.; Cardy, J.; Cotter, P.D.; Craik, D.J.; Dawson, M.; Dittmann, E.; Donadio, S. Dorrestein. C.; Entian, K.D.; Fischbach, M.A.; Garavelli, J.S.; Goransson, U.; Gruber, C.W.; Haft, D.H.; Hemscheidt, T.K.; Hertweck, C.; Hill, C.; Horswill, A.R.; Jaspars, M.; Kelly, W.L.; Klinman, J.P.; Kuipers, O.P.; Liu, W.; Marahiel, M.A.; Mitchell, D.A.; Moll, G.N.; Moore, B.S.; Muller, R.; Nair, S.K.; Nes, I.F.; Norris, G.E.; Olivera, B.M.; Onaka, H.; Patchett, M.L.; Piel, J.; Keaney, M.J.; Rebuffat, S.; Ross, R.P.; Sahl, H.G.; Schmidt, E.W.; Selsted, M.E.; Severinov, K.; Shen, B.; SivonenK.; Smith, L.; Stin, T.; Sussmuth, R.D.; Tagg, J.R.; Tang, G.L.; Truman, A.W.; Vedera, J.C.; Walsh, C.T.; Walton, J.D.; Wenzel, S.C.; Willey, J.M.; van der Donk, W.A. Ribosomally synthesized and post-translationally modified peptide natural products: Overview and recommendations for a universal nomenclature. Nat. Prod. Rep., 2013, 30, 108-160.
[3]
Hughes, C.C.; Fenical, W. Antibacterials from the sea. Chemistry, 2010, 16, 12512-12525.
[4]
Bittner, S.; Scherzer, R.; Harlev, E. The five bromotryptophans. Amino Acids, 2007, 33, 19-42.
[5]
Terlau, H.; Olivera, B.M. Conus venoms: A rich source of novel ion channel-targeted peptides. Physiol. Rev., 2004, 84, 41-68.
[6]
Olivera, B.M. Conus peptides: Biodiversity-based discovery and exogenomics. J. Biol. Chem., 2006, 281, 31173-31177.
[7]
Olivera, B.M.; Rivier, J.; Clark, C.; Ramilo, C.A.; Corpuz, G.P.; Abogadie, F.C.; Mena, E.E.; Woodward, S.R.; Hillyard, D.R.; Cruz, L.J. Diversity of Conus neuropeptides. Science, 1990, 249, 257-263.
[8]
Woodward, S.R.; Cruz, L.J.; Olivera, B.M.; Hillyard, D.R. Constant and hypervariable regions. EMBO J., 1990, 9, 1015-1020.
[9]
Olivera, B.M.E.E. Just Lecture, 1996. Conus venom peptides, receptor and ion channel targets, and drug design: 50 million years of neuropharmacology. Mol. Biol. Cell, 1997, 8, 2101-2109.
[10]
Jimenez, E.C.; Craig, A.G.; Watkins, M.; Hillyard, D.R.; Gray, W.R.; Gulyas, J.; Rivier, J.E.; Cruz, L.J.; Olivera, B.M. Bromocontryphan: Post-translational bromination of tryptophan. Biochemistry, 1997, 36, 989-994.
[11]
Jimenez, E.C.; Olivera, B.M.; Gray, W.R.; Cruz, L.J. Contryphan is a D-tryptophan-containing Conus peptide. J. Biol. Chem., 1996, 271, 28002-28005.
[12]
Craig, A.G.; Jimenez, E.C.; Dykert, J.; Nielsen, D.B.; Gulyas, J.; Abogadie, F.C.; Porter, J.; Rivier, J.E.; Cruz, L.J.; Olivera, B.M.; McIntosh, J.M. A novel post-translational modification involving bromination of tryptophan: Identification of the residue, L-6-bromotryptophan, in peptides from Conus imperialis and Conus radiatus venom. J. Biol. Chem., 1997, 272, 4689-4698.
[13]
Jimenez, E.C.; Watkins, M.; Olivera, B.M. Multiple 6-bromotryptophan residues in a sleep-inducing peptide. Biochemistry, 2004, 43, 12343-12348.
[14]
England, L.J.; Imperial, J.; Jacobsen, R.; Craig, A.G.; Gulyas, J.; Akhtar, M.; Rivier, J.; Julius, D.; Olivera, B.M. Inactivation of a serotonin-gated ion channel by a polypeptide toxin from marine snails. Science, 1998, 281, 575-578.
