MGB Block ARMS Real-Time PCR for Diagnosis of CYP2C19 Mutation in a Chinese Population

Author(s): Xi-Wen Jiang*, Yue Liu, Tao-Sheng Huang, Xiao-Ya Zhu.

Journal Name: Current Bioinformatics

Volume 14 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: CYP2C19 is an important genetic factor modulating clopidogrel dose requirement.

Objective: Therefore, a simple and economic genotyping method for predicting the clopidogrel dose of patients would be useful in clinical applications.

Methods: In this study, the MGB blocker ARMS real-time PCR contained two forward primers, two MGB blockers and a common reverse primer have been used for CYP2C19*2, *3 and *17 substitutions.

Results: Results showed that heterozygotes and homozygotes of CYP2C19*2, *3 and *17 could be distinguished by the MGB blocker ARMS real-time PCR successfully. In the Chinese population, patients with allele frequencies of CYP2C19*2, *3, and *17 are 18.43%, 3.03% and 0.76%, respectively.

Conclusion: This study indicates that the MGB blocker ARMS real-time PCR will be a simple, economical method for the rapid detection of SNPs in CYP2C19.

Keywords: MGB, blocker, ARMS, CYP2C19, genotyping, heterozygotes, homozygotes.

[1]
Uchiyama S. Clopidogrel resistance: identifying and overcoming a barrier to effective antiplatelet treatment. Cardiovasc Ther 2011; 29(6): e100-11.
[2]
Plosker GL, Lyseng-Williamson KA. Clopidogrel: a review of its use in the prevention of thrombosis. Drugs 2007; 67(4): 613-46.
[3]
Singh M, Thapa B, Arora R. Clopidogrel pharmacogenetics and its clinical implications. Am J Ther 2010; 17(3): e66-73.
[4]
Sofi F, Marcucci R, Gori AM, Giusti B, Abbate R, Gensini GF. Clopidogrel non-responsiveness and risk of cardiovascular morbidity. An updated meta-analysis. Thromb Haemost 2010; 103(4): 841-8.
[5]
Osnabrugge RL, Head SJ, Zijlstra F, et al. A systematic review and critical assessment of 11 discordant meta-analyses on reduced-function CYP2C19 genotype and risk of adverse clinical outcomes in clopidogrel users. Genet Med 2015; 17(1): 3-11.
[6]
Xie C, Ding X, Gao J, et al. The effects of CES1A2 A(-816)C and CYP2C19 loss-of-function polymorphisms on clopidogrel response variability among Chinese patients with coronary heart disease. Pharmacogenet Genomics 2014; 24(4): 204-10.
[7]
Langaee TY, Zhu HJ, Wang X, et al. The influence of the CYP2C19*10 allele on clopidogrel activation and CYP2C19*2 genotyping. Pharmacogenet Genomics 2014; 24(8): 381-6.
[8]
Owusu Obeng A, Egelund EF, Alsultan A, Peloquin CA, Johnson JA. CYP2C19 polymorphisms and therapeutic drug monitoring of voriconazole: are we ready for clinical implementation of pharmacogenomics? Pharmacotherapy 2014; 34(7): 703-18.
[9]
Harmsze A, van Werkum JW, Bouman HJ, et al. Besides CYP2C19*2, the variant allele CYP2C9*3 is associated with higher on-clopidogrel platelet reactivity in patients on dual antiplatelet therapy undergoing elective coronary stent implantation. Pharmacogenet Genomics 2010; 20(1): 18-25.
[10]
Harmsze AM, van Werkum JW, Ten Berg JM, et al. CYP2C19*2 and CYP2C9*3 alleles are associated with stent thrombosis: a case-control study. Eur Heart J 2010; 31(24): 3046-53.
[11]
Langaee TY, Zhu HJ, Wang X, et al. The influence of the CYP2C19*10 allele on clopidogrel activation and CYP2C19*2 genotyping. Pharmacogenet Genomics 2014; 24(8): 381-6.
[12]
Bennis Y, Bodeau S, Bouquié R, et al. High metabolic N-oxidation of voriconazole in a patient with refractory aspergillosis and CYP2C19*17/*17 genotype. Br J Clin Pharmacol 2015; 80(4): 782-4.
[13]
Abidi MZ, D’Souza A, Kuppalli K, Ledeboer N, Hari P. CYP2C19*17 genetic polymorphism-an uncommon cause of voriconazole treatment failure. Diagn Microbiol Infect Dis 2015; 83(1): 46-8.
[14]
Yasui-Furukori N, Takahata T, Nakagami T, et al. Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes. Br J Clin Pharmacol 2004; 57(4): 487-94.
[15]
Li M. Tetra-primer ARMS-PCR is an efficient SNP genotyping method: An example from SIRT2. Anal Methods 2014; 6(6): 1835-40.
[16]
Jafari M, Pirouzi A, Anoosheh S, Farnia P, Tajik N. Rapid and simultaneous detection of vitamin D receptor gene polymorphisms by a single ARMS-PCR assay. Mol Diagn Ther 2014; 18(1): 97-103.
[17]
Sediki FZ, Radoui A, Cabet F, Zemani-Fodil F, Saidi-Mehtar N, Boudjema A. Detection of CFTR mutations using PCR/ARMS in a sample of Algerian population. Ann Biol Clin 2014; 72(5): 549-54.
[18]
Guo SL, Chen XZ, Xiao YZ, et al. Use of the duplex TaqMan MGB probe for simultaneous detection of Perkinsus and Bonamia in marine shellfish. J Applied Oceanography 2014; 33(2): 284-9.
[19]
Tan HQ, Cai JS, Tan HF, et al. Establishment of quantitative real-time PCR targeting the MMS gene of Cronobacter spp. based on TaqMan-MGB probe. Zhongguo Shipin Weisheng Zazhi 2014.
[20]
Newton CR, Graham A, Heptinstall LE, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 1989; 17(7): 2503-16.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 5
Year: 2019
Page: [391 - 399]
Pages: 9
DOI: 10.2174/1574893614666190109154252

Article Metrics

PDF: 20
HTML: 3