Influence of Calcium Ions on the Thermal Characteristics of α-amylase from Thermophilic Anoxybacillus sp. GXS-BL

Author(s): Si-Ming Liao , Ge Liang , Jing Zhu , Bo Lu , Li-Xin Peng , Qing-Yan Wang , Yu-Tuo Wei , Guo-Ping Zhou* , Ri-Bo Huang* .

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: α-Amylases are starch-degrading enzymes and used widely, the study on thermostability of α-amylase is a central requirement for its application in life science and biotechnology.

Objective: In this article, our motivation is to study how the effect of Ca2+ ions on the structure and thermal characterization of α-amylase (AGXA) from thermophilic Anoxybacillus sp.GXS-BL.

Methods: α-Amylase activity was assayed with soluble starch as the substrate, and the amount of sugar released was determined by DNS method. For AGXA with calcium ions and without calcium ions, optimum temperature (Topt), half-inactivation temperature (T50) and thermal inactivation (halflife, t1/2) was evaluated. The thermal denaturation of the enzymes was determined by DSC and CD methods. 3D structure of AGXA was homology modeled with α-amylase (5A2A) as the template.

Results: With calcium ions, the values of Topt, T50, t1/2, Tm and ΔH in AGXA were significantly higher than those of AGXA without calcium ions, showing calcium ions had stabilizing effects on α-amylase structure with the increased temperature. Based on DSC measurements AGXA underwent thermal denaturation by adopting two-state irreversible unfolding processes. Based on the CD spectra, AGXA without calcium ions exhibited two transition states upon unfolding, including α- helical contents increasing, and the transition from α-helices to β-sheet structures, which was obviously different in AGXA with Ca2+ ions, and up to 4 Ca2+ ions were located on the inter-domain or intra-domain regions according to the modeling structure.

Conclusion: These results reveal that Ca2+ ions have pronounced influences on the thermostability of AGXA structure.

Keywords: α-amylase, calcium ions, circular dichroism, differential scanning calorimetry, homology modeling, thermostability.

