Drug Repurposing for Retinoblastoma: Recent Advances

Author(s): Kamakshi Dandu , Prathap R. Kallamadi , Suman S. Thakur* , Ch. Mohan Rao* .

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 17 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Retinoblastoma is the intraocular malignancy that occurs during early childhood. The current standard of care includes chemotherapy followed by focal consolidative therapies, and enucleation. Unfortunately, these are associated with many side and late effects. New drugs and/or drug combinations need to be developed for safe and effective treatment. This compelling need stimulated efforts to explore drug repurposing for retinoblastoma. While conventional drug development is a lengthy and expensive process, drug repurposing is a faster, alternate approach, where an existing drug, not meant for treating cancer, can be repurposed to treat retinoblastoma. The present article reviews various attempts to test drugs approved for different purposes such as calcium channels blockers, non-steroidal antiinflammatory drugs, cardenolides, antidiabetic, antibiotics and antimalarial for treating retinoblastoma. It also discusses other promising candidates that could be explored for repurposing for retinoblastoma.

Keywords: Drug repurposing, Retinoblastoma, Calcium channel blockers, Cardenolides, NSAIDs, Antimalarials, Antidiabetics, Antibiotics.

[1]
McEvoy, J.D.; Dyer, M.A. Genetic and epigenetic discoveries in human retinoblastoma. Crit. Rev. Oncog., 2015, 20(3-4), 217-225.
[http://dx.doi.org/10.1615/CritRevOncog.2015013711] [PMID: 26349417]
[2]
Shields, C.L.; Shields, J.A. Basic understanding of current classification and management of retinoblastoma. Curr. Opin. Ophthalmol., 2006, 17(3), 228-234.
[http://dx.doi.org/10.1097/01.icu.0000193079.55240.18] [PMID: 16794434]
[3]
Balmer, A.; Zografos, L.; Munier, F. Diagnosis and current management of retinoblastoma. Oncogene, 2006, 25(38), 5341-5349.
[http://dx.doi.org/10.1038/sj.onc.1209622] [PMID: 16936756]
[4]
Schefler, A.C.; Kim, R.S. Recent advancements in the management of retinoblastoma and uveal melanoma. F1000 Res., 2018, 7, 476.
[http://dx.doi.org/10.12688/f1000research.11941.1] [PMID: 29755733]
[5]
Rodjan, F.; de Graaf, P.; Brisse, H.J.; Göricke, S.; Maeder, P.; Galluzzi, P.; Aerts, I.; Alapetite, C.; Desjardins, L.; Wieland, R.; Popovic, M.B.; Diezi, M.; Munier, F.L.; Hadjistilianou, T.; Knol, D.L.; Moll, A.C.; Castelijns, J.A. Trilateral retinoblastoma: neuroimaging characteristics and value of routine brain screening on admission. J. Neurooncol., 2012, 109(3), 535-544.
[http://dx.doi.org/10.1007/s11060-012-0922-4] [PMID: 22802019]
[6]
Antoneli, C.B. Ribeiro, Kde.C.; Sakamoto, L.H.; Chojniak, M.M.; Novaes, P.E.; Arias, V.E. Trilateral retinoblastoma. Pediatr. Blood Cancer, 2007, 48(3), 306-310.
[http://dx.doi.org/10.1002/pbc.20793] [PMID: 16572402]
[7]
Shields, J.A.; Shields, C.L. Treatment of retinoblastoma with photocoagulation. Trans. Pa. Acad. Ophthalmol. Otolaryngol., 1990, 42, 951-954.
[PMID: 2084992]
[8]
Shields, C.L.; Santos, M.C.; Diniz, W.; Gündüz, K.; Mercado, G.; Cater, J.R.; Shields, J.A. Thermotherapy for retinoblastoma. Arch. Ophthalmol., 1999, 117(7), 885-893.
[http://dx.doi.org/10.1001/archopht.117.7.885] [PMID: 10408452]
[9]
Shields, J.A.; Shields, C.L. Treatment of retinoblastoma with cryotherapy. Trans. Pa. Acad. Ophthalmol. Otolaryngol., 1990, 42, 977-980.
[PMID: 2084997]
[10]
Shah, N.V.; Houston, S.K.; Murray, T.G. Retinoblastoma and treatment: A current evaluation of advanced therapy. World J. Pharmacol., 2013, 9, 65-72.
[http://dx.doi.org/10.5497/wjp.v2.i3.65]
[11]
Shields, C.L.; Shields, J.A.; De Potter, P.; Minelli, S.; Hernandez, C.; Brady, L.W.; Cater, J.R. Plaque radiotherapy in the management of retinoblastoma. Use as a primary and secondary treatment. Ophthalmology, 1993, 100(2), 216-224.
[http://dx.doi.org/10.1016/S0161-6420(93)31667-2] [PMID: 8437830]
[12]
Scott, I.U.; Murray, T.G.; Feuer, W.J.; Van Quill, K.; Markoe, A.M.; Ling, S.; Roth, D.B.; O’Brien, J.M. External beam radiotherapy in retinoblastoma: tumor control and comparison of 2 techniques. Arch. Ophthalmol., 1999, 117(6), 766-770.
[http://dx.doi.org/10.1001/archopht.117.6.766] [PMID: 10369587]
[13]
Munier, F.L.; Verwey, J.; Pica, A.; Balmer, A.; Zografos, L.; Abouzeid, H.; Timmerman, B.; Goitein, G.; Moeckli, R. New developments in external beam radiotherapy for retinoblastoma: from lens to normal tissue-sparing techniques. Clin. Exp. Ophthalmol., 2008, 36(1), 78-89.