[15]
Rigby, A.C.; Lucas-Meunier, E.; Kalume, D.E.; Czerwiec, E.; Hambe, B.; Dahlqvist, I.; Fossier, P.; Baux, G.; Roepstorff, P.; Balejai, J.D.; Furie, B.C.; Furie, B.; Stenflo, J. A conotoxin from Conus textile with unusual posttranslational modifications reduces presynaptic Ca21 influx. Proc. Natl. Acad. Sci. USA, 1999, 96, 5758-5763.
[16]
Walker, C.S.; Steel, D.; Jacobsen, R.B.; Lirazan, M.B.; Cruz, L.J.; Hooper, D.; Shetty, R.; Dela Cruz, R.C.; Nielsen, J.S.; Zhou, L.M.; Bandyopadhyay, P.; Craig, A.G.; Olivera, B.M. The T-superfamily conotoxins. J. Biol. Chem., 1999, 274, 30664-30671.
[17]
Czerwiec, E.; Kalume, D.E.; Roepstorff, P.; Hambe, B.; Furie, B.; Furie, B.C.; Stenflo, J. Novel gamma-carboxyglutamic acid-containing peptides from the venom of Conus textile. FEBS J., 2006, 273, 2779-2788.
[18]
Aguilar, M.B.; López-Vera, E.; Ortiz, E.; Becerril, B.; Possani, L.D.; Olivera, B.M.; Heimer de la Cotera, E.P. A novel conotoxin from Conus delessertii with posttranslationally modified lysine residues. Biochemistry, 2005, 44, 11130-11136.
[19]
Jakubowski, J.A.; Kelley, W.P.; Sweedler, J.V. Screening for post-translational modifications in conotoxins using liquid chromatography/mass spectrometry: An important component of conotoxin discovery. Toxicon, 2006, 47, 688-699.
[20]
Nair, S.S.; Nilsson, C.L.; Emmett, M.R.; Schaub, T.M.; Gowd, K.H.; Thakur, S.S.; Krishnan, K.S.; Balaram, P.; Marshall, A.G. De novo sequencing and disulfide mapping of a bromotryptophan-containing conotoxin by Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem., 2006, 78, 8082-8088.
[21]
Nguyen, B.; Caer, J.P.; Mourier, G.; Thai, R.; Lamthanh, H.; Servent, D.; Benoit, E.; Molgó, J. Characterization of a novel Conus bandanus conopeptide belonging to the M-superfamily containing bromotryptophan. Mar. Drugs, 2014, 12, 3449-3465.
[22]
Vijayasarathy, M.; Balaram, P. Mass spectrometric identification of bromotryptophan containing conotoxin sequences from the venom of C. amadis. Toxicon, 2018, 144, 68-74.
[23]
Taylor, S.W.; Kammerer, B.; Nicholson, G.J.; Pusecker, K.; Walk, T.; Bayer, E.; Scippa, S.; de Vincentiis, M. Morulin Pm: A modified polypeptide containing TOPA and 6-bromotryptophan from the morula cells of the ascidian, Phallusia mammillata. Arch. Biochem. Biophys., 1997, 348, 278-288.
[24]
Taylor, S.W.; Craig, A.G.; Fischer, W.H.; Park, M.; Lehrer, R.I. Styelin D, an extensively modified antimicrobial peptide from ascidian hemocytes. J. Biol. Chem., 2000, 275, 38417-38426.
[25]
Uzzell, T.; Stolzenberg, E.D.; Shinnar, A.E.; Zasloff, M. Hagfish intestinal antimicrobial peptides are ancient cathelicidins. Peptides, 2003, 24, 1655-1667.
[26]
Shinnar, A.E.; Butler, K.L.; Park, H.J. Cathelicidin family of antimicrobial peptides: Proteolytic processing and protease resistance. Bioorg. Chem., 2003, 31, 425-436.
[27]
Tasiemski, A.; Schikorski, D.; Le-Marrec-Croq, F.; Pontoire-Van Camp, C.; Boidin-Wichlacz, C.; Sautière, P.E. Hedistin: A novel antimicrobial peptide containing bromotryptophan constitutively expressed in the NK cells-like of the marine annelid, Nereis diversicolor. Dev. Comp. Immunol., 2007, 31, 749-762.
[28]
Li, C.; Haug, T.; Styrvold, O.B.; Jørgensen, T.Ø.; Stensvåg, K. Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev. Comp. Immunol., 2008, 32, 1430-1440.