Zeldes, B.M.; Keller, M.W.; Loder, A.J.; Straub, C.T.; Adams, M.W.W.; Kelly, R.M. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front. Microbiol., 2015, 6, 1209.
Rezanka, T.; Kambourova, M.; Derekova, A.; Kolouchova, I.; Sigler, K. LC-ESI-MS/MS identification of polar lipids of two thermophilic anoxybacillus bacteria containing a unique lipid pattern. Lipids, 2012, 47(7), 729-739.
Bruins, M.E.; Janssen, A.E.M.; Boom, R.M. Thermozymes and their applications. A review of recent literature and patents. Appl. Biochem. Biotechnol., 2001, 90(2), 155-186.
Singh, B.; Bulusu, G.; Mitre, A. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: Insights from molecular dynamics simulations. J. Phys. Chem. B, 2015, 119(2), 392-409.
Janecek, S. Alpha-amylase family: Molecular biology and evolution. Prog. Biophys. Mol. Biol., 1997, 67(1), 67-97.
Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J., 1991, 280(Pt 2), 309-316.
Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-active enzymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res., 2009, 37, D233-D238.
van der Maarel, M.; van der Veen, B.; Uitdehaag, J.C.M.; Leemhuis, H.; Dijkhuizen, L. Properties and applications of starch-converting enzymes of the alpha-amylase family. J. Biotechnol., 2002, 94(2), 137-155.
Gupta, R.; Gigras, P.; Mohapatra, H.; Goswami, V.K.; Chauhan, B. Microbial alpha-amylases: A biotechnological perspective. Process Biochem., 2003, 38(11), 1599-1616.
Aguloglu, S.; Ensari, N.Y.; Uyar, F.; Otludil, B. The effects of amino acids on production and transport of alpha-amylase through bacterial membranes. Starch-Starke, 2000, 52 (8-9), 290-295.
Pikuta, E.; Lysenko, A.; Chuvilskaya, N.; Mendrock, U.; Hippe, H.; Suzina, N.; Nikitin, D.; Osipov, G.; Laurinavichius, K. Anoxybacillus pushchinensis gen. nov., sp nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus falvithermus comb. nov. Int. J. Syst. Evol. Microbiol., 2000, 50, 2109-2117.
Goh, K.M.; Kahar, U.M.; Chai, Y.Y.; Chong, C.S.; Chai, K.P.; Ranjani, V.; Illias, R.M.; Chan, K.G. Recent discoveries and applications of Anoxybacillus. Appl. Microbiol. Biotechnol., 2013, 97(4), 1475-1488.
Declerck, N.; Machius, M.; Joyet, P.; Wiegand, G.; Huber, R.; Gaillardin, C. Hyperthermostabilization of Bacillus licheniformis alpha-amylase and modulation of its stability over a 50 degrees C temperature range. Protein Eng., 2003, 16(4), 287-293.
Torrance, J.W.; MacArthur, M.W.; Thornton, J.M. Evolution of binding sites for zinc and calcium ions playing structural roles. Proteins, 2008, 71(2), 813-830.
Goyal, N.; Gupta, J.K.; Soni, S.K. A novel raw starch digesting thermostable alpha-amylase from Bacillus sp I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb. Technol., 2005, 37(7), 723-734.
Khajeh, K.; Ranjbar, B.; Naderi-Manesh, H.; Habibi, A.E.; Nemat-Gorgani, M. Chemical modification of bacterial alpha-amylases: Changes in tertiary structures and the effect of additional calcium Bba-Protein Struct. M., 2001, 1548 (2), 229-237.
Bush, D.S.; Sticher, L.; Vanhuystee, R.; Wagner, D.; Jones, R.L. The calcium requirement for stability and enzymatic-activity of 2 isoforms of barley aleurone alpha-amylase. J. Biol. Chem., 1989, 264(32), 19392-19398.
Larson, S.B.; Greenwood, A.; Cascio, D.; Day, J.; McPherson, A. Refined molecular-structure of pig pancreatic alpha-amylase at 2-center-dot-1 angstrom resolution. J. Mol. Biol., 1994, 235(5), 1560-1584.
Buisson, G.; Duee, E.; Haser, R.; Payan, F. 3 dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution-role of calcium in structure and activity. EMBO J., 1987, 6(13), 3909-3916.
Hmidet, N.; Bayoudh, A.; Berrin, J.G.; Kanoun, S.; Juge, N.; Nasri, M. Purification and biochemical characterization of a novel alpha-amylase from Bacillus licheniformis NH1 - Cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Process Biochem., 2008, 43(5), 499-510.
Asoodeh, A.; Chamani, J.; Lagzian, M. A novel thermostable, acidophilic alpha-amylase from a new thermophilic “Bacillus sp Ferdowsicous” isolated from Ferdows hot mineral spring in Iran: Purification and biochemical characterization. Int. J. Biol. Macromol., 2010, 46(3), 289-297.
Sharma, A.; Satyanarayana, T. High maltose-forming, Ca2+-independent and acid stable alpha-amylase from a novel acidophilic bacterium, Bacillus acidicola. Biotechnol. Lett., 2010, 32(10), 1503-1507.
Tanaka, A.; Hoshino, E. Secondary calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase obtained from inhibition kinetics. J. Biosci. Bioeng., 2003, 96(3), 262-267.
