One-pot Synthesis of 2-Hydroxy-1,4-Naphthoquinone (Lawsone)

Author(s): Dhanavel Sivakumar, Jayaraman Thanusu, Vijayakumar Kanagarajan, Samuthira Nagarajan, Haridoss Manikandan, Mannathusamy Gopalakrishnan*.

Journal Name: Current Organic Synthesis

Volume 16 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Aims and Scope: The 2-hydroxy-1,4-naphthoquinone (lawsone) and 2,5-dihydroxy-1, 4-naphthoquninone (5-hydroxylawsone) are synthesized by one step process. The process involves an inexpensive catalyst urea hydrogen peroxide and a base (t-BuOK) in alcohol for the transformation of 1-naphthol or 2,5-dihydroxynaphthalene to lawsone or its derivatives in the presences of oxygen. The process is further directed to produce lawsone or its derivatives, with no extraneous heating to make it energetically efficient. The synthesized compounds are analyzed by FT-IR, 1H and 13C NMR spectral studies.

Materials and Methods: All the raw materials were purchased from commercial suppliers and used as such without further purification. The infrared spectra were recorded on a Thermo Nicolet-Avatar-330 FT-IR spectrophotometer using KBr (pellets) and noteworthy absorption values (cm-1) are obtained. 1H and 13C NMR spectra are recorded at 293K on BRUKER AMX-400 Spectrometer operating with the frequencies of 300 MHz and 75, 125 MHz respectively using DMSO-d6 as solvent.

Results: The 2-hydroxy-1,4-naphthoquinone (lawsone) and 2,5-dihydroxy-1,4-naphthoquninone (5- hydroxylawsone) are synthesised from 1-naphthol and 1,5-dihydorxynaphalene with urea-hydrogen peroxide as the catalyst in basic medium and oxygen as the oxidizing agent. After purification, the formed products are analysed by IR and NMR spectroscopy. The yield is 82% and the purity of the products is > 95%.

Conclusion: The present study highlights the process for the manufacturing of lawsone and its derivatives which is efficient in terms of energy needed for the activation of products from reactants. The advantages include its cost-effective nature in terms of simple inexpensive catalyst required for the process and high yield. The mild reaction conditions employed and the harmless by product obtained further confirm the usefulness of this synthetic process.

Keywords: 2-Hydroxy-1, 4-naphthoquinone, Lawsone, green synthesis, spectral analysis, cost-effective, one-pot synthesis.