[http://dx.doi.org/10.1111/j.1442-9071.2007.01602.x] [PMID: 18290958]
[14]
Shields, C.L.; Shields, J.A. Retinoblastoma management: advances in enucleation, intravenous chemoreduction, and intra-arterial chemotherapy. Curr. Opin. Ophthalmol., 2010, 21(3), 203-212.
[http://dx.doi.org/10.1097/ICU.0b013e328338676a] [PMID: 20224400]
[15]
Bhinder, B.; Mahida, J.P.; Ibáñez, G.; Champ, K.; Antczak, C.; Djaballah, H. Drug Discovery and Repurposing for Retinoblastoma. Recent Ad-vances in Retinoblastoma Treatment. Essentials in Ophthal-mology; Francis J;; Abramson, D., Ed.; Springer, 2015.
[http://dx.doi.org/10.1007/978-3-319-19467-7_7]
[16]
Pritchard, E.M.; Dyer, M.A.; Guy, R.K. Progress in small molecule therapeutics for the treatment of retinoblastoma. Mini Rev. Med. Chem., 2016, 16(6), 430-454.
[http://dx.doi.org/10.2174/1389557515666150722100610] [PMID: 26202204]
[17]
Yanık, Ö.; Gündüz, K.; Yavuz, K.; Taçyıldız, N.; Ünal, E. Chemotherapy in retinoblastoma: Current approaches. Turk. J. Ophthalmol., 2015, 45(6), 259-267.
[http://dx.doi.org/10.4274/tjo.06888] [PMID: 27800245]
[18]
Macdonald, M.R.; Harrison, R.V.; Wake, M.; Bliss, B.; Macdonald, R.E. Ototoxicity of carboplatin: comparing animal and clinical models at the Hospital for Sick Children. J. Otolaryngol., 1994, 23(3), 151-159.
[PMID: 8064951]
[19]
Mulvihill, A.; Budning, A.; Jay, V.; Vandenhoven, C.; Heon, E.; Gallie, B.L.; Chan, H.S. Ocular motility changes after subtenon carboplatin chemotherapy for retinoblastoma. Arch. Ophthalmol., 2003, 121(8), 1120-1124.
[http://dx.doi.org/10.1001/archopht.121.8.1120] [PMID: 12912689]
[20]
Schmack, I.; Hubbard, G.B.; Kang, S.J.; Aaberg, T.M., Jr; Grossniklaus, H.E. Ischemic necrosis and atrophy of the optic nerve after periocular carboplatin injection for intraocular retinoblastoma. Am. J. Ophthalmol., 2006, 142(2), 310-315.
[http://dx.doi.org/10.1016/j.ajo.2006.02.044] [PMID: 16876514]
[21]
Hijiya, N.; Ness, K.K.; Ribeiro, R.C.; Hudson, M.M. Acute leukemia as a secondary malignancy in children and adolescents: current findings and issues. Cancer, 2009, 115(1), 23-35.
[http://dx.doi.org/10.1002/cncr.23988] [PMID: 19072983]
[22]
Leanza, L.; Managò, A.; Zoratti, M.; Gulbins, E.; Szabo, I. Pharmacological targeting of ion channels for cancer therapy: In vivo evidences. Biochim. Biophys. Acta, 2016, 1863(6 Pt B), 1385-1397.
[http://dx.doi.org/10.1016/j.bbamcr.2015.11.032] [PMID: 26658642]
[23]
Zhang, Y.; Wang, H.; Qian, Z.; Feng, B.; Zhao, X.; Jiang, X.; Tao, J. Low-voltage-activated T-type Ca2+ channel inhibitors as new tools in the treatment of glioblastoma: the role of endostatin. Pflugers Arch., 2014, 466(4), 811-818.
[http://dx.doi.org/10.1007/s00424-013-1427-5] [PMID: 24407946]
[24]
Cui, C.; Merritt, R.; Fu, L.; Pan, Z. Targeting calcium signaling in cancer therapy. Acta Pharm. Sin. B, 2017, 7(1), 3-17.
[http://dx.doi.org/10.1016/j.apsb.2016.11.001] [PMID: 28119804]
[25]
Kale, V.P.; Amin, S.G.; Pandey, M.K. Targeting ion channels for cancer therapy by repurposing the approved drugs. Biochim. Biophys. Acta, 2015, 1848(10 Pt B), 2747-2755.
[http://dx.doi.org/10.1016/j.bbamem.2015.03.034] [PMID: 25843679]
[26]
Lory, P.; Bidaud, I.; Chemin, J. T-type calcium channels in differentiation and proliferation. Cell Calcium, 2006, 40(2), 135-146.
[http://dx.doi.org/10.1016/j.ceca.2006.04.017] [PMID: 16797068]
[27]
Panner, A.; Wurster, R.D. T-type calcium channels and tumor proliferation. Cell Calcium, 2006, 40(2), 253-259.
[http://dx.doi.org/10.1016/j.ceca.2006.04.029] [PMID: 16765439]
[28]
Dziegielewska, B.; Gray, L.S.; Dziegielewski, J. T-type calcium channels blockers as new tools in cancer therapies. Pflugers Arch., 2014, 466(4), 801-810.
[http://dx.doi.org/10.1007/s00424-014-1444-z] [PMID: 24449277]
[29]
Mason, R.P. Calcium channel blockers, apoptosis and cancer: is there a biologic relationship? J. Am. Coll. Cardiol., 1999, 34(7), 1857-1866.
