Beneficial Effects of Several Nanoparticles on the Growth of Different Plants Species

Author(s): Tauheed ul Haq, Sami Ullah*, Rehman Ullah.

Journal Name: Current Nanoscience

Volume 15 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The excessive use of nitrogen and phosphorous fertilizers led to environmental pollution and serious health issues. Nanotechnology may solve such a type of problems by providing nanomaterials of high performance. Here, we reviewed the beneficial effects of some different nanoparticles on the growth of different parts of different plants belonging to 14 different families. Nanoparticles such as CNT, Ag-NPs, TiO2-NPs, Au-NPs, S-NPs, Ag-NPs+ Magnetic field-NPs, ZnO-NPs, Fe-NPs, SiO2-NPs, RA-NPs, Zinc-NPs, Silica-NPs, Apatite-NPs, CeO2-NPs, Cu-NPs, CaCO3-NPs, Chitosan- NKP-NPs and Carbon nono-tube coated NKP+ Chitosan NPK-NPs show better growth enhancement effect on different parts of plants and crop production when used in proper concentration. We find that the most favorable effect of NPs was on, chlorophyll contents, root and shoot length followed by proteins contents and plant biomass.

Keywords: Nanoparticles, nanotechnology, growth enhancement effect, plant growth, chlorophyll contents, carbon nanotube, chitosan-NKP-NPs.

[1]
Ghasemzadeh, A. Global issues of food production. Agrotechnology, 2012, 1, 1000e102.
[2]
World Bank Data, DIALOG. Available from: http://data.worldbank.org (Accessed on: Nov 8, 2016).
[3]
Baruah, S.; Dutta, J. Nanotechnology applications in sensing and pollution degradation in agriculture. Environ. Chem. Lett., 2009, 7, 191-204.
[4]
Zamir, D. Improving plant breeding with exotic genetic libraries. Nat. Rev. Genet., 2001, 2, 983-989.
[5]
Pourjavadi, A.; Doulabi, M.; Soleyman, R.; Sharif, S.; Eghtesadi, S.A. Synthesis and characterization of a novel (salep phosphate)-based hydrogel as a carrier matrix for fertilizer release. React. Funct. Polym., 2012, 72(10), 667-672.
[6]
Rashidzadeh, A.; Olad, A. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly (AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydr. Polym., 2014, 114, 269-278.
[7]
Rashidzadeh, A.; Olad, A.; Salari, D.; Reyhanitabar, A. On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-Poly (acrylic acid-co acrylamide)/clinop-tilolite and its application as slow release fertilizer. J. Polym. Res., 2014, 21(2), 344.
[8]
Chinnamuthu, C.R.; Boopathi, P.M. Nanotechnology and agroecosystem. Madras Agric. J., 2009, 96, 17-31.
[9]
Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E. Controlling eutrophication: Nitrogen and phosphorus. Science, 2009, 323, 1014-1015.
[10]
Quasem, J.M.; Mazahreh, A.S.; Abu-alruz, K. Development of vegetable based milk from decorticated sesame (Sesamum indicum). Am. J. Appl. Sci., 2009, 6, 888-896.
[11]
Schwabele, K.A. Iddo, k.; Knap, K.C. Drain water management for salinity mitigation in irrigated agriculture. Am. J. Agric. Econ., 2006, 88, 133-140.
[12]
Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 2002, 7(9), 405-410.
[13]
Duan, G.; Zhou, Y.; Tong, Y.; Cai, C.; Kaneer, R. Characterization of arsenate reductase in the extract of roots and fronds of chinese brake fern, an arsenic hyperaccumulator. Plant Physiol., 2005, 138(1), 461-469.
[14]
Duran, N.P.D.; Marcato, O.L.; Alves, G.I.D.; Souza, E.; Esposito, E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnology, 2005, 3, 8-11.
[15]
Chhipa, H.; Joshi, P. Nanofertilisers, Nanopesticides and Nanosensors in Agriculture. In: Nanoscience in Food and Agriculture 1, Ranjan, S.; Dasgupta, N.Lichtfouse, E.; Eds.; Springer Nature: Switzerland AG, ; , 2006, 20, pp. 247-282.
