A Journey through the Cytoskeleton with Protein Kinase CK2

Author(s): Claudio D'Amore, Valentina Salizzato, Christian Borgo, Luca Cesaro, Lorenzo A. Pinna, Mauro Salvi*.

Journal Name: Current Protein & Peptide Science

Volume 20 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Substrate pleiotropicity, a very acidic phosphorylation consensus sequence, and an apparent uncontrolled activity, are the main features of CK2, a Ser/Thr protein kinase that is required for a plethora of cell functions. Not surprisingly, CK2 appears to affect cytoskeletal structures and correlated functions such as cell shape, mechanical integrity, cell movement and division. This review outlines our current knowledge of how CK2 regulates cytoskeletal structures, and discusses involved pathways and molecular mechanisms.

Keywords: Post-translational modifications, actin, tubulin, septin, casein kinase 2, acidic phosphorylation.

[1]
Filhol, O.; Nueda, A.; Martel, V.; Gerber-Scokaert, D.; Benitez, M.J.; Souchier, C.; Saoudi, Y.; Cochet, C. Live-cell fluorescence imaging reveals the dynamics of protein kinase CK2 individual subunits. Mol. Cell. Biol., 2003, 23(3), 975-987.
[2]
Bibby, A.C.; Litchfield, D.W. The multiple personalities of the regulatory subunit of protein kinase CK2: CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta. Int. J. Biol. Sci., 2005, 1(2), 67-79.
[3]
Litchfield, D.W. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J., 2003, 369(Pt 1), 1-15.
[4]
Seldin, D.C.; Lou, D.Y.; Toselli, P.; Landesman-Bollag, E.; Dominguez, I. Gene targeting of CK2 catalytic subunits. Mol. Cell. Biochem., 2008, 316(1-2), 141-147.
[5]
Pinna, L.A. The raison d’etre of constitutively active protein kinases: the lesson of CK2. Acc. Chem. Res., 2003, 36(6), 378-384.
[6]
Niefind, K.; Guerra, B.; Ermakowa, I.; Issinger, O.G. Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J., 2001, 20(19), 5320-5331.
[7]
Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res., 2015, 43(Database issue), D512-D520.
[8]
Franchin, C.; Cesaro, L.; Pinna, L.A.; Arrigoni, G.; Salvi, M. Identification of the PLK2-dependent phosphopeptidome by quantitative proteomics.[corrected]. PLoS One, 2014, 9(10), e111018.
[9]
Salvi, M.; Cesaro, L.; Pinna, L.A. Variable contribution of protein kinases to the generation of the human phosphoproteome: a global weblogo analysis. Biomol. Concepts, 2010, 1(2), 185-195.
[10]
Cozza, G.; Salvi, M. The Acidophilic Kinases PLK2 and PLK3: Structure, Substrate Targeting and Inhibition. Curr. Protein Pept. Sci., 2018, 19(8), 728-745.
[11]
Pinna, L.A.; Ruzzene, M. How do protein kinases recognize their substrates? Biochim. Biophys. Acta, 1996, 1314(3), 191-225.
[12]
Salvi, M.; Cesaro, L.; Tibaldi, E.; Pinna, L.A. Motif analysis of phosphosites discloses a potential prominent role of the Golgi casein kinase (GCK) in the generation of human plasma phospho-proteome. J. Proteome Res., 2010, 9(6), 3335-3338.
[13]
Salvi, M.; Sarno, S.; Cesaro, L.; Nakamura, H.; Pinna, L.A. Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim. Biophys. Acta, 2009, 1793(5), 847-859.
[14]
Cesaro, L.; Salvi, M. CK2 contribution to the generation of the human phosphoproteome in Protein kinase CK2- The Wiley-IUBMB series on biochemistry and molecular biology (ed. Pinna,L.A.) 117-128. Protein kinase CK2- The Wiley-IUBMB Series on Biochemistry and Molecular Biology, ed. L. Pinna , 2013. Wiley
[15]
Wu, R.; Haas, W.; Dephoure, N.; Huttlin, E.L.; Zhai, B.; Sowa, M.E.; Gygi, S.P. A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat. Methods, 2011, 8(8), 677-683.
[16]
Franchin, C.; Borgo, C.; Zaramella, S.; Cesaro, L.; Arrigoni, G.; Salvi, M.; Pinna, L.A. Exploring the CK2 Paradox: Restless, dangerous, dispensable. Pharmaceuticals (Basel), 2017, 10(1), 1.
[17]
Franchin, C.; Borgo, C.; Cesaro, L.; Zaramella, S.; Vilardell, J.; Salvi, M.; Arrigoni, G.; Pinna, L.A. Re-evaluation of protein kinase CK2 pleiotropy: new insights provided by a phosphoproteomics analysis of CK2 knockout cells. Cell. Mol. Life Sci., 2018, 75(11), 2011-2026.