Mehta, D.; Satyanarayana, T. Biochemical and molecular characterization of recombinant acidic and thermostable raw-starch hydrolysing alpha-amylase from an extreme thermophile Geobacillus thermoleovorans. J. Mol. Catal., B Enzym., 2013, 85-86, 229-238.
Liao, S.M.; Sun, L.; Wang, Q.Y.; Shen, N.K.; Zhu, J.; Huang, G.Y.; Huang, J.M.; Chen, D.; Huang, R.B. Screening of thermostable α-amylase producing strain and cloning, expression and characterization of the gene AmyGX. Guangxi Sci., 2017, 2017(1), 92-99.
Janecek, S.; Kuchtova, A.; Petrovicova, S. A novel GH13 subfamily of alpha-amylases with a pair of tryptophans in the helix alpha 3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus. Biologia, 2015, 70(10), 1284-1294.
Mok, S.C.; Teh, A.H.; Saito, J.A.; Najimudin, N.; Alam, M. Crystal structure of a compact alpha-amylase from Geobacillus thermoleovorans. Enzyme Microb. Technol., 2013, 53(1), 46-54.
Chai, K.P.; Othman, N.F.B.; Teh, A.H.; Ho, K.L.; Chan, K.G.; Shamsir, M.S.; Goh, K.M.; Ng, C.L. Crystal structure of anoxybacillus alpha-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass. Sci. Rep. UK, 2016, 6, 23126.
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 1959, 31(3), 426-428.
Sali, A.; Potterton, L.; Yuan, F.; van Vlijmen, H.; Karplus, M. Evaluation of comparative protein modeling by MODELLER. Proteins, 1995, 23(3), 318-326.
Shen, M.Y.; Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci., 2006, 15(11), 2507-2524.
Lovell, S.C.; Davis, I.W.; Adrendall, W.B.; de Bakker, P.I.W.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by C alpha geometry: Phi, psi and C beta deviation. Proteins, 2003, 50(3), 437-450.
Eisenberg, D.; Luthy, R.; Bowie, J.U. VERIFY3D: Assessment of protein models with three-dimensional profiles, in macromolecular crystallography.Pt B, C.W. Carter and R.M. Sweet, Editors. , 1997, pp. 396-404.
MacGregor, E.A.; Janecek, S.; Svensson, B. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes BBA-Protein Struct. M, 2001.1546, (1), 1-20.
Igarashi, K.; Hatada, Y.; Ikawa, K.; Araki, H.; Ozawa, T.; Kobayashi, T.; Ozaki, K.; Ito, S. Improved thermostability of a Bacillus alpha-amylase by deletion of an arginine-glycine residue is caused by enhanced calcium binding. Biochem. Biophys. Res. Commun., 1998, 248(2), 372-377.
Lin, L.L.; Huang, C.C.; Lo, H.F. Impact of Arg210-Ser211 deletion on thermostability of a truncated Bacillus sp strain TS-23 alpha-amylase. Process Biochem., 2008, 43(5), 559-565.
D’Amico, S.; Marx, J.C.; Gerday, C.; Feller, G. Activity-stability relationships in extremophilic enzymes. J. Biol. Chem., 2003, 278(10), 7891-7896.
Hagihara, H.; Igarashi, K.; Hayashi, Y.; Endo, K.; Ikawa-Kitayama, K.; Ozaki, K.; Kawai, S.; Ito, S. Novel alpha-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl. Environ. Microbiol., 2001, 67(4), 1744-1750.
Chai, Y.Y.; Abd Rahman, R.N.Z.R.; Illias, R.M.; Goh, K.M. Cloning and characterization of two new thermostable and alkalitolerant alpha-amylases from the Anoxybacillus species that produce high levels of maltose. J. Ind. Microbiol. Biotechnol., 2012, 39(5), 731-741.
Kikani, B.A.; Singh, S.P. The stability and thermodynamic parameters of a very thermostable and calcium-independent alpha-amylase from a newly isolated bacterium, Anoxybacillus beppuensis TSSC-1. Process Biochem., 2012, 47(12), 1791-1798.
Fukada, H.; Takahashi, K.; Sturtevant, J.M. Differential scanning calorimetric study of the thermal unfolding of Taka-amylase A from Aspergillus oryzae. Biochemistry, 1987, 26(13), 4063-4068.
Johnson, C.M. Differential scanning calorimetry as a tool for protein folding and stability. Arch. Biochem. Biophys., 2013, 531(1-2), 100-109.
Durowoju, I.B.; Bhandal, K.S.; Hu, J.; Carpick, B.; Kirkitadze, M. Differential scanning calorimetry. A method for assessing the thermal stability and conformation of protein antigen. J. Vis. Exp., 2017, 2017(121)
Fitter, J.; Herrmann, R.; Dencher, N.A.; Blume, A.; Hauss, T. Activity and stability of a thermostable alpha-amylase compared to its mesophilic homologue: Mechanisms of thermal adaptation. Biochemistry, 2001, 40(35), 10723-10731.
Nielsen, A.D.; Pusey, M.L.; Fuglsang, C.C.; Westh, P. A proposed mechanism for the thermal denaturation of a recombinant Bacillus halmapalus alpha-amylase - the effect of calcium ions. BBA-Proteins Proteom., 2003, 1652(1), 52-63.
Feller, G.; d’Amico, D.; Gerday, C. Thermodynamic stability of a cold-active alpha-amylase from the Antarctic bacterium Alteromonas haloplanctis. Biochemistry, 1999, 38(14), 4613-4619.
Lumry, R.; Eyring, H. Conformation changes of proteins. J. Phys. Chem., 1954, 58(2), 110-120.