Siddiqui, B.B.; Kardar, M.N.; Ali, T.; Khan, S. Two new and a known compound from Lawsonia inermis. Helvetica Chimica Acta, 2003, 86, 2164e9.
Latif, A. Isolation of a vitamin-K-activity compound from the leaves of Lawsonia sp. chemical composition of the air-dried leaves. Indian J. Agric. Sci., 1959, 29, 147-150.
de Lima, O.G. de B Coelho, J.S.; Albuquerque, I.L. Substancias antimicrobianas de plantas superiores. xXXV. ATIVIDADE antimicrobiana e antitumoral de lawsona (2-hidroxi -1,4-naftoquinona) em comparacao com o lapachol (2-hidroxi-3 -(-3-metil- 2-butenil)-1,4-naftoquinona). Recife UnivInstAntibiot Rev., 1971, 1, 21.
Tripathi, R.D.; Srivastava, H.S.; Dixi, S.N. A fungitoxic principle from the leaves of Lawsonia inermis Lam. Experientia, 1978, 34, 51-52.
Clark, N.G. The fungicidal activity of substituted1,4-naphthoquinones. Part II: Alkoxy, phenoxy and acyloxy derivatives. Pestic. Sci., 1984, 15, 235.
Débora, O.F.; Patricia, G.F.; Caroline, D.N. luana P.B.; fernando C. Da silva.; Sonia R.; Vitor F.F. The antifungal activity of naphthoquinones: An integrative review. An. Acad. Bras. Cienc., 2018, 90, 1187-1214.
Weissenberg, M.; Meisner, J.; Klein, M.; Schaeffler, I.; Eliyahu, M.; Schmutterer, H.; Ascher, K.R.S. Effect of substituent and ring changes in naturally occurring naphthoquinones on the feeding response of larvae of the mexican bean beetle, epilachna varivestis. J. Chem. Ecol., 1997, 23, 3-18.
Sut, S.; Pavela, R.; Kolarcik, V.; Cappellacci, L.; Petrelli, R.; Maggi, F. Dall’ Acqua, S.; Benelli, G. Identification of onosma visianii roots extract and purified shikonin derivatives as potential acaricidal agents against Tetranychus urticae. Molecules, 2017, 22, 1002.
Sut, S. Pavela; Kolarcik, V.; Lupidi, G.; Maggi, F.; Dall’ Acqua, S.; Benelli, G. Isobutyrylshikonin and isovalerylshikonin from the roots of Onosma visianii inhibit larval growth of the tobacco c utworm Spodoptera littoralis. Ind. Crops Prod., 2017, 109, 266-273.
Duroux, L.; Delmotte, F.M.; Lancelin, J.M.; Keravis, G.; Jay-Allemand, C. Insight into naphthoquinone metabolism: Beta-glucosidase-catalysed hydrolysis of hydrojuglone beta-D-glucopyranoside. Biochem. J., 1998, 333, 275-283.
Talcott, R.E.; Smith, M.T.; Giannini, D.D. Inhibition of microsomal lipid peroxidation by naphthoquinones: structure-activity relationships and possible mechanisms of action. Arch. Biochem. Biophys., 1985, 241, 88.
Reese, S.; Vidyasagar, A.; Jacobson, L.; Acun, Z.; Esnault, S.; Hullett, D.; Malter, J.S.; Djamali, A. The Pin 1 inhibitor juglone attenuates kidney fibrogenesis via Pin 1- independent mechanisms in the unilateral ureteral occlusion model. Fibrog Tissue Rep., 2010, 3, 1.
Marchionatti, A.M.; Picotto, G.; Narvaez, C.J.; Welsh, J.; Tolosa de Talamoni, N.G. Antiproliferative action of menadione and 1,25(OH)2D3 on breast cancer cells. J. Steroid Biochem. Mol. Biol., 2009, 113, 227-232.
Wafaa, S.H.; Alaa El-Din, E.H.; Hanafi, H.Z. Advanced routes in synthesis and reactions of lawsone molecules (2-hydroxy naphthalene-1,4-dione). J. Heterocycl. Chem., 2017, 54, 2155-2196.
Dhananjay, K.S.; Suaib, L.; Ajay, K.M. Lawsonia inermis L. – A commercially important primaeval dying and medicinal plant with diverse pharmacological activity: A review. Ind. Crops Prod., 2015, 65, 269-286.
Hooker, S.C. LVII. The constitution of “lapachic acid” (lapachol) and its derivatives. J. Chem. Soc., 1892, 61, 611-650.
Fieser, L.F. 1,2-naphthoquinone. Org. Synth., 1943, 2, 430.
Inoue, A.; Kuroki, N.; Konishi, K. Studies on the dyes derived from 1, 4-naphthoquinone studies on the dyes derived from 1, 4-naphthoquinone. Bull. Univ. Osaka Prefect. Ser. A Eng. Nat. Sci., 1959, 8, 31-55.
Conant, J.B.; Corson, B.B. 1,2-aminonaphthol hydrochloride.[2-Naphthol, 1- amino-, hydrochloride]. Org. Synth., 1937, 17, 9.
Fieser, L.F. 1-amino-2-naphthol-4-sulfonic acid. Org. Synth., 1943, 2, 42.
Fieser, L.F., and; Martin, E.L. β-naphthoquinone. Org. Synth., 1955, 3, 465-467.
de Min, M.; Croux, S.; Tournaire, C.; Hocquaux, M.; Jacquet, B.; Oliveros, E.; Maurette, M.T. Réactivité du superoxyde de Potassium en phase hétérogéne: Oxydation de naphtalénedios en naphtoquinones hydroxylées. Tetrahedron, 1992, 48, 1869-1882.
Vidril-Robert, D.; Maurette, M.T.; Oliveros, E. Exemple de reaction a l’interface solide-liquide: oxydation de naphtalenediols par le superoxyde de potassium. Tetrahedron Lett., 1984, 25, 529-532.
Singh, K.N.; Kumar, R.; Shukla, A.K. An efficient C-C bond cleavage of 1,2-diols using tetraethylammonium superoxide. Indian J. Chem. B., 2007, 46B, 1347-1351.
Villemin, D.; Hammadi, M.; Hachemi, M. Supported metalated phthalocyanine as catalyst for oxidation by molecular oxygen. synthesis of quinones and carbonyl compounds. Synth. Commun., 2002, 32, 1501-1515.
Osowska-Pacewicka, K.; Alper, H. Oxidation of cyclic ketones catalyzed by polyethylene glycol and rhenium carbonyl under basic and exceptionally mild conditions. J. Org. Chem., 1988, 53, 808-810.
Hocquaux, M.; Jacquet, B.; Vioril-Robert, D.; Maurette, M.T.; Oliveros, E. Oxydation des tetralones par le superoxyde de potassium solubilise par ether-couronne. Tetrahedron Lett., 1984, 25, 533-536.
Alessandro, K.J.; Maria, D.V.; Angelo, C.P. Fernando de C.S.; Vitor F.F. Lawsone in organic synthesis. RSC Adv, 2015, 5, 67909-67943.
Anderson, H.A.; Smith, J.; Thomson, K.H. Naturally occurring quinones. Part VI. Spinochrome D. J. Chem. Soc., 1965, 2141-2144.
Baillie, A.C.; Thomson, R.H. Quinones. Part VII. New routes to 2-hydroxy-1,4- naphthoquinones. J. Chem. Soc. C, 1966, 2184.
Li, H.; Liu, R. Synthesis of lawsone as dye. Adv. Mat. Res., 2012, 550-553, 85-88.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [431 - 434]
Pages: 4
DOI: 10.2174/1570179416666190111155328
Price: $58

Article Metrics

PDF: 17