[http://dx.doi.org/10.1016/S0735-1097(99)00447-7] [PMID: 10588195]
[30]
Barnes, S.; Haynes, L.W. Low-voltage-activated calcium channels in human retinoblastoma cells. Brain Res., 1992, 598(1-2), 19-22.
[http://dx.doi.org/10.1016/0006-8993(92)90162-3]
[31]
Hirooka, K.; Bertolesi, G.E.; Kelly, M.E.; Denovan-Wright, E.M.; Sun, X.; Hamid, J.; Zamponi, G.W.; Juhasz, A.E.; Haynes, L.W.; Barnes, S. T-Type calcium channel alpha1G and alpha1H subunits in human retinoblastoma cells and their loss after differentiation. J. Neurophysiol., 2002, 88(1), 196-205.
[http://dx.doi.org/10.1152/jn.2002.88.1.196] [PMID: 12091545]
[32]
Bertolesi, G.E.; Shi, C.; Elbaum, L.; Jollimore, C.; Rozenberg, G.; Barnes, S.; Kelly, M.E. The Ca(2+) channel antagonists mibefradil and pimozide inhibit cell growth via different cytotoxic mechanisms. Mol. Pharmacol., 2002, 62(2), 210-219.
[http://dx.doi.org/10.1124/mol.62.2.210] [PMID: 12130671]
[33]
Bozimowski, G. A review of nonsteroidal anti-inflammatory drugs. AANA J., 2015, 83(6), 425-433.
[PMID: 26742337]
[34]
Cashman, J.N. The mechanisms of action of NSAIDs in analgesia. Drugs, 1996, 52(5)(Suppl. 5), 13-23.
[http://dx.doi.org/10.2165/00003495-199600525-00004] [PMID: 8922554]
[35]
Vane, J.R.; Bakhle, Y.S.; Botting, R.M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol., 1998, 38, 97-120.
[http://dx.doi.org/10.1146/annurev.pharmtox.38.1.97] [PMID: 9597150]
[36]
Rainsford, K.D. Anti-inflammatory drugs in the 21st century. Subcell. Biochem., 2007, 42, 3-27.
[http://dx.doi.org/10.1007/1-4020-5688-5_1] [PMID: 17612044]
[37]
Vane, J.R.; Botting, R.M. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am. J. Med., 1998, 104(3A), 2S-8S.
[http://dx.doi.org/10.1016/S0002-9343(97)00203-9] [PMID: 9572314]
[38]
Liu, B.; Qu, L.; Yan, S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int., 2015, 15, 106.
[http://dx.doi.org/10.1186/s12935-015-0260-7] [PMID: 26549987]
[39]
Petkova, D.K.; Clelland, C.; Ronan, J.; Pang, L.; Coulson, J.M.; Lewis, S.; Knox, A.J. Overexpression of cyclooxygenase-2 in non-small cell lung cancer. Respir. Med., 2004, 98(2), 164-172.
[http://dx.doi.org/10.1016/j.rmed.2003.09.006] [PMID: 14971881]
[40]
Singh, B.; Berry, J.A.; Shoher, A.; Ramakrishnan, V.; Lucci, A. COX-2 overexpression increases motility and invasion of breast cancer cells. Int. J. Oncol., 2005, 26(5), 1393-1399.
[http://dx.doi.org/10.3892/ijo.26.5.1393] [PMID: 15809733]
[41]
Tsujii, M.; Kawano, S.; DuBois, R.N. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc. Natl. Acad. Sci. USA, 1997, 94(7), 3336-3340.
[http://dx.doi.org/10.1073/pnas.94.7.3336] [PMID: 9096394]
[42]
Nakanishi, Y.; Kamijo, R.; Takizawa, K.; Hatori, M.; Nagumo, M. Inhibitors of cyclooxygenase-2 (COX-2) suppressed the proliferation and differentiation of human leukaemia cell lines. Eur. J. Cancer, 2001, 37(12), 1570-1578.
[http://dx.doi.org/10.1016/S0959-8049(01)00160-5] [PMID: 11506967]
[43]
Wun, T.; McKnight, H.; Tuscano, J.M. Increased cyclooxygenase-2 (COX-2): a potential role in the pathogenesis of lymphoma. Leuk. Res., 2004, 28(2), 179-190.
[http://dx.doi.org/10.1016/S0145-2126(03)00183-8] [PMID: 14654083]
[44]
Sobolewski, C.; Cerella, C.; Dicato, M.; Ghibelli, L.; Diederich, M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int. J. Cell Biol., 2010.2010215158
[http://dx.doi.org/10.1155/2010/215158] [PMID: 20339581]
[45]
Wang, J.; Wu, Y.; Heegaard, S.; Kolko, M. Cyclooxygenase-2 expression in the normal human eye and its expression pattern in selected eye tumours. Acta Ophthalmol., 2011, 89(7), 681-685.
[http://dx.doi.org/10.1111/j.1755-3768.2009.01765.x] [PMID: 19925514]
[46]
Karim, M.M.; Hayashi, Y.; Inoue, M.; Imai, Y.; Ito, H.; Yamamoto, M. Cox-2 expression in retinoblastoma. Am. J. Ophthalmol., 2000, 129(3), 398-401.