[16]
Putheti, R.R.; Okigbo, R.N.; Sai, M.A.; Chavanpatil, S. Nanotechnology importance in the pharmaceutical industry. Afr. J. Pure Appl. Chem., 2008, 2(3), 27-31.
[17]
Reynolds, G.H. Forward to the future nanotechnology and regulatory policy. NanoEthicsBank; Pacific Research Institute, 2002.
[18]
Gruère, G.; Narrod, C.; Abbott, L. Agriculture, food, and water nanotechnologies for the poor: Opportunities and constraints. Policy Brief 19; Washington, DC: International Food Policy Research Institute, 2001.
[19]
Frewer, L.J.; Norde, W.; Fischer, A.R.H.; Kampers, F.W.H. Nanotechnology in the Agri-Food Sector: Implications for the Future; Weinheim, Germany: Wiley-VCH, 2011.
[20]
Sonkaria, S.; Ahn, S.H.; Khare, V. Nanotechnology and its impact on food and nutrition: A review. Recent Pat. Food Nutr. Agric., 2012, 4(1), 8-18.
[21]
Colvin, V.L.; Schlamp, M.C.; Alivisatos, P. Light- emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 1994, 370, 354-357.
[22]
Jiang, Z.J.; Liu, C.Y.; Sun, L.W. Catalytic properties of silver nanoparticles supported on silica spheres. J. Am. Chem. Soc., 2004, 71, 2341-2343.
[23]
Torney, F.; Trewyn, B.G.; Lin, V.S.; Wang, K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol., 2007, 2(5), 295-300.
[24]
Kuzma, J. Moving forward responsibly: Oversight for the nanotechnology biology interface. J. Nanopart. Res., 2007, 9, 165-182.
[25]
Lengke, F.M.; Fleet, E.F.; Southam, G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria a form a silver(I) nitrate complex. Langmuir, 2007, 23, 2694-2699.
[26]
Shankramma, K.; Yallappa, S.; Shivanna, M.B.; Manjanna, J. Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl. Nanosci., 2015, 6(7), 983-990.
[27]
Hernandez-Viezcasa, J.A.; Castillo-Michelb, C.; Servina, A.D.; Peralta-Videaa, J.R.; Gardea-Torresdey, J.L. Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (Velvet mesquite) treated with ZnOnanoparticles. Chem. Eng. J., 2011, 170, 346-352.
[28]
Naderi, M.R.; Danesh-Sharaki, A. Nanofertilizers and their role in sustainable agriculture. Int. J. Agric. Crop Sci., 2013, 5(19), 2229-2232.
[29]
Mukherjee, A.; Sun, Y.; Morelius, E.; Tamez, C.; Bandyopadhyay, S.; Niu, G.; White, J.C.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Differential toxicity of bare and hybrid ZnO nanoparticles in green pea (Pisum sativum L.): Life cycle study. Front. Plant Sci., 2016, 6, 1242.
[30]
Kim, S.; Lee, S.; Lee, L. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut., 2012, 223, 2799-2806.
[31]
Krishnaraj, C.; Jagan, E.G.; Ramachandran, R.; Abirami, S.M.; Mohan, N.; Kalaichelvan, P.T. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst plant growth metabolism. Process Biochem., 2012, 47, 651-658.
[32]
Hu, J.; Guo, H.; Li, J.; Gan, Q.; Xing, B. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environ. Pollut., 2013, 221, 199-208.
[33]
Ren, H.; Liu, C.; He, S.; Haung, J.; Li, J.; Zhang, Y.; Houng, X.; Gu, N. Physiological investigation of magnetic iron oxide nanoparticles toward chines mung bean. J. Biomed. Nanotechnol., 2011, 7(5), 677-684.
[34]
Liscano, J.F.; Wilson, C.E.; Norman, R.J.; Slaton, N.A. Zinc availability to rice from seven granular fertilizers. AAES Res. Bulletin, 2000, 963, 1-31.
[35]
Monica, R.C.; Cremonini, R. Nanoparticles and higher plants. Caryologia, 2009, 62(2), 161-165.