[18]
St-Denis, N.A.; Litchfield, D.W. Protein kinase CK2 in health and disease: From birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell. Mol. Life Sci., 2009, 66(11-12), 1817-1829.
[19]
Gotz, C.; Montenarh, M. Protein kinase CK2 in development and differentiation. Biomed. Rep., 2017, 6(2), 127-133.
[20]
Pinna, L.A.; Allende, J.E. Protein kinase CK2 in health and disease: Protein kinase CK2: an ugly duckling in the kinome pond. Cell. Mol. Life Sci., 2009, 66(11-12), 1795-1799.
[21]
Duncan, J.S.; Litchfield, D.W. Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim. Biophys. Acta, 2008, 1784(1), 33-47.
[22]
Borgo, C.; Franchin, C.; Scalco, S.; Bosello-Travain, V.; Donella-Deana, A.; Arrigoni, G.; Salvi, M.; Pinna, L.A. Generation and quantitative proteomics analysis of CK2alpha/alpha’(-/-) cells. Sci. Rep., 2017, 7, 42409.
[23]
Ibrahim, S.H.; Turner, M.J.; Saint-Criq, V.; Garnett, J.; Haq, I.J.; Brodlie, M.; Ward, C.; Borgo, C.; Salvi, M.; Venerando, A.; Gray, M.A. CK2 is a key regulator of SLC4A2-mediated Cl(-)/HCO3(-) exchange in human airway epithelia. Pflugers Arch., 2017, 469(9), 1073-1091.
[24]
Guerra, B.; Issinger, O.G. Protein kinase CK2 in human diseases. Curr. Med. Chem., 2008, 15(19), 1870-1886.
[25]
Chua, M.M.; Ortega, C.E.; Sheikh, A.; Lee, M.; Abdul-Rassoul, H.; Hartshorn, K.L.; Dominguez, I. CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Pharmaceuticals (Basel), 2017, 10(1)
[26]
Trembley, J.H.; Chen, Z.; Unger, G.; Slaton, J.; Kren, B.T.; Van Waes, C.; Ahmed, K. Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors, 2010, 36(3), 187-195.
[27]
Rabalski, A.J.; Gyenis, L.; Litchfield, D.W. Molecular pathways: emergence of protein kinase CK2 (CSNK2) as a potential target to inhibit survival and DNA damage response and repair pathways in cancer cells. Clin. Cancer Res., 2016, 22(12), 2840-2847.
[28]
Ruzzene, M.; Pinna, L.A. Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim. Biophys. Acta, 2010, 1804(3), 499-504.
[29]
Cozza, G.; Pinna, L.A. Casein kinases as potential therapeutic targets. Expert Opin. Ther. Targets, 2016, 20(3), 319-340.
[30]
Pierre, F.; Chua, P.C.; O’Brien, S.E.; Siddiqui-Jain, A.; Bourbon, P.; Haddach, M.; Michaux, J.; Nagasawa, J.; Schwaebe, M.K.; Stefan, E.; Vialettes, A.; Whitten, J.P.; Chen, T.K.; Darjania, L.; Stansfield, R.; Anderes, K.; Bliesath, J.; Drygin, D.; Ho, C.; Omori, M.; Proffitt, C.; Streiner, N.; Trent, K.; Rice, W.G.; Ryckman, D.M. Discovery and SAR of 5-(3-chlorophenylamino)benzo[c] [2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. J. Med. Chem., 2011, 54(2), 635-654.
[31]
Canton, D.A.; Litchfield, D.W. The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell. Signal., 2006, 18(3), 267-275.
[32]
Mostowy, S.; Cossart, P. Septins: the fourth component of the cytoskeleton. Nat. Rev. Mol. Cell Biol., 2012, 13(3), 183-194.
[33]
Blanchoin, L.; Boujemaa-Paterski, R.; Sykes, C.; Plastino, J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev., 2014, 94(1), 235-263.
[34]
Pollard, T.D. Actin and Actin-Binding Proteins. Cold Spring Harb. Perspect. Biol., 2016, 8(8), 9018226.
[35]
Fletcher, D.A.; Mullins, R.D. Cell mechanics and the cytoskeleton. Nature, 2010, 463(7280), 485-492.
[36]
Plastino, J.; Blanchoin, L. Dynamic stability of the actin ecosystem.J. Cell Sci.,, 2018. 132(4), pii: JSC 219832.
[37]
Perrin, B.J.; Ervasti, J.M. The actin gene family: Function follows isoform. Cytoskeleton (Hoboken), 2010, 67(10), 630-634.
[38]
Karino, A.; Tanoue, S.; Fukuda, M.; Nakamura, T.; Ohtsuki, K. An inhibitory effect of actin on casein kinase II activity in vitro. FEBS Lett., 1996, 398(2-3), 317-321.
[39]
Alekhina, O.; Burstein, E.; Billadeau, D.D. Cellular functions of WASP family proteins at a glance. J. Cell Sci., 2017, 130(14), 2235-2241.
