Novel Fluorine Boron Hybrid Complex as Potential Antiproliferative Drugs on Colorectal Cancer Cell Line

Author(s): Yasin Tülüce* , Hawro D.I. Masseh , İsmail Koyuncu , Ahmet Kiliç , Mustafa Durgun , Halil Özkol .

Journal Name: Anti-Cancer Agents in Medicinal Chemistry

Volume 19 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: Colorectal Cancer (CRC) is one of the most common types of cancer in both sexes; it is considered to be the third leading death factor among other types of cancer.

This study aimed to examine the cytotoxicity of a new fluorine boron hybrid complex [L(BF2)2] on human colorectal adenocarcinoma cell line (HT-29), based on the potency of the half-metal based complexes to initiate apoptosis.

Methods: Based on this data, the impact of it in different concentrations on HT-29 cancerous cells was determined by apoptosis (ELISA, DNA fragmentation laddering, AO/EB staining), cytotoxicity (MTT) and genotoxicity (comet assay). We also calculated the cellular Oxidative Stress Index (OSI) by measuring the Total Antioxidant Status (TAS) and Total Oxidant Status (TOS).

Results: Firstly, [L(BF2)2] was examined in view of cytotoxic effect in seven various cell lines (HELA, DU-145, PC3, DLD-1, ECC, PNT1-A and HT-29), and then it was found that the applied complex had a mighty antiproliferative action on HT-29 cells. Thus, the most effective IC50 value turned out to be 26.49 µM in HT-29 cell line. The present study found a tremendous efficacy of [L(BF2)2] on HT-29 cells, especially in terms of damage to cancer cells' DNA, and consequently caused a series of reactions leading to programmed cell death.

Conclusion: The results suggest that the [L(BF2)2] as a novel fluorine boron hybrid complex can induce the apoptosis of HT-29 colorectal cancerous cell line and is a possible candidate for future cancer studies.

Keywords: Antiproliferative, apoptosis, colorectal cancer cytotoxicity, DNA injury, chemotherapy, ELISA.