[http://dx.doi.org/10.1016/S0002-9394(99)00355-4] [PMID: 10704568]
[47]
Souza Filho, J.P.; Martins, M.C.; Correa, Z.M.; Odashiro, A.N.; Antecka, E.; Coutinho, A.B.; Macedo, C.R.; Vianna, R.N.; Burnier, M.N., Jr The expression of cyclooxygenase 2 in retinoblastoma: primary enucleated eyes and enucleation after conservative treatment. Am. J. Ophthalmol., 2006, 142(4), 625-631.
[http://dx.doi.org/10.1016/j.ajo.2006.05.053] [PMID: 17011855]
[48]
de Souza Filho, J.P.; Correa, Z.M.; Marshall, J.C.; Anteka, E.; Coutinho, A.B.; Martins, M.C.; Burnier, M.N. The effect of a selective cyclooxygenase-2 (COX-2) inhibitor on the proliferation rate of retinoblastoma cell lines. Eye (Lond.), 2006, 20(5), 598-601.
[http://dx.doi.org/10.1038/sj.eye.6701938] [PMID: 16123787]
[49]
Tong, C.T.; Howard, S.A.; Shah, H.R.; Van Quill, K.R.; Lin, E.T.; Grossniklaus, H.E.; O’Brien, J.M. Effects of celecoxib in human retinoblastoma cell lines and in a transgenic murine model of retinoblastoma. Br. J. Ophthalmol., 2005, 89(9), 1217-1220.
[http://dx.doi.org/10.1136/bjo.2004.064915] [PMID: 16113385]
[50]
Zheng, Q.; Zhang, Y.; Ren, Y.; Wu, Y.; Yang, S.; Zhang, Y.; Chen, H.; Li, W.; Zhu, Y. Antiproliferative and apoptotic effects of indomethacin on human retinoblastoma cell line Y79 and the involvement of β-catenin, nuclear factor-κB and Akt signaling pathways. Ophthalmic Res., 2014, 51(2), 109-115.
[http://dx.doi.org/10.1159/000355844] [PMID: 24355977]
[51]
Gurpinar, E.; Grizzle, W.E.; Piazza, G.A. COX-Independent mechanisms of cancer chemoprevention by anti-inflammatory drugs. Front. Oncol., 2013, 3, 181.
[http://dx.doi.org/10.3389/fonc.2013.00181] [PMID: 23875171]
[52]
Calderón-Montaño, J.M.; Burgos-Morón, E.; Orta, M.L.; Maldonado-Navas, D.; García-Domínguez, I.; López-Lázaro, M. Evaluating the cancer therapeutic potential of cardiac glycosides. BioMed Res. Int., 2014.2014794930
[http://dx.doi.org/10.1155/2014/794930] [PMID: 24895612]
[53]
Slingerland, M.; Cerella, C.; Guchelaar, H.J.; Diederich, M.; Gelderblom, H. Cardiac glycosides in cancer therapy: from preclinical investigations towards clinical trials. Invest. New Drugs, 2013, 31(4), 1087-1094.
[http://dx.doi.org/10.1007/s10637-013-9984-1] [PMID: 23748872]
[54]
Newman, R.A.; Yang, P.; Pawlus, A.D.; Block, K.I. Cardiac glycosides as novel cancer therapeutic agents. Mol. Interv., 2008, 8(1), 36-49.
[http://dx.doi.org/10.1124/mi.8.1.8] [PMID: 18332483]
[55]
Prassas, I.; Diamandis, E.P. Novel therapeutic applications of cardiac glycosides. Nat. Rev. Drug Discov., 2008, 7(11), 926-935.
[http://dx.doi.org/10.1038/nrd2682] [PMID: 18948999]
[56]
Kulikov, A.; Eva, A.; Kirch, U.; Boldyrev, A.; Scheiner-Bobis, G. Ouabain activates signaling pathways associated with cell death in human neuroblastoma. Biochim. Biophys. Acta, 2007, 1768(7), 1691-1702.
[http://dx.doi.org/10.1016/j.bbamem.2007.04.012] [PMID: 17524349]
[57]
Winnicka, K.; Bielawski, K.; Bielawska, A. Cardiac glycosides in cancer research and cancer therapy. Acta Pol. Pharm., 2006, 63(2), 109-115.
[PMID: 17514873]
[58]
López-Lázaro, M.; Pastor, N.; Azrak, S.S.; Ayuso, M.J.; Austin, C.A.; Cortés, F. Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients. J. Nat. Prod., 2005, 68(11), 1642-1645.
[http://dx.doi.org/10.1021/np050226l] [PMID: 16309315]
[59]
Newman, R.A.; Yang, P.; Hittelman, W.N.; Lu, T.; Ho, D.H.; Ni, D.; Chan, D.; Vijjeswarapu, M.; Cartwright, C.; Dixon, S.; Felix, E.; Addington, C. Oleandrin-mediated oxidative stress in human melanoma cells. J. Exp. Ther. Oncol., 2006, 5(3), 167-181.
[PMID: 16528968]
[60]
Antczak, C.; Kloepping, C.; Radu, C.; Genski, T.; Müller-Kuhrt, L.; Siems, K.; de Stanchina, E.; Abramson, D.H.; Djaballah, H. Revisiting old drugs as novel agents for retinoblastoma: in vitro and in vivo antitumor activity of cardenolides. Invest. Ophthalmol. Vis. Sci., 2009, 50(7), 3065-3073.