[36]
Sharon, M.; Choudhary, A.; Kumar, R. Nanotechnology in agricultural diseases and food safety. J. Phytol., 2010, 2(4), 83-92.
[37]
Savithramma, N.; Ankanna, S.; Bhumi, G. Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision, 2012, 2, 61-68.
[38]
Salaman, H.M. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int. Res. J. Biotechnol., 2012, 3(10), 190-197.
[39]
Syu, Y.; Hung, J.; Chen, J.; Chuang, H. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol. Biochem., 2014, 83, 57-64.
[40]
Hojjat, S.S.; Hojjad, M. effect of nano silver on seed germination and seedling growth in Fenugreek seed. Int. J. Food Eng., 2015, 1, 106-110.
[41]
Pallavi, Mehtal C.M.; Srivastava, R.; Aroraand, S.; Sharma, A.K. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech, , 2016, 6, 254.
[42]
Feizi, H.; Moghaddam, P.R.; Shahtahmassebi, N.; Fotovat, A. Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol. Trace Elem. Res., 2012, 146, 101-106.
[43]
Raliya, R.; Tarafdar, J.C. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric. Res., 2013, 2(1), 48-57.
[44]
Venkatachalam, P.; Priyanka, N.; Manikandan, K.; Ganeshbabu, I.; Indiraarulselvi, P.; Geetha, N.; Muralikrishna, K.; Bhattachara, R.C.; Tiwari, M.; Sharma, N.; Sahi, S.V. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol. Biochem., 2016, 110, 118-127.
[45]
Javed, R.; Usman, M.; Yucesan, B.; Zia, M.; Gurel, E. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana bertoni. Plant Physiol. Biochem., 2016, 110, 94-99.
[46]
Alharbi, H.F.; Metwali, E.M.R.; Fuller, M.P.; Aldhebiani, A.Y. Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum mill.) under salt stress. Arch. Biol. Sci., 2016, 68, 723-735.
[47]
Prasad, T.N.V.; Sudhakar, P.; Sreenivasulu, Y.; Latha, P.; Munaswamy, V.; Reddy, K.R.; Sreeprasad, T.S.P.; Sajanlal, R.; Pradeep, T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr., 2012, 35(6), 905-927.
[48]
Sedghi, M.; Hadi, M.; Toluie, S.G. Effect of nano zinc oxide on the germination of soybean seeds under drought stressAnn. West Univ. Timişoara, ser Biol. XVI, ; , 2013, 2, pp. 73-78.
[49]
Ramesh, M.; Palanisamy, K.; Babu, K.; Sharma, N.K. Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J. Global Biosci., 2014, 3, 415-422.
[50]
Raskar, S.V.; Laware, S.L. Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, 467-4731.
[51]
Raliya, R.; Biswas, P.; Tarafdar, J.C. TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol. Rep. , 2014, 5, 22-26.
[52]
Palmqvist, N.G.M.; Bejai, S.; Meijer, J.; Seisenbaeva, G.A.; Kessler, V.G. Nano-titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci. Rep., 2015, 5, 10146.
[53]
Yang, F.; Hong, F.; You, W.; Liu, C.; Gao, F.; Wu, C.; Yang, P. Inluence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace Elem. Res., 2006, 110(2), 179-190.
[54]
Mishra, V.; Mishra, R.K.; Dikshit, A.; Pandey, A.C. Interactions of nanoparticles with plants: An emerging prospective in the agriculture industry. In: Emerging Technologies and Management of Crop Stress Tolerance: Biological Techniques, Ahmad, P.; Rasool, S., Eds.; Academic Press, New York, , 2014, 1, pp. 159-180.
[55]
Ma, L.; Liu, C.; Qu, C.; Yin, S.; Liu, J.; Gao, F.; Hong, F. Rubisco activase mRNA expression in spinach: Modulation by nanoanatase treatment. Biol. Trace Elem. Res., 2008, 122(2), 168-178.
[56]
Qi, M.; Liu, Y.; Li, T. Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol. Trace Elem. Res., 2013, 156, 323-328.