[1]
Stewart, B.W.; Wild, C.P. World Cancer Report. WHO, 2014. Lyon, France.
[2]
Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008. Int. J. Cancer, 2010, 127, 2893-2917.
[3]
American Cancer Society. Cancer Facts and Figures, Atlanta, 2015, pp. 1-66.
[4]
Willett, W. The search for the causes of breast and colon cancer. Nature, 1989, 338, 389-394.
[5]
Chen, G.; Goeddel, D.V. TNF-R1 signaling: A beautiful pathway. Science, 2002, 296, 1634-1635.
[6]
Vasen, H.F.; Mecklin, J.; Khan, P.M.; Lynch, H.T. The international collaborative group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis. Col. Rec., 1991, 34, 424-425.
[7]
Vasen, H.; Watson, P.; Mecklin, J.; Lynch, H. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the international collaborative group on HNPCC. Gastro, 1999, 116, 1453-1456.
[8]
Rustgi, A.K. The genetics of hereditary colon cancer. Gend. Dev., 2007, 21, 2525-2538.
[9]
Sieber, O.M.; Lipton, L.; Crabtree, M.; Heinimann, K.; Fidalgo, P.; Phillips, R.K.; Tomlinson, I.P.M. Multiple Colorectal Adenomas, classic adenomatous polyposis, and germ-line mutations in. N. Engl. J. Med., 2003, 348, 791-799.
[10]
Johnstone, R.W.; Ruefli, A.A.; Lowe, S.W. Apoptosis: A link between cancer genetics and chemotherapy. Cell, 2002, 108, 153-164.
[11]
Bone, R.; Shenvi, A.B.; Kettner, C.A.; Agard, D.A. Serine protease mechanism: structure of an inhibitory complex of alpha-lytic protease and a tightly bound peptide boronic acid. Biochemistry, 1987, 26, 7609-7614.
[12]
Canturk, Z.; Tunali, Y.; Korkmaz, S.; Gulbaş, Z. Cytotoxic and apoptotic effects of boron compounds on leukemia cell line. Cytotechnology, 2016, 68, 87-93.
[13]
Hajrezaie, M.; Paydar, M.; Looi, C.Y.; Moghadamtousi, S.Z.; Hassandarvish, P.; Salga, M.S.; Abdulla, M.A. Apoptotic effect of novel Schiff based CdCl2(C14H21N3O2) complex is mediated via activation of the mitochondrial pathway in colon cancer cells. Sci. Rep., 2015, 5, 9097.
[14]
Kilic, A.; Ozbahceci, O.; Durgun, M.; Aydemir, M. Different hemisalen/ salan ligand containing binuclear boron-fluoride complexes: Synthesis, spectroscopy, fluorescence properties, and catalysis. Polycycl. Aromat. Comp., 2017, 1-18.
[15]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65, 55-63.
[16]
Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res., 1988, 175, 184-191.
[17]
Kocyigit, A.; Koyuncu, I.; Taskin, A.; Dikilitas, M.; Bahadori, F.; Turkkan, B. Antigenotoxic and antioxidant potentials of newly derivatized compound naringenin-oxime relative to naringenin on human mononuclear cells. Drug Chem. Toxicol., 2016, 39, 66-73.
[18]
Suman, S.; Pandey, A.; Chandna, S. An improved non-enzymatic “DNA ladder assay” for more sensitive and early detection of apoptosis. Cytotechnology, 2012, 64, 9-14.
[19]
Liu, K.; Liu, P-C.; Liu, R.; Wu, X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med. Sci. Monit. Basic Res., 2015, 21, 15.
[20]
Darzynkiewicz, Z.; Bruno, S.; Del Bino, G.; Gorczyca, W.; Hotz, M.A.; Lassota, P. Features of apoptotic cells measured by flow cytometry. Cytometry, 1992, 13, 795-808.
[21]
Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem., 2004, 37, 277-285.
[22]
Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem., 2005, 38, 1103-1111.
[23]
Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP Assay. Anal. Biochem., 1996, 76, 70-76.
[24]
Wallace, D.C. Mitochondria and cancer. Nat. Rev. Cancer, 2012, 12, 685-698.
[25]
Jeon, T.I.; Jung, C.H.; Cho, J.Y.; Park, D.K.; Moon, J.H. Identification of an anticancer compound against HT-29 cells from Phellinus linteus grown on germinated brown rice. Asian Pac. J. Trop. Biomed., 2013, 3, 785-789.
[26]
Hassan, M.; Watari, H.; Abualmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int., 2014, 150845, 1-23.
[27]
Sergent, J.A.; Paget, V.; Chevillard, S. Toxicity and genotoxicity of Nano-SiO2 on human epithelial intestinal HT-29 cell line. Ann. Occup. Hyg., 2012, 56, 622-630.
[28]