Sanchezruiz, J.M. Theoretical-analysis of lumry-eyring models in differential scanning calorimetry. Biophys. J., 1992, 61(4), 921-935.
del Pino, I.M.P.; Ibarra-Molero, B.; Sanchez-Ruiz, J.M. Lower kinetic limit to protein thermal stability: A proposal regarding protein stability in vivo and its relation with misfolding diseases. Proteins, 2000, 40(1), 58-70.
Rodriguez, V.B.; Alameda, E.J.; Gallegos, J.F.M.; Requena, A.R.; Lopez, A.I.G. Enzymatic hydrolysis of soluble starch with an alpha-amylase from Bacillus licheniformis. Biotechnol. Prog., 2006, 22(3), 718-722.
Sanchezruiz, J.M.; Lopezlacomba, J.L.; Cortijo, M.; Mateo, P.L. Differential scanning calorimetry of the irreversible thermal-denaturation of thermolysin. Biochemistry, 1988, 27(5), 1648-1652.
Kurganov, B.I.; Lyubarev, A.E.; Sanchez-Ruiz, J.M.; Shnyrov, V.L. Analysis of differential scanning calorimetry data for proteins. Criteria of validity of one-step mechanism of irreversible protein denaturation. Biophys. Chem., 1997, 69(2-3), 125-135.
Vogl, T.; Jatzke, C.; Hinz, H.J.; Benz, J.; Huber, R. Thermodynamic stability of annexin V E17G: Equilibrium parameters from an irreversible unfolding reaction. Biochemistry, 1997, 36(7), 1657-1668.
Rodriguez, A.; Pina, D.G.; Yelamos, B.; Leon, J.J.C.; Zhadan, G.G.; Villar, E.; Gavilanes, F.; Roig, M.G.; Sakharov, I.Y.; Shnyrov, V.L. Thermal stability of peroxidase from the african oil palm tree Elaeis guineensis. Eur. J. Biochem., 2002, 269(10), 2584-2590.
Tomazic, S.J.; Klibanov, A.M. Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. J. Biol. Chem., 1988, 263(7), 3086-3091.
Sanchez-Ruiz, J.M. Differential scanning calorimetry of proteins. Subcell. Biochem., 1995, 24, 133-176.
Tanaka, A.; Hoshino, E. Calcium-binding parameter of Bacillus amyloliquefaciens alpha-amylase determined by inactivation kinetics. Biochem. J., 2002, 364, 635-639.
Nazmi, A.R.; Reinisch, T.; Hinz, H.J. Calorimetric studies on renaturation by CaCl2 addition of metal-free alpha-amylase from Bacillus licheniformis (BLA). J. Therm. Anal. Calorim., 2008, 91(1), 141-149.
Fazili, N.A.; Bhat, W.F.; Naeem, A. Induction of amyloidogenicity in wild type HEWL by a dialdehyde: Analysis involving multi dimensional approach. Int. J. Biol. Macromol., 2014, 64, 36-44.
Greenfield, N.J. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc., 2006, 1(6), 2527-2535.
Hegde, K.; Dasu, V.V. Structural stability and unfolding properties of cutinases from Thermobifida fusca. Appl. Biochem. Biotechnol., 2014, 174(2), 803-819.
Ropiak, H.M.; Lachmann, P.; Ramsay, A.; Green, R.J.; Mueller-Harvey, I. Identification of structural features of condensed tannins that affect protein aggregation. PLoS One, 2017, 12(1), e0170768.
Yadav, J.K. A differential behavior of alpha-amylase, in terms of catalytic activity and thermal stability, in response to higher concentration CaCl2. Int. J. Biol. Macromol., 2012, 51(1-2), 146-152.
Kikani, B.A.; Singh, S.P. Enzyme stability, thermodynamics and secondary structures of alpha-amylase as probed by the CD spectroscopy. Int. J. Biol. Macromol., 2015, 81, 450-460.
Ernest, V.; Sekar, G.; Mukherjee, A.; Chandrasekaran, N. Studies on the effect of AgNP binding on alpha-amylase structure of porcine pancreas and Bacillus subtilis by multi-spectroscopic methods. J. Lumin., 2014, 146, 263-268.
Fitter, J. The perspectives of studying multi-domain protein folding. Cell. Mol. Life Sci., 2009, 66(10), 1672-1681.
Privalov, P.L.; Khechinashvili, N.N. A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study. J. Mol. Biol., 1974, 86(3), 665-684.
Segawa, T.; Sugai, S. Interactions of divalent metal ions with bovine, human, and goat alpha-lactalbumins. J. Biochem., 1983, 93(5), 1321-1328.
Simons, J.; Kosters, H.A.; Visschers, R.W.; de Jongh, H.H.J. Role of calcium as trigger in thermal beta-lactoglobulin aggregation. Arch. Biochem. Biophys., 2002, 406(2), 143-152.
Violet, M.; Meunier, J.C. Kinetic-study of the irreversible thermal-denaturation of bacillus-licheniformis alpha-amylase. Biochem. J., 1989, 263(3), 665-670.
Vieille, C.; Zeikus, G.J. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev., 2001, 65(1), 1-43.
Hameed, U.; Price, I.; Ikram Ul, H.; Ke, A.L.; Wilson, D.B.; Mirza, O. Functional characterization and crystal structure of thermostable amylase from Thermotoga petrophila, reveals high thermostability and an unusual form of dimerization. BBA-Proteins Proteom., 2017, 1865(10), 1237-1245.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [148 - 157]
Pages: 10
DOI: 10.2174/0929866526666190116162958

Article Metrics

PDF: 27