[http://dx.doi.org/10.1167/iovs.08-3158] [PMID: 19151399]
[61]
Patel, M.; Paulus, Y.M.; Gobin, Y.P.; Djaballah, H.; Marr, B.; Dunkel, I.J.; Brodie, S.; Antczak, C.; Folberg, R.; Abramson, D.H. Intra-arterial and oral digoxin therapy for retinoblastoma. Ophthalmic Genet., 2011, 32(3), 147-150.
[http://dx.doi.org/10.3109/13816810.2010.544530] [PMID: 21446853]
[62]
Winter, U.; Buitrago, E.; Mena, H.A.; Del Sole, M.J.; Laurent, V.; Negrotto, S.; Francis, J.; Arana, E.; Sgroi, M.; Croxatto, J.O.; Djaballah, H.; Chantada, G.L.; Abramson, D.; Schaiquevich, P. Pharmacokinetics, safety, and efficacy of intravitreal Digoxin in preclinical models for retinoblastoma. Invest. Ophthalmol. Vis. Sci., 2015, 56(8), 4382-4393.
[http://dx.doi.org/10.1167/iovs.14-16239] [PMID: 26176875]
[63]
Zhang, H.; Jing, X.; Wu, X.; Hu, J.; Zhang, X.; Wang, X.; Su, P.; Li, W.; Zhou, G. Suppression of multidrug resistance by rosiglitazone treatment in human ovarian cancer cells through downregulation of FZD1 and MDR1 genes. Anticancer Drugs, 2015, 26(7), 706-715.
[http://dx.doi.org/10.1097/CAD.0000000000000236] [PMID: 26053275]
[64]
An, Z.; Yu, J.R.; Park, W.Y. Rosiglitazone enhances radiosensitivity by inhibiting repair of DNA damage in cervical cancer cells. Radiat. Environ. Biophys., 2017, 56(1), 89-98.
[http://dx.doi.org/10.1007/s00411-016-0679-9] [PMID: 28184999]
[65]
Wang, H.Y.; Zhang, Y.; Zhou, Y.; Lu, Y.Y.; Wang, W.F.; Xin, M.; Guo, X.L. Rosiglitazone elevates sensitization of drug-resistant oral epidermoid carcinoma cells to vincristine by G2/M-phase arrest, independent of PPAR-γ pathway. Biomed. Pharmacother., 2016, 83, 349-361.
[http://dx.doi.org/10.1016/j.biopha.2016.06.047] [PMID: 27416556]
[66]
Bo, Q.F.; Sun, X.M.; Liu, J.; Sui, X.M.; Li, G.X. Antitumor action of the peroxisome proliferator-activated receptor-γ agonist rosiglitazone in hepatocellular carcinoma. Oncol. Lett., 2015, 10(4), 1979-1984.
[http://dx.doi.org/10.3892/ol.2015.3554] [PMID: 26622783]
[67]
Cao, X.; He, L.; Li, Y. Effects of PPARγ agonistrosiglitazone on human retinoblastoma cell in vitro and in vivo. Int. J. Clin. Exp. Pathol., 2015, 8(10), 12549-12556.
[PMID: 26722443]
[68]
Smith, U. Pioglitazone: mechanism of action. Int. J. Clin. Pract. Suppl., 2001, 121, 13-18.
[PMID: 11594239]
[69]
Elrod, H.A.; Sun, S.Y. PPARgamma and Apoptosis in Cancer. PPAR Res., 2008.2008704165
[http://dx.doi.org/10.1155/2008/704165] [PMID: 18615184]
[70]
Krishnan, A.; Nair, S.A.; Pillai, M.R. Biology of PPAR gamma in cancer: a critical review on existing lacunae. Curr. Mol. Med., 2007, 7(6), 532-540.
[http://dx.doi.org/10.2174/156652407781695765] [PMID: 17896990]
[71]
Wang, F.; Liu, Y.; Bi, Z. Pioglitazone inhibits growth of human retinoblastoma cells via regulation of NF-κB inflammation signals. J. Recept. Signal Transduct. Res., 2017, 37(1), 94-99.
[http://dx.doi.org/10.3109/10799893.2016.1171341] [PMID: 27133446]
[72]
Azoulay, L.; Yin, H.; Filion, K.B.; Assayag, J.; Majdan, A.; Pollak, M.N.; Suissa, S. The use of pioglitazone and the risk of bladder cancer in people with type 2 diabetes: nested case-control study. BMJ, 2012, 344e3645
[http://dx.doi.org/10.1136/bmj.e3645] [PMID: 22653981]
[73]
Lewis, J.D.; Ferrara, A.; Peng, T.; Hedderson, M.; Bilker, W.B.; Quesenberry, C.P., Jr; Vaughn, D.J.; Nessel, L.; Selby, J.; Strom, B.L. Risk of bladder cancer among diabetic patients treated with pioglitazone: interim report of a longitudinal cohort study. Diabetes Care, 2011, 34(4), 916-922.
[http://dx.doi.org/10.2337/dc10-1068] [PMID: 21447663]
[74]
Chiang, G.G.; Abraham, R.T. Targeting the mTOR signaling network in cancer. Trends Mol. Med., 2007, 13(10), 433-442.
[http://dx.doi.org/10.1016/j.molmed.2007.08.001] [PMID: 17905659]
[75]
Zi, F.; Zi, H.; Li, Y.; He, J.; Shi, Q.; Cai, Z. Metformin and cancer: An existing drug for cancer prevention and therapy. Oncol. Lett., 2018, 15(1), 683-690.