[29]
Solstad, R.G.; Li, C.; Isaksson, J.; Johansen, J.; Svenson, J.; Stensvåg, K.; Haug, T. Novel antimicrobial peptides Eecentrocins 1, 2 and Eestrongylocin 2 from the edible sea urchin Echinus esculentus have 6-Br-Trp post-translational modifications. PLoS One, 2016, 11, e0151820.
[30]
Li, C.; Haug, T.; Moe, M.K.; Styrvold, O.B.; Stensvåg, K. Centrocins: Isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev. Comp. Immunol., 2010, 34, 959-968.
[31]
Fusetani, N.; Sugawara, T.; Matsunaga, S.; Orbiculamide, A. A novel cytotoxic cyclic peptide from a marine sponge Theonela sp. J. Am. Chem. Soc., 1991, 113, 7811-7812.
[32]
Kobayashi, J.; Sato, M.; Murayama, T.; Ishibashi, M.; Walchi, M.R.; Kanai, M.; Shoji, J.; Ohizumi, Y. Konbamide, a novel peptide with calmodulin antagonistic activity from the Okinawan marine sponge Theonella sp. J. Chem. Soc. Chem. Commun., 1991, 15, 1050-1052.
[33]
Zabriskie, T.M.; Klocke, J.A.; Ireland, C.M.; Marcus, A.H.; Molinski, T.F.; Faulkner, D.J.; Xu, C.; Clardy, J.C. Jaspamide, a modified peptide from a Jaspis sponge with insecticidal and antifungal activity. J. Am. Chem. Soc., 1986, 108, 3123-3124.
[34]
Ebada, S.S.; Wray, V.; de Voogd, N.J.; Deng, Z.; Lin, W.; Proksch, P. Two new jaspamide derivatives from the marine sponge Jaspis splendens. Mar. Drugs, 2009, 7, 435-444.
[35]
Watts, K.; Morinaka, B.I.; Amagata, T.; Robinson, S.J.; Tenney, K.; Bray, W.M.; Gassner, N.C.; Lokey, R.S.; Media, J.; Valeriote, F.A.; Crews, P. The biostructural features of additional jasplakinolide (jaspamide) analogues. J. Nat. Prod., 2011, 74, 341-351.
[36]
Clark, W.D.; Corbett, T.; Valeriote, F.; Crews, P. Cylcocinamide A, an unusual cytotoxic halogenated hexapeptide from the marine sponge Psammocinia. J. Am. Chem. Soc., 1997, 119, 9285-9286.
[37]
Sjögren, M.; Göransson, U.; Johnson, A.L.; Dahlström, M.; Andersson, R.; Bergman, J.; Jonsson, P.R.; Bohlin, L. Antifouling activity of brominated cyclopeptides from the marine sponge Geodia barretti. J. Nat. Prod., 2004, 67, 368-372.
[38]
Hedner, E.; Sjögren, M.; Frändberg, P.A.; Johansson, T.; Göransson, U.; Dahlström, M.; Jonsson, P.; Nyberg, F.; Bohlin, L. Brominated cyclodipeptides from the marine sponge Geodia barretti as selective 5-HT ligands. J. Nat. Prod., 2006, 69, 1421-1424.
[39]
Hedner, E.; Sjögren, M.; Hodzic, S.; Andersson, R.; Göransson, U.; Jonsson, P.R.; Bohlin, L. Antifouling activity of a dibrominated cyclopeptide from the marine sponge Geodia barretti. J. Nat. Prod., 2008, 71, 330-333.
[40]
Azumi, K.; Yokosawa, H.; Ishii, S. Halocyamines: Novel antimicrobial tetrapeptide-like substances isolated from the hemocytes of the solitary ascidian Halocynthia roretzi. Biochemistry, 1990, 29, 159-165.
[41]
Swersey, J.; Ireland, C.; Cornell, L.; Petersen, R. Eusynstyelamide, a highly modified dimer peptide from the ascidian Eusynstyela misakiens. J. Nat. Prod., 1994, 57, 842-845.
[42]
Tapiolas, D.M.; Bowden, B.F.; Abou-Mansour, E.; Willis, R.H.; Doyle, J.R.; Muirhead, A.N.; Liptrot, C.; Llewellyn, L.E.; Wolff, C.W.; Wright, A.D.; Motti, C.A.; Eusynstyelamides, A. B, and C, nNOS inhibitors, from the ascidian Eusynstyela latericius. J. Nat. Prod., 2009, 72, 1115-1120.