[40]
Cory, G.O.; Cramer, R.; Blanchoin, L.; Ridley, A.J. Phosphorylation of the WASP-VCA domain increases its affinity for the Arp2/3 complex and enhances actin polymerization by WASP. Mol. Cell, 2003, 11(5), 1229-1239.
[41]
Pocha, S.M.; Cory, G.O. WAVE2 is regulated by multiple phosphorylation events within its VCA domain. Cell Motil. Cytoskeleton, 2009, 66(1), 36-47.
[42]
Galovic, M.; Xu, D.; Areces, L.B.; van der Kammen, R.; Innocenti, M. Interplay between N-WASP and CK2 optimizes clathrin-mediated endocytosis of EGFR. J. Cell Sci., 2011, 124(Pt 12), 2001-2012.
[43]
Jessick, V.J.; Xie, M.; Pearson, A.N.; Torrey, D.J.; Ashley, M.D.; Thompson, S.; Meller, R. Investigating the role of the actin regulating complex ARP2/3 in rapid ischemic tolerance induced neuro-protection. Int. J. Physiol. Pathophysiol. Pharmacol., 2013, 5(4), 216-227.
[44]
Fernandez-Golbano, I.M.; Idrissi, F.Z.; Giblin, J.P.; Grosshans, B.L.; Robles, V.; Grotsch, H.; Borras Mdel, M.; Geli, M.I. Crosstalk between PI(4,5)P(2)and CK2 modulates actin polymerization during endocytic uptake. Dev. Cell, 2014, 30(6), 746-758.
[45]
Iskratsch, T.; Lange, S.; Dwyer, J.; Kho, A.L.; dos Remedios, C.; Ehler, E. Formin follows function: A muscle-specific isoform of FHOD3 is regulated by CK2 phosphorylation and promotes myofibril maintenance. J. Cell Biol., 2010, 191(6), 1159-1172.
[46]
Iskratsch, T.; Reijntjes, S.; Dwyer, J.; Toselli, P.; Degano, I.R.; Dominguez, I.; Ehler, E. Two distinct phosphorylation events govern the function of muscle FHOD3. Cell. Mol. Life Sci., 2013, 70(5), 893-908.
[47]
Schael, S.; Nuchel, J.; Muller, S.; Petermann, P.; Kormann, J.; Perez-Otano, I.; Martinez, S.M.; Paulsson, M.; Plomann, M. Casein kinase 2 phosphorylation of protein kinase C and casein kinase 2 substrate in neurons (PACSIN) 1 protein regulates neuronal spine formation. J. Biol. Chem., 2013, 288(13), 9303-9312.
[48]
Kramerov, A.A.; Golub, A.G.; Bdzhola, V.G.; Yarmoluk, S.M.; Ahmed, K.; Bretner, M.; Ljubimov, A.V. Treatment of cultured human astrocytes and vascular endothelial cells with protein kinase CK2 inhibitors induces early changes in cell shape and cytoskeleton. Mol. Cell. Biochem., 2011, 349(1-2), 125-137.
[49]
Kramerov, A.A.; Ahmed, K.; Ljubimov, A.V. Cell rounding in cultured human astrocytes and vascular endothelial cells upon inhibition of CK2 is mediated by actomyosin cytoskeleton alterations. J. Cell. Biochem., 2012, 113(9), 2948-2956.
[50]
Wang, D.; Jang, D.J. Protein kinase CK2 regulates cytoskeletal reorganization during ionizing radiation-induced senescence of human mesenchymal stem cells. Cancer Res., 2009, 69(20), 8200-8207.
[51]
Canton, D.A.; Olsten, M.E.; Niederstrasser, H.; Cooper, J.A.; Litchfield, D.W. The role of CKIP-1 in cell morphology depends on its interaction with actin-capping protein. J. Biol. Chem., 2006, 281(47), 36347-36359.
[52]
Goodson, H.V.; Jonasson, E.M. Microtubules and Microtubule-Associated Proteins. Cold Spring Harb. Perspect. Biol., 2018, 10(6), 9022608.
[53]
Redeker, V. Mass spectrometry analysis of C-terminal posttranslational modifications of tubulins. Methods Cell Biol., 2010, 95, 77-103.
[54]
Roll-Mecak, A. Intrinsically disordered tubulin tails: complex tuners of microtubule functions? Semin. Cell Dev. Biol., 2015, 37, 11-19.
[55]
Gittes, F.; Mickey, B.; Nettleton, J.; Howard, J. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol., 1993, 120(4), 923-934.
[56]
Tajielyato, N.; Li, L.; Peng, Y.; Alper, J.; Alexov, E. E-hooks provide guidance and a soft landing for the microtubule binding domain of dynein. Sci. Rep., 2018, 8(1), 13266.
[57]
Chakraborti, S.; Natarajan, K.; Curiel, J.; Janke, C.; Liu, J. The emerging role of the tubulin code: From the tubulin molecule to neuronal function and disease. Cytoskeleton (Hoboken), 2016, 73(10), 521-550.