[PMID: 29422962]
[76]
Liu, J.; Li, M.; Song, B.; Jia, C.; Zhang, L.; Bai, X.; Hu, W. Metformin inhibits renal cell carcinoma in vitro and in vivo xenograft. Urol. Oncol., 2013, 31(2), 264-270.
[http://dx.doi.org/10.1016/j.urolonc.2011.01.003] [PMID: 21676631]
[77]
Qu, Z.; Zhang, Y.; Liao, M.; Chen, Y.; Zhao, J.; Pan, Y. In vitro and in vivo antitumoral action of metformin on hepatocellular carcinoma. Hepatol. Res., 2012, 42(9), 922-933.
[http://dx.doi.org/10.1111/j.1872-034X.2012.01007.x] [PMID: 22524458]
[78]
Meireles, C.G.; Pereira, S.A.; Valadares, L.P.; Rêgo, D.F.; Simeoni, L.A.; Guerra, E.N.S.; Lofrano-Porto, A. Effects of metformin on endometrial cancer: Systematic review and meta-analysis. Gynecol. Oncol., 2017, 147(1), 167-180.
[http://dx.doi.org/10.1016/j.ygyno.2017.07.120] [PMID: 28760367]
[79]
Gonzalez-Angulo, A.M.; Meric-Bernstam, F. Metformin: a therapeutic opportunity in breast cancer. Clin. Cancer Res., 2010, 16(6), 1695-1700.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1805] [PMID: 20215559]
[80]
Malki, A.; Youssef, A. Antidiabetic drug metformin induces apoptosis in human MCF breast cancer via targeting ERK signaling. Oncol. Res., 2011, 19(6), 275-285.
[http://dx.doi.org/10.3727/096504011X13021877989838] [PMID: 21776823]
[81]
Brodowska, K.; Theodoropoulou, S.; Meyer Zu Hörste, M.; Paschalis, E.I.; Takeuchi, K.; Scott, G.; Ramsey, D.J.; Kiernan, E.; Hoang, M.; Cichy, J.; Miller, J.W.; Gragoudas, E.S.; Vavvas, D.G. Effects of metformin on retinoblastoma growth in vitro and in vivo. Int. J. Oncol., 2014, 45(6), 2311-2324.
[http://dx.doi.org/10.3892/ijo.2014.2650] [PMID: 25215935]
[82]
Griffin, M.O.; Fricovsky, E.; Ceballos, G.; Villarreal, F. Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am. J. Physiol. Cell Physiol., 2010, 299(3), C539-C548.
[http://dx.doi.org/10.1152/ajpcell.00047.2010] [PMID: 20592239]
[83]
Preshaw, P.M.; Hefti, A.F.; Jepsen, S.; Etienne, D.; Walker, C.; Bradshaw, M.H. Subantimicrobial dose doxycycline as adjunctive treatment for periodontitis. A review. J. Clin. Periodontol., 2004, 31(9), 697-707.
[http://dx.doi.org/10.1111/j.1600-051X.2004.00558.x] [PMID: 15312090]
[84]
Caton, J.; Ryan, M.E. Clinical studies on the management of periodontal diseases utilizing subantimicrobial dose doxycycline (SDD). Pharmacol. Res., 2011, 63(2), 114-120.
[http://dx.doi.org/10.1016/j.phrs.2010.12.003] [PMID: 21182947]
[85]
Li, J.; Huang, Y.; Gao, Y.; Wu, H.; Dong, W.; Liu, L. Antibiotic drug rifabutin is effective against lung cancer cells by targeting the eIF4E-β-catenin axis. Biochem. Biophys. Res. Commun., 2016, 472(2), 299-305.
[http://dx.doi.org/10.1016/j.bbrc.2016.02.120] [PMID: 26944016]
[86]
Zhao, Y.; Wang, X.; Li, L.; Li, C. Doxycycline inhibits proliferation and induces apoptosis of both human papillomavirus positive and negative cervical cancer cell lines. Can. J. Physiol. Pharmacol., 2016, 94(5), 526-533.
[http://dx.doi.org/10.1139/cjpp-2015-0481] [PMID: 26913972]
[87]
Yang, B.; Lu, Y.; Zhang, A.; Zhou, A.; Zhang, L.; Zhang, L.; Gao, L.; Zang, Y.; Tang, X.; Sun, L. Correction: Doxycycline induces apoptosis and inhibits proliferation and invasion of human cervical carcinoma stem cells. PLoS One, 2015, 10(7)e0134201
[http://dx.doi.org/10.1371/journal.pone.0134201] [PMID: 26207375]
[88]
Alexander-Savino, C.V.; Hayden, M.S.; Richardson, C.; Zhao, J.; Poligone, B. Doxycycline is an NF-κB inhibitor that induces apoptotic cell death in malignant T-cells. Oncotarget, 2016, 7(46), 75954-75967.
[http://dx.doi.org/10.18632/oncotarget.12488] [PMID: 27732942]
[89]
Hu, H.; Dong, Z.; Tan, P.; Zhang, Y.; Liu, L.; Yang, L.; Liu, Y.; Cui, H. Antibiotic drug tigecycline inhibits melanoma progression and metastasis in a p21CIP1/Waf1-dependent manner. Oncotarget, 2016, 7(3), 3171-3185.
[http://dx.doi.org/10.18632/oncotarget.6419] [PMID: 26621850]
[90]
Yu, M.; Li, R.; Zhang, J. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer. Biochem. Biophys. Res. Commun., 2016, 471(4), 639-645.