[43]
Won, T.H.; Kim, C.K.; Lee, S.H.; Rho, B.J.; Lee, S.K.; Oh, D.C.; Oh, K.B.; Shin, J. Amino acid-derived metabolites from the Ascidian Aplidium sp. Mar. Drugs, 2015, 13, 3836-3848.
[44]
Lehrer, R.I.; Andrew Tincu, J.; Taylor, S.W.; Menzel, L.P.; Waring, A.J. Natural peptide antibiotics from tunicates: Structures, functions and potential uses. Integr. Comp. Biol., 2003, 43, 313-322.
[45]
Fotie, J.; Morgan, R.E. Depsipeptides from microorganisms: A new class of antimalarials. Med. Chem., 2008, 8, 1088-1094.
[46]
Zheng, L.H.; Wang, Y.J.; Sheng, J.; Wang, F.; Zheng, Y.; Lin, X.K.; Sun, M. Antitumor peptides from marine organisms. Mar. Drugs, 2011, 9, 1840-1859.
[47]
Negi, B.; Kumar, D.; Rawat, D.S. Marine peptides as anticancer agents: A remedy to mankind by nature. Curr. Protein Pept. Sci., 2017, 18, 885-904.
[48]
Theiler, R.; Cook, J.C.; Hager, L.P.; Siuda, J.F. Halohydrocarbon synthesis by bromoperoxidase. Science, 1978, 202, 1094-1096.
[49]
Butler, A.; Carter-Franklin, J.N. The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Nat. Prod. Rep., 2004, 21, 180-188.
[50]
Wever, R.; Krenn, B.E.; Renirie, R. Marine vanadium-dependent haloperoxidases, their isolation, characterization, and application. Methods Enzymol., 2018, 605, 141-201.
[51]
Welinder, B.S. Halogenated tyrosines from the cuticle of Limulus polyphemus (L.). Biochim. Biophys. Acta, 1972, 279, 49-497.
[52]
Hunt, S.; Breuer, S.W. Chlorinated and brominated tyrosine residues in molluscan scleroprotein. Biochem. Soc. Trans., 1973, 1, 215-216.
[53]
Niemann, H.; Marmann, A.; Lin, W.; Proksch, P. Sponge derived bromotyrosines: Structural diversity through natural combinatorial chemistry. Nat. Prod. Commun., 2015, 10, 219-231.
[54]
Li, C.; Shi, D. Structural and bioactive studies of halogenated constituents from sponges. Curr. Med. Chem., 2018. [Epub ahead of print].
[55]
Fahy, E.; Potts, B.C.M.; Faulkner, D.J. Bromotryptamine derivatives from the tunicate Didemnum candidum. J. Nat. Prod., 1991, 54, 564-569.
[56]
Holst, P.B.; Anthoni, U.; Christophersen, C.; Nielsen, P.H. Marine alkaloids, 16.’ reversible conversion of flustramine B N-1-oxide to flustrarine B. J. Nat. Prod., 1994, 57, 1310-1312.
[57]
Inoue, S.; Okada, K.; Tanino, H.; Hashizume, K.; Kakoi, H. Total synthesis of (±)-surugatoxin. Tetrahedron, 1994, 50(9), 2729-2752.
[58]
Longeon, A.; Copp, B.R.; Quévrain, E.; Roué, M.; Kientz, B.; Cresteil, T.; Petek, S.; Debitus, C.; Bourguet-Kondracki, M.L. Bioactive indole derivatives from the South Pacific marine sponges Rhopaloeides odorabile and Hyrtios sp. Mar. Drugs, 2011, 9, 879-888.
[59]
Kochanowska-Karamyan, A.J.; Hamann, M.T. Marine indole alkaloids: Potential new drug leads for the control of depression and anxiety. Chem. Rev., 2010, 110, 4489-4497.
[60]
Ibrahim, M.A.; El-Alfy, A.T.; Ezel, K.; Radwan, M.O.; Shilabin, A.G.; Kochanowska-Karamyan, A.J.; Abd-Alla, H.I.; Otsuka, M.; Hamann, M.T. Marine inspired 2-(5-halo-1H-indol-3-yl)-N,N-dimethylethanamines as modulators of serotonin receptors: An example illustrating the power of bromine as part of the uniquely marine chemical space. Mar. Drugs, 2017, 15, E248.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 26
ISSUE: 4
Year: 2019
Page: [251 - 260]
Pages: 10
DOI: 10.2174/0929866526666190119170020
Price: $58

Article Metrics

PDF: 28
HTML: 6