[58]
Carneiro, A.C.; Fragel-Madeira, L.; Silva-Neto, M.A.; Linden, R. A role for CK2 upon interkinetic nuclear migration in the cell cycle of retinal progenitor cells. Dev. Neurobiol., 2008, 68(5), 620-631.
[59]
Moritz, M.; Agard, D.A. Gamma-tubulin complexes and microtubule nucleation. Curr. Opin. Struct. Biol., 2001, 11(2), 174-181.
[60]
Cassimeris, L.; Pryer, N.K.; Salmon, E.D. Real-time observations of microtubule dynamic instability in living cells. J. Cell Biol., 1988, 107(6 Pt 1), 2223-2231.
[61]
Desai, A.; Mitchison, T.J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol., 1997, 13, 83-117.
[62]
Fees, C.P.; Moore, J.K. Regulation of microtubule dynamic instability by the carboxy-terminal tail of beta-tubulin. Life Sci. Alliance 2018. 1(2), pii: e201800054.
[63]
Simon, J.R.; Salmon, E.D. The structure of microtubule ends during the elongation and shortening phases of dynamic instability examined by negative-stain electron microscopy. J. Cell Sci., 1990, 96(Pt 4), 571-582.
[64]
Muroyama, A.; Lechler, T. Microtubule organization, dynamics and functions in differentiated cells. Development, 2017, 144(17), 3012-3021.
[65]
Franker, M.A.; Hoogenraad, C.C. Microtubule-based transport - basic mechanisms, traffic rules and role in neurological pathogenesis. J. Cell Sci., 2013, 126(Pt 11), 2319-2329.
[66]
Conde, C.; Caceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci., 2009, 10(5), 319-332.
[67]
Linck, R.W.; Chemes, H.; Albertini, D.F. The axoneme: the propulsive engine of spermatozoa and cilia and associated ciliopathies leading to infertility. J. Assist. Reprod. Genet., 2016, 33(2), 141-156.
[68]
Satir, P.; Christensen, S.T. Overview of structure and function of mammalian cilia. Annu. Rev. Physiol., 2007, 69, 377-400.
[69]
Brown, J.R.; Schwartz, C.L.; Heumann, J.M.; Dawson, S.C.; Hoenger, A. A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc. J. Struct. Biol., 2016, 194(1), 38-48.
[70]
Chaaban, S.; Brouhard, G.J. A microtubule bestiary: Structural diversity in tubulin polymers. Mol. Biol. Cell, 2017, 28(22), 2924-2931.
[71]
Avila, J.; Ulloa, L.; Gonzalez, J.; Moreno, F.; Diaz-Nido, J. Phosphorylation of microtubule-associated proteins by protein kinase CK2 in neuritogenesis. Cell. Mol. Biol. Res., 1994, 40(5-6), 573-579.
[72]
Diaz-Nido, J.; Serrano, L.; Lopez-Otin, C.; Vandekerckhove, J.; Avila, J. Phosphorylation of a neuronal-specific beta-tubulin isotype. J. Biol. Chem., 1990, 265(23), 13949-13954.
[73]
Diaz-Nido, J.; Serrano, L.; Mendez, E.; Avila, J. A casein kinase II-related activity is involved in phosphorylation of microtubule-associated protein MAP-1B during neuroblastoma cell differentiation. J. Cell Biol., 1988, 106(6), 2057-2065.
[74]
Moreno, F.J.; Diaz-Nido, J.; Jimenez, J.S.; Avila, J. Distribution of CK2, its substrate MAP1B and phosphatases in neuronal cells. Mol. Cell. Biochem., 1999, 191(1-2), 201-205.
[75]
Serrano, L.; Hernandez, M.A.; Diaz-Nido, J.; Avila, J. Association of casein kinase II with microtubules. Exp. Cell Res., 1989, 181(1), 263-272.
[76]
Ulloa, L.; Diaz-Nido, J.; Avila, J. Depletion of casein kinase II by antisense oligonucleotide prevents neuritogenesis in neuroblastoma cells. EMBO J., 1993, 12(4), 1633-1640.
[77]
Serrano, L.; Diaz-Nido, J.; Wandosell, F.; Avila, J. Tubulin phosphorylation by casein kinase II is similar to that found in vivo. J. Cell Biol., 1987, 105(4), 1731-1739.
[78]
Yoshida, N.; Haga, K.; Haga, T. Identification of sites of phosphorylation by G-protein-coupled receptor kinase 2 in beta-tubulin. Eur. J. Biochem., 2003, 270(6), 1154-1163.
[79]
Sgro, F.; Bianchi, F.T.; Falcone, M.; Pallavicini, G.; Gai, M.; Chiotto, A.M.; Berto, G.E.; Turco, E.; Chang, Y.J.; Huttner, W.B.; Di Cunto, F. Tissue-specific control of midbody microtubule stability by Citron kinase through modulation of TUBB3 phosphorylation. Cell Death Differ., 2016, 23(5), 801-813.