[http://dx.doi.org/10.1016/j.bbrc.2016.02.072] [PMID: 26902121]
[91]
Van Nuffel, A.M.; Sukhatme, V.; Pantziarka, P.; Meheus, L.; Sukhatme, V.P.; Bouche, G. Repurposing Drugs in Oncology (ReDO)-clarithromycin as an anti-cancer agent. Ecancermedicalscience, 2015, 9, 513.
[http://dx.doi.org/10.3332/ecancer.2015.513] [PMID: 25729426]
[92]
Barot, M.; Gokulgandhi, M.R.; Pal, D.; Mitra, A.K. In vitro moxifloxacin drug interaction with chemotherapeutics: implications for retinoblastoma management. Exp. Eye Res., 2014, 118, 61-71.
[http://dx.doi.org/10.1016/j.exer.2013.10.009] [PMID: 24157270]
[93]
Wang, Y.D.; Su, Y.J.; Li, J.Y.; Yao, X.C.; Liang, G.J. Rapamycin, a mTOR inhibitor, induced growth inhibition in retinoblastoma Y79 cell via down-regulation of Bmi-1. Int. J. Clin. Exp. Pathol., 2015, 8(5), 5182-5188.
[PMID: 26191215]
[94]
Wang, Y.D.; Su, Y.J.; Li, J.Y.; Yao, X.C.; Liang, G.J. Rapamycin, an mTOR inhibitor, induced apoptosis via independent mitochondrial and death receptor pathway in retinoblastoma Y79 cell. Int. J. Clin. Exp. Med., 2015, 8(7), 10723-10730.
[PMID: 26379864]
[95]
Kim, J.; Yip, M.L.; Shen, X.; Li, H.; Hsin, L.Y.; Labarge, S.; Heinrich, E.L.; Lee, W.; Lu, J.; Vaidehi, N. Identification of an-ti-malarial compounds as novel antagonists to chemokine re-ceptor CXCR4 in pancreatic cancer cells. PLoS One, 2012, 7(2)
[http://dx.doi.org/10.1371/journal.pone.0031004]
[96]
Xu, X.; Wang, J.; Han, K.; Li, S.; Xu, F.; Yang, Y. Antimalarial drug mefloquine inhibits nuclear factor kappa B signaling and induces apoptosis in colorectal cancer cells. Cancer Sci., 2018, 109(4), 1220-1229.
[http://dx.doi.org/10.1111/cas.13540] [PMID: 29453896]
[97]
Yan, K.H.; Lin, Y.W.; Hsiao, C.H.; Wen, Y.C.; Lin, K.H.; Liu, C.C.; Hsieh, M.C.; Yao, C.J.; Yan, M.D.; Lai, G.M.; Chuang, S.E.; Lee, L.M. Mefloquine induces cell death in prostate cancer cells and provides a potential novel treatment strategy in vivo. Oncol. Lett., 2013, 5(5), 1567-1571.
[http://dx.doi.org/10.3892/ol.2013.1259] [PMID: 23759954]
[98]
Liu, Y.; Chen, S.; Xue, R.; Zhao, J.; Di, M. Mefloquine effectively targets gastric cancer cells through phosphatase-dependent inhibition of PI3K/Akt/mTOR signaling pathway. Biochem. Biophys. Res. Commun., 2016, 470(2), 350-355.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.046] [PMID: 26780727]
[99]
Li, H.; Jiao, S.; Li, X.; Banu, H.; Hamal, S.; Wang, X. Therapeutic effects of antibiotic drug mefloquine against cervical cancer through impairing mitochondrial function and inhibiting mTOR pathway. Can. J. Physiol. Pharmacol., 2017, 95(1), 43-50.
[http://dx.doi.org/10.1139/cjpp-2016-0124] [PMID: 27831748]
[100]
Harada, M.; Morimoto, K.; Kondo, T.; Hiramatsu, R.; Okina, Y.; Muko, R.; Matsuda, I.; Kataoka, T. Quinacrine Inhibits ICAM-1 Transcription by Blocking DNA Binding of the NF-κB Subunit p65 and Sensitizes Human Lung Adenocarcinoma A549 Cells to TNF-α and the Fas Ligand. Int. J. Mol. Sci., 2017, 18(12)E2603
[http://dx.doi.org/10.3390/ijms18122603] [PMID: 29207489]
[101]
Khurana, A.; Roy, D.; Kalogera, E.; Mondal, S.; Wen, X.; He, X.; Dowdy, S.; Shridhar, V. Quinacrine promotes autophagic cell death and chemosensitivity in ovarian cancer and attenuates tumor growth. Oncotarget, 2015, 6(34), 36354-36369.
[http://dx.doi.org/10.18632/oncotarget.5632] [PMID: 26497553]
[102]
Zhao, F.; Wang, H.; Kunda, P.; Chen, X.; Liu, Q.L.; Liu, T. Artesunate exerts specific cytotoxicity in retinoblastoma cells via CD71. Oncol. Rep., 2013, 30(3), 1473-1482.
[http://dx.doi.org/10.3892/or.2013.2574] [PMID: 23818062]
[103]
Ke, F.; Yu, J.; Chen, W.; Si, X.; Li, X.; Yang, F.; Liao, Y.; Zuo, Z. The anti-malarial atovaquone selectively increases chemosensitivity in retinoblastoma via mitochondrial dysfunction-dependent oxidative damage and Akt/AMPK/mTOR inhibition. Biochem. Biophys. Res. Commun., 2018, 504(2), 374-379.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.049] [PMID: 29902460]
[104]
Timcheva, C.V.; Todorov, D.K. Does verapamil help overcome multidrug resistance in tumor cell lines and cancer patients? J. Chemother., 1996, 8(4), 295-299.