Ihnen, M.; Eulenburg, C.; Kolarova, T.; Qi, J.W.; Kanthinh, M.; Meenal, C.; Konecny, G.E. Therapeutic potential of the poly(ADP-ribose) polymerase inhibitor rucaparib for the treatment of sporadic human ovarian cancer. Mol. Cancer Ther., 2013, 12, 1002-1015.
[29]
Maheswari, P.U.; van der Ster, M.; Smulders, S.; Barends, S.; van Wezel, G.P.; Massera, C.; Roy, S.; den Dulk, H.; Gamez, P.; Reedijk, J. Structure, cytotoxicity, and DNA-cleavage properties of the complex Cu II (pbt) Br2. Inorg. Chem., 2008, 47, 3719-3727.
[30]
Roy, S.; Maheswari, P.U.; Lutz, M.; Spek, A.L.; den Dulk, H.; Barends, S.; van Wezel, G.P.; Hartl, F.; Reedijk, J. DNA cleavage and antitumour activity of platinum(II) and copper(II) compounds derived from 4-methyl-2-N-(2-pyridylmethyl) aminophenol: Spectroscopic, electrochemical and biological investigation. Roy. Soc. Chem., 2009, 48, 10846-10860.
[31]
Eckhert, C.D. Boron stimulates embryonic trout growth. J. Nutr., 1998, 128, 2488-2493.
[32]
Perego, S.; Cosentino, S.; Fiorilli, A.; Tettamanti, G.; Ferraretto, A. Casein phosphopeptides modulate proliferation and apoptosis in HT-29 cell line through their interaction with voltage-operated L-type calcium channels. J. Nutr. Biochem., 2012, 23, 808-816.
[33]
Paydar, M.; Kamalidehghan, B.; Wong, Y.L.; Wong, W.F.; Looi, C.Y.; Mustafa, M.R. Evaluation of cytotoxic and chemotherapeutic properties of boldine in breast cancer using in vitro and in vivo models. Drug Des. Devel. Ther., 2014, 8, 719-733.
[34]
Wong, E.; Giandomenico, C.M. Current status of platinum-based antitumor drugs. Chem. Rev., 1999, 99, 2451-2466.
[35]
Cheung-Ong, K.; Giaever, G.; Nislow, C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem. Biol., 2013, 20, 648-659.
[36]
Renschler, M.F. The emerging role of reactive oxygen species in cancer therapy. Eur. J. Cancer, 2004, 40, 1934-1940.
[37]
Li, Z.; Yang, Y.; Ming, M.; Liu, B. Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem. Biophys. Res. Commun., 2011, 414, 5-8.
[38]
Tiloke, C.; Phulukdaree, A.; Chuturgoon, A. The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells. BMC Complement. Altern. Med., 2013, 13, 226.
[39]
Tülüce, Y.; Ahmed, B.A.; Koyuncu, İ.; Durgun, M. The cytotoxic, apoptotic and oxidative effects of carbonic anhydrase IX inhibitor on colorectal cancer cells. J. Bioenerg. Biomembr., 2018, 50, 107-116.
[40]
Tülüce, Y.; Lak, P.T.A.; Koyuncu, İ.; Kılıç, A.; Durgun, M.; Özkol, H. The apoptotic, cytotoxic and genotoxic effect of novel binuclear boron-fluoride complex on endometrial cancer. Biometals, 2017, 30, 933-944.
[41]
Bernardi, P.; Krauskopf, A.; Basso, E.; Petronilli, V.; Blalchy-Dyson, E.; Di Lisa, F.; Forte, M.A. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J., 2006, 273, 2077-2099.
[42]
Trushina, E.; McMurray, C.T. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience, 2007, 145, 1233-1248.
[43]
Chen, F.; Vallyathan, V.; Castranova, V.; Shi, X. Cell apoptosis induced by carcinogenic metals. Mol. Cell. Biochem., 2001, 222, 183-188.
[44]
Trejo-Solís, C.; Palencia, G.; Zuñiga, S.; Rodríguez-Ropon, A.; Osorio-Rico, L.; Torres Luvia, S.; Sotelo, J. Cas IIgly induces apoptosis in glioma C6 cells in vitro and in vivo through Caspase-dependent and Caspase-independent mechanisms. Neoplasia, 2005, 7, 563-574.
[45]
Carvallo-Chaigneau, F.; Trejo-Solís, C.; Gómez-Ruiz, C.; Rodríguez-Aguilera, E.; MacÍas-Rosales, L.; Cortés-Barberena, E.; Constantino-Casas, F. Casiopeina III-ia induces apoptosis in HCT-15 cells in vitro through caspase-dependent mechanisms and has antitumor effect in vivo. Biometals, 2008, 21, 17-28.
[46]
Tuluce, Y.; Gorgisen, G.; Gulacar, I.M.; Koyuncu, I.; Durgun, M.; Akocak, S.; Ozkol, H.; Kaya, Z. Antiproliferative and apoptotic role of novel synthesized Cu(II) complex with \3-(3-(4-fluorophenyl) Triaz-1-en-1-yl) benzenesulfonamide in common cancer models. Anticancer Res., 2018, 38, 5115-5120.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 5
Year: 2019
Page: [627 - 637]
Pages: 11
DOI: 10.2174/1871520619666190117142353
Price: $58

Article Metrics

PDF: 23
HTML: 2