[80]
Salvi, M.; Raiborg, C.; Hanson, P.I.; Campsteijn, C.; Stenmark, H.; Pinna, L.A. CK2 involvement in ESCRT-III complex phosphorylation. Arch. Biochem. Biophys., 2014, 545, 83-91.
[81]
Faust, M.; Schuster, N.; Montenarh, M. Specific binding of protein kinase CK2 catalytic subunits to tubulin. FEBS Lett., 1999, 462(1-2), 51-56.
[82]
Faust, M.; Gunther, J.; Morgenstern, E.; Montenarh, M.; Gotz, C. Specific localization of the catalytic subunits of protein kinase CK2 at the centrosomes. Cell. Mol. Life Sci., 2002, 59(12), 2155-2164.
[83]
Lim, A.C.; Tiu, S.Y.; Li, Q.; Qi, R.Z. Direct regulation of microtubule dynamics by protein kinase CK2. J. Biol. Chem., 2004, 279(6), 4433-4439.
[84]
Sanchez-Ponce, D.; Munoz, A.; Garrido, J.J. Casein kinase 2 and microtubules control axon initial segment formation. Mol. Cell. Neurosci., 2011, 46(1), 222-234.
[85]
Del Bene, F. Interkinetic nuclear migration: cell cycle on the move. EMBO J., 2011, 30(9), 1676-1677.
[86]
MacRae, T.H. Tubulin post-translational modifications--enzymes and their mechanisms of action. Eur. J. Biochem., 1997, 244(2), 265-278.
[87]
Wang, Z.Y.; Shi, Q.; Wang, S.B.; Tian, C.; Xu, Y.; Guo, Y.; Chen, C.; Zhang, J.; Dong, X.P. Co-expressions of casein kinase 2 (CK2) subunits restore the down-regulation of tubulin levels and disruption of microtubule structures caused by PrP mutants. J. Mol. Neurosci., 2013, 50(1), 14-22.
[88]
Zhou, R.M.; Jing, Y.Y.; Guo, Y.; Gao, C.; Zhang, B.Y.; Chen, C.; Shi, Q.; Tian, C.; Wang, Z.Y.; Gong, H.S.; Han, J.; Xu, B.L.; Dong, X.P. Molecular interaction of TPPP with PrP antagonized the CytoPrP-induced disruption of microtubule structures and cytotoxicity. PLoS One, 2011, 6(8), e23079.
[89]
Li, X.L.; Wang, G.R.; Jing, Y.Y.; Pan, M.M.; Dong, C.F.; Zhou, R.M.; Wang, Z.Y.; Shi, Q.; Gao, C.; Dong, X.P. Cytosolic PrP induces apoptosis of cell by disrupting microtubule assembly. J. Mol. Neurosci., 2011, 43(3), 316-325.
[90]
Hoyt, C.H.; Oh, C.J.; Beekman, J.B.; Litchfield, D.W.; Lerea, K.M. Identifying and characterizing casein kinase II in human platelets. Blood, 1994, 83(12), 3517-3523.
[91]
Munzer, P.; Walker-Allgaier, B.; Geue, S.; Langhauser, F.; Geuss, E.; Stegner, D.; Aurbach, K.; Semeniak, D.; Chatterjee, M.; Gonzalez Menendez, I.; Marklin, M.; Quintanilla-Martinez, L.; Salih, H.R.; Litchfield, D.W.; Buchou, T.; Kleinschnitz, C.; Lang, F.; Nieswandt, B.; Pleines, I.; Schulze, H.; Gawaz, M.; Borst, O. CK2beta regulates thrombopoiesis and Ca(2+)-triggered platelet activation in arterial thrombosis. Blood, 2017, 130(25), 2774-2785.
[92]
Karki, S.; Tokito, M.K.; Holzbaur, E.L. Casein kinase II binds to and phosphorylates cytoplasmic dynein. J. Biol. Chem., 1997, 272(9), 5887-5891.
[93]
Whyte, J.; Bader, J.R.; Tauhata, S.B.; Raycroft, M.; Hornick, J.; Pfister, K.K.; Lane, W.S.; Chan, G.K.; Hinchcliffe, E.H.; Vaughan, P.S.; Vaughan, K.T. Phosphorylation regulates targeting of cytoplasmic dynein to kinetochores during mitosis. J. Cell Biol., 2008, 183(5), 819-834.
[94]
Schafer, B.; Gotz, C.; Montenarh, M. The kinesin I family member KIF5C is a novel substrate for protein kinase CK2. Biochem. Biophys. Res. Commun., 2008, 375(2), 179-183.
[95]
Xu, J.; Reddy, B.J.; Anand, P.; Shu, Z.; Cermelli, S.; Mattson, M.K.; Tripathy, S.K.; Hoss, M.T.; James, N.S.; King, S.J.; Huang, L.; Bardwell, L.; Gross, S.P. Casein kinase 2 reverses tail-independent inactivation of kinesin-1. Nat. Commun., 2012, 3, 754.