[http://dx.doi.org/10.1179/joc.1996.8.4.295] [PMID: 8873836]
[105]
Zhou, J.; Jin, B.; Jin, Y.; Liu, Y.; Pan, J. The antihelminthic drug niclosamide effectively inhibits the malignant phenotypes of uveal melanoma in vitro and in vivo. Theranostics, 2017, 7(6), 1447-1462.
[http://dx.doi.org/10.7150/thno.17451] [PMID: 28529629]
[106]
Pantziarka, P.; Bouche, G.; Meheus, L.; Sukhatme, V.; Sukhatme, V.P.; Vikas, P. The Repurposing Drugs in Oncology (ReDO) Project. Ecancermedicalscience, 2014, 8, 442.
[http://dx.doi.org/10.3332/ecancer.2014.485] [PMID: 25075216]
[107]
Abramson, D.H.; Frank, C.M.; Dunkel, I.J. A phase I/II study of subconjunctival carboplatin for intraocular retinoblastoma. Ophthalmology, 1999, 106(10), 1947-1950.
[http://dx.doi.org/10.1016/S0161-6420(99)90406-2] [PMID: 10519590]
[108]
Schmack, I.; Hubbard, G.B.; Kang, S.J.; Aaberg, T.M., Jr; Grossniklaus, H.E. Ischemic necrosis and atrophy of the op-tic nerve after periocular carboplatin injection for intraocular retinoblastoma. Am. J. Ophthalmol., 2006, 142(2), 310-315.
[http://dx.doi.org/10.1016/j.ajo.2006.02.044] [PMID: 16876514]
[109]
Astolfi, L.; Ghiselli, S.; Guaran, V.; Chicca, M.; Simoni, E.; Olivetto, E.; Lelli, G.; Martini, A. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: a retrospective evaluation. Oncol. Rep., 2013, 29(4), 1285-1292.
[http://dx.doi.org/10.3892/or.2013.2279] [PMID: 23404427]
[110]
Shahsavari, M.; Mashayekhi, A. Pharmacotherapy for retinoblastoma. J. Ophthalmic Vis. Res., 2009, 4(3), 169-173.
[PMID: 23198068]
[111]
Perry, M.C. Principles of cancer therapyCecil textbook of medicine;; Goldman ; Bennett J.C.; editors.; 23rd ed. Philadelphia: W.B. Saunders, 2008, pp. 370-386.
[112]
Sausville, E.A.; Longo, D.L. Principles of cancer treatment. Harrison’s principles of internal medicine; 17th ed; Fauci, A.S.; Braun-wald, E.; Kasper, D.L.; Hauser, S.L.; Longo, D.L.; Jameson, J.L., Eds.; McGraw-Hill: New York, 2008, pp. 514-533.
[113]
Le Deley, M.C.; Vassal, G.; Taïbi, A.; Shamsaldin, A.; Leblanc, T.; Hartmann, O. High cumulative rate of secondary leukemia after continuous etoposide treatment for solid tumors in children and young adults. Pediatr. Blood Cancer, 2005, 45(1), 25-31.
[http://dx.doi.org/10.1002/pbc.20380] [PMID: 15795880]
[114]
Smit, E.F.; Ousterhuis, B.E.; Berendsen, H.H.; Sleijfer, D.T.; Postmus, P.E. Phase I study of oral teniposide (VM-26). Semin. Oncol., 1992, 19(2)(Suppl. 6), 35-39.
[PMID: 1329226]
[115]
Mallipatna, A.C.; Dimaras, H.; Chan, H.S.L.; Héon, E.; Gallie, B.L. Periocular topotecan for intraocular retinoblastoma. Arch. Ophthalmol., 2011, 129(6), 738-745.
[http://dx.doi.org/10.1001/archophthalmol.2011.130] [PMID: 21670340]
[116]
Smith, S.J.; Smith, B.D.; Mohney, B.G. Ocular side effects following intravitreal injection therapy for retinoblastoma: a systematic review. Br. J. Ophthalmol., 2014, 98(3), 292-297.
[http://dx.doi.org/10.1136/bjophthalmol-2013-303885] [PMID: 24187047]
[117]
Said, A.M.A.; Aly, M.G.; Rashed, H.O.; Rady, A.M. Safety and efficacy of posterior sub-Tenon’s carboplatin injection versus intravitreal melphalan therapy in the management of retinoblastoma with secondary vitreous seeds. Int. J. Ophthalmol., 2018, 11(3), 445-455.
[PMID: 29600179] [http://dx.doi.org/[DOI: 10.18240/ijo.2018.03.15]
[118]
Manjandavida, F.P.; Shields, C.L. The role of intravitreal chemotherapy for retinoblastoma. Indian J. Ophthalmol., 2015, 63(2), 141-145.
[http://dx.doi.org/10.4103/0301-4738.154390] [PMID: 25827545]
[119]
Kivelä, T.; Eskelin, S.; Paloheimo, M. Intravitreal methotrex-ate for retinoblastoma. Ophthalmology, 2011, 118(8), 1689.
[PMID: 21813093] [http://dx.doi.org/10.1016/j.ophtha.2011.02.005]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 17
Year: 2019
Page: [1535 - 1544]
Pages: 10
DOI: 10.2174/1568026619666190119152706
Price: $58

Article Metrics

PDF: 16
HTML: 1