[96]
Pigino, G.; Morfini, G.; Atagi, Y.; Deshpande, A.; Yu, C.; Jungbauer, L.; LaDu, M.; Busciglio, J.; Brady, S. Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5907-5912.
[97]
Mattson-Hoss, M.K.; Niitani, Y.; Gordon, E.A.; Jun, Y.; Bardwell, L.; Tomishige, M.; Gross, S.P. CK2 activates kinesin via induction of a conformational change. Proc. Natl. Acad. Sci. USA, 2014, 111(19), 7000-7005.
[98]
Zamponi, E.; Buratti, F.; Cataldi, G.; Caicedo, H.H.; Song, Y.; Jungbauer, L.M.; LaDu, M.J.; Bisbal, M.; Lorenzo, A.; Ma, J.; Helguera, P.R.; Morfini, G.A.; Brady, S.T.; Pigino, G.F. Prion protein inhibits fast axonal transport through a mechanism involving casein kinase 2. PLoS One, 2017, 12(12), e0188340.
[99]
Li, H.; Liu, X.S.; Yang, X.; Wang, Y.; Wang, Y.; Turner, J.R.; Liu, X. Phosphorylation of CLIP-170 by Plk1 and CK2 promotes timely formation of kinetochore-microtubule attachments. EMBO J., 2010, 29(17), 2953-2965.
[100]
Tanenbaum, M.E.; Galjart, N.; van Vugt, M.A.; Medema, R.H. CLIP-170 facilitates the formation of kinetochore-microtubule attachments. EMBO J., 2006, 25(1), 45-57.
[101]
Etienne-Manneville, S. Cytoplasmic Intermediate Filaments in Cell Biology. Annu. Rev. Cell Dev. Biol., 2018. [Epub ahead of print].
[102]
Kim, S.; Coulombe, P.A. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev., 2007, 21(13), 1581-1597.
[103]
Omary, M.B.; Coulombe, P.A.; McLean, W.H. Intermediate filament proteins and their associated diseases. N. Engl. J. Med., 2004, 351(20), 2087-2100.
[104]
Hesse, M.; Magin, T.M.; Weber, K. Genes for intermediate filament proteins and the draft sequence of the human genome: Novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J. Cell Sci., 2001, 114(Pt 14), 2569-2575.
[105]
Chernyatina, A.A.; Guzenko, D.; Strelkov, S.V. Intermediate filament structure: the bottom-up approach. Curr. Opin. Cell Biol., 2015, 32, 65-72.
[106]
Snider, N.T.; Omary, M.B. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 163-177.
[107]
Huen, A.C.; Park, J.K.; Godsel, L.M.; Chen, X.; Bannon, L.J.; Amargo, E.V.; Hudson, T.Y.; Mongiu, A.K.; Leigh, I.M.; Kelsell, D.P.; Gumbiner, B.M.; Green, K.J. Intermediate filament-membrane attachments function synergistically with actin-dependent contacts to regulate intercellular adhesive strength. J. Cell Biol., 2002, 159(6), 1005-1017.
[108]
Kroger, C.; Loschke, F.; Schwarz, N.; Windoffer, R.; Leube, R.E.; Magin, T.M. Keratins control intercellular adhesion involving PKC-alpha-mediated desmoplakin phosphorylation. J. Cell Biol., 2013, 201(5), 681-692.
[109]
Leube, R.E.; Moch, M.; Windoffer, R. Intermediate filaments and the regulation of focal adhesion. Curr. Opin. Cell Biol., 2015, 32, 13-20.
[110]
Seltmann, K.; Cheng, F.; Wiche, G.; Eriksson, J.E.; Magin, T.M. Keratins stabilize hemidesmosomes through regulation of beta4-integrin turnover. J. Invest. Dermatol., 2015, 135(6), 1609-1620.
[111]
Toivola, D.M.; Tao, G.Z.; Habtezion, A.; Liao, J.; Omary, M.B. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol., 2005, 15(11), 608-617.
[112]
Hyder, C.L.; Pallari, H.M.; Kochin, V.; Eriksson, J.E. Providing cellular signposts--post-translational modifications of intermediate filaments. FEBS Lett., 2008, 582(14), 2140-2148.
[113]
Carino, A.; Graziosi, L.; D’Amore, C.; Cipriani, S.; Marchiano, S.; Marino, E.; Zampella, A.; Rende, M.; Mosci, P.; Distrutti, E.; Donini, A.; Fiorucci, S. The bile acid receptor GPBAR1 (TGR5) is expressed in human gastric cancers and promotes epithelial-mesenchymal transition in gastric cancer cell lines. Oncotarget, 2016, 7(38), 61021-61035.
[114]
Janosch, P.; Kieser, A.; Eulitz, M.; Lovric, J.; Sauer, G.; Reichert, M.; Gounari, F.; Buscher, D.; Baccarini, M.; Mischak, H.; Kolch, W. The Raf-1 kinase associates with vimentin kinases and regulates the structure of vimentin filaments. FASEB J., 2000, 14(13), 2008-2021.
[115]
Turowski, P.; Myles, T.; Hemmings, B.A.; Fernandez, A.; Lamb, N.J. Vimentin dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit B55. Mol. Biol. Cell, 1999, 10(6), 1997-2015.
[116]
Janosch, P.; Schellerer, M.; Seitz, T.; Reim, P.; Eulitz, M.; Brielmeier, M.; Kolch, W.; Sedivy, J.M.; Mischak, H. Characterization of IkappaB kinases. IkappaB-alpha is not phosphorylated by Raf-1 or protein kinase C isozymes, but is a casein kinase II substrate. J. Biol. Chem., 1996, 271(23), 13868-13874.
[117]
O’Farrell, F.; Loog, M.; Janson, I.M.; Ek, P. Kinetic study of the inhibition of CK2 by heparin fragments of different length. Biochim. Biophys. Acta, 1999, 1433(1-2), 68-75.
[118]
Yang, L.; Tang, L.; Dai, F.; Meng, G.; Yin, R.; Xu, X.; Yao, W. Raf-1/CK2 and RhoA/ROCK signaling promote TNF-alpha-mediated endothelial apoptosis via regulating vimentin cytoskeleton. Toxicology, 2017, 389, 74-84.
[119]
Lustri, A.M.; Di Matteo, S.; Fraveto, A.; Costantini, D.; Cantafora, A.; Napoletano, C.; Bragazzi, M.C.; Giuliante, F.; De Rose, A.M.; Berloco, P.B.; Grazi, G.L.; Carpino, G.; Alvaro, D. TGF-beta signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures. PLoS One, 2017, 12(9), e0183932.
[120]
Wu, D.; Sui, C.; Meng, F.; Tian, X.; Fu, L.; Li, Y.; Qi, X.; Cui, H.; Liu, Y.; Jiang, Y. Stable knockdown of protein kinase CK2-alpha (CK2alpha) inhibits migration and invasion and induces inactivation of hedgehog signaling pathway in hepatocellular carcinoma Hep G2 cells. Acta Histochem., 2014, 116(8), 1501-1508.
[121]
Zhang, F.; Yang, B.; Shi, S.; Jiang, X. RNA interference (RNAi) mediated stable knockdown of protein casein kinase 2-alpha (CK2alpha) inhibits migration and invasion and enhances cisplatin-induced apoptosis in HEp-2 laryngeal carcinoma cells. Acta Histochem., 2014, 116(6), 1000-1006.
[122]
Zou, J.; Luo, H.; Zeng, Q.; Dong, Z.; Wu, D.; Liu, L. Protein kinase CK2alpha is overexpressed in colorectal cancer and modulates cell proliferation and invasion via regulating EMT-related genes. J. Transl. Med., 2011, 9, 97.
[123]
Golden, D.; Cantley, L.G. Casein kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm. Oncogene, 2015, 34(36), 4702-4712.
[124]
Barry, D.M.; Millecamps, S.; Julien, J.P.; Garcia, M.L. New movements in neurofilament transport, turnover and disease. Exp. Cell Res., 2007, 313(10), 2110-2120.
[125]
Binukumar, B.K.; Shukla, V.; Amin, N.D.; Reddy, P.; Skuntz, S.; Grant, P.; Pant, H.C. Topographic regulation of neuronal intermediate filaments by phosphorylation, role of peptidyl-prolyl isomerase 1: Significance in neurodegeneration. Histochem. Cell Biol., 2013, 140(1), 23-32.
[126]
Link, W.T.; Grant, P.; Hidaka, H.; Pant, H.C. Casein kinases I and II from squid brain exhibit selective neurofilament phosphorylation. Mol. Cell. Neurosci., 1992, 3(6), 548-558.
[127]
Nakamura, Y.; Hashimoto, R.; Kashiwagi, Y.; Wada, Y.; Sakoda, S.; Miyamae, Y.; Kudo, T.; Takeda, M. Casein kinase II is responsible for phosphorylation of NF-L at Ser-473. FEBS Lett., 1999, 455(1-2), 83-86.
[128]
Xu, Z.S.; Liu, W.S.; Willard, M. Identification of serine 473 as a major phosphorylation site in the neurofilament polypeptide NF-L. J. Neurosci., 1990, 10(6), 1838-1846.
[129]
Rutherford, N.J.; Brooks, M.; Giasson, B.I. Novel antibodies to phosphorylated alpha-synuclein serine 129 and NFL serine 473 demonstrate the close molecular homology of these epitopes. Acta Neuropathol. Commun., 2016, 4(1), 80.
[130]
Rowse, A.L.; Gibson, S.A.; Meares, G.P.; Rajbhandari, R.; Nozell, S.E.; Dees, K.J.; Hjelmeland, A.B.; McFarland, B.C.; Benveniste, E.N. Protein kinase CK2 is important for the function of glioblastoma brain tumor initiating cells. J. Neurooncol., 2017, 132(2), 219-229.
[131]
Caudron, F.; Barral, Y. Septins and the lateral compartmentalization of eukaryotic membranes. Dev. Cell, 2009, 16(4), 493-506.
[132]
Spiliotis, E.T. Spatial effects - site-specific regulation of actin and microtubule organization by septin GTPases. J. Cell Sci., 2018, 131(1), jcs207555.
[133]
Marquardt, J.; Chen, X.; Bi, E. Architecture, remodeling, and functions of the septin cytoskeleton. Cytoskeleton (Hoboken),, 2018. [Epub ahead of print].
[134]
Leipe, D.D.; Wolf, Y.I.; Koonin, E.V.; Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol., 2002, 317(1), 41-72.
[135]
Bridges, A.A.; Zhang, H.; Mehta, S.B.; Occhipinti, P.; Tani, T.; Gladfelter, A.S. Septin assemblies form by diffusion-driven annealing on membranes. Proc. Natl. Acad. Sci. USA, 2014, 111(6), 2146-2151.
[136]
Hagiwara, A.; Tanaka, Y.; Hikawa, R.; Morone, N.; Kusumi, A.; Kimura, H.; Kinoshita, M. Submembranous septins as relatively stable components of actin-based membrane skeleton. Cytoskeleton (Hoboken), 2011, 68(9), 512-525.
[137]
Cao, L.; Yu, W.; Wu, Y.; Yu, L. The evolution, complex structures and function of septin proteins. Cell. Mol. Life Sci., 2009, 66(20), 3309-3323.
[138]
Kinoshita, M. The septins. Genome Biol., 2003, 4(11), 236.
[139]
Russell, S.E.; Hall, P.A. Septin genomics: A road less travelled. Biol. Chem., 2011, 392(8-9), 763-767.
[140]
Sellin, M.E.; Stenmark, S.; Gullberg, M. Cell type-specific expression of SEPT3-homology subgroup members controls the subunit number of heteromeric septin complexes. Mol. Biol. Cell, 2014, 25(10), 1594-1607.
[141]
Hernandez-Rodriguez, Y.; Momany, M. Posttranslational modifications and assembly of septin heteropolymers and higher-order structures. Curr. Opin. Microbiol., 2012, 15(6), 660-668.
[142]
Qi, M.; Yu, W.; Liu, S.; Jia, H.; Tang, L.; Shen, M.; Yan, X.; Saiyin, H.; Lang, Q.; Wan, B.; Zhao, S.; Yu, L. Septin1, a new interaction partner for human serine/threonine kinase aurora-B. Biochem. Biophys. Res. Commun., 2005, 336(3), 994-1000.
[143]
She, Y.M.; Huang, Y.W.; Zhang, L.; Trimble, W.S. Septin 2 phosphorylation: theoretical and mass spectrometric evidence for the existence of a single phosphorylation site in vivo. Rapid Commun. Mass Spectrom., 2004, 18(10), 1123-1130.
[144]
Huang, Y.W.; Surka, M.C.; Reynaud, D.; Pace-Asciak, C.; Trimble, W.S. GTP binding and hydrolysis kinetics of human septin 2. FEBS J., 2006, 273(14), 3248-3260.
[145]
Yu, W.; Ding, X.; Chen, F.; Liu, M.; Shen, S.; Gu, X.; Yu, L. The phosphorylation of SEPT2 on Ser218 by casein kinase 2 is important to hepatoma carcinoma cell proliferation. Mol. Cell. Biochem., 2009, 325(1-2), 61-67.
[146]
Borgo, C.; Franchin, C.; Scalco, S.; Bosello-Travain, V.; Donella-Deana, A.; Arrigoni, G.; Salvi, M.; Pinna, L.A. Generation and quantitative proteomics analysis of CK2alpha/alpha’((-/-)) cells. Sci. Rep., 2017, 7, 42409.
[147]
Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: a sequence logo generator. Genome Res., 2004, 14(6), 1188-1190.
[148]
Tabas-Madrid, D.; Nogales-Cadenas, R.; Pascual-Montano, A. GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics Nucleic. Acids Res, 2012. 40(Web Server issue), W478-483
[149]
Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23(21), 2947-2948.
[150]
Huang, P.S.; Ban, Y.E.; Richter, F.; Andre, I.; Vernon, R.; Schief, W.R.; Baker, D. RosettaRemodel: A generalized framework for flexible backbone protein design. PLoS One, 2011, 6(8), e24109.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 6
Year: 2019
Page: [547 - 562]
Pages: 16
DOI: 10.2174/1389203720666190119124846

Article Metrics

PDF: 48
HTML: 6
EPUB: 1
PRC: 2