[57]
Sánchez-Alcalá, I.; Del-Campillo, M.D.; Barrón, V.; Torrent, J. Evaluation of preflooding effects on iron extractability and phytoavailability in highly calcareous soil in containers. Plant Nutr. Soil Sci., 2014, 177, 150-158.
[58]
Mimmo, T.; Del-Buono, D.; Terzano, R.; Tomasi, N.; Vigani, G.; Crecchio, R. Rhizospheric organic compounds in the soil–microorganism– plant system: Their role in iron availability. Eur. J. Soil Sci., 2014, 65, 629-642.
[59]
Alidoust, A.; Isoda, A. Effect of Fe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): Foliar spray versus soil amendment. Acta Physiol. Plant., 2013, 35, 3365-3375.
[60]
Bakhtiari, M.; Moaveni, P.; Sani, B. The effect of iron nanoparticles spraying time and concentration on wheat. Biol. Forum, , 2015, 7(1), 679-683.
[61]
Rui, M.; Ma, C.; Hao, Y.; Guo, J.; Rui, Y.; Tang, X.; Zhao, Q.; Fan, X.; Zhang, Z.; Houand, T.; Zhu, S. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci., 2016, 7, 817.
[62]
Askary, M.; Talebi, M.S.; Amini, F.; Ali, D.B. Effect of NaCl and iron oxide nanoparticles on Mentha piperita essential oil composition. Environ. Exp. Biol., 2016, 14, 27-32.
[63]
Rico, C.M.; Barrios, A.C.; Tan, W.; Rubenecia, R.; Lee, S.C.; Varela-Ramirez, A.; Peralta-Videaand, J.R.; Gardea-Torresdey, J.G.L. Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ. Sci. Pollut. Res. , 2015, 22, 10551-10558.
[64]
Rossi, L.; Zhang, W.; Lombardini, L.; Ma, X. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ. Pollut., 2016, 219, 28-36.
[65]
Siddiqui, M.H.; Al-Whaibi, M.H. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J. Biol. Sci., 2014, 21, 13-17.
[66]
Ashkavand, P.; Tabari, M.; Zarafshar, M.; Tomaskova, I.; Struve, D. Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. Lesne Pr. Badaw., 2015, 76, 350-359.
[67]
Gao, X.; Zou, C.; Wang, L.; Zhang, F. Silicon improves water use efficiency in maize plants. J. Plant Nutr., 2005, 27, 457-470.
[68]
Abdel-Aziz, H.M.M.; Hasaneed, M.N.A.; Omer, A.M. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span. J. Agric. Res., 2016, 14(1)e0902
[69]
Nadakavukaren, M.; McCracken, D. Botany: An Introduction to Plant Biology; West: New York, 1985.
[70]
Wang, W.; Tarafdar, J.C.; Biswas, P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J. Nanopart. Res., 2013, 15, 1417.
[71]
Srinivasan, C.; Saraswathi, R. Nano-agriculture carbon nano-tubes enhance tomato seed germination and plant growth. Curr. Sci., 2010, 99, 22-30.
[72]
Villagarcia, H.; Dervishi, E.; Silva, K.; Biris, A.S.; Khodakovskaya, M.V. Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small, 2012, 8, 2328-2334.
[73]
Tiwari, D.K.; Dasgupta-Schubert, N.; Villaseñor-Cendejas, L.M.; Villegas, J.; Carreto-Montoya, L. Interfacing carbon nanotubes (CNT) with plants: Enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagricultur. Appl. Nanosci., 2014, 4, 577-591.
[74]
Nair, R.; Varghese, S.H.; Nair, B.G.; Maekawa, T.; Yoshida, Y.; Kumar, D.S. Nanoparticulate material delivery to plants. Plant Sci., 2010, 179, 154-163.
[75]
Mondal, A.; Basu, R.; Das, S.; Nandy, P. Beneicial role of carbon nanotubes on mustard plant growth: An agricultural prospect. J. Nanopart. Res., 2011, 13, 4519-4528.
[76]
Morla, S.; Ramachandra Rao, C.S.V.; Chakrapani, R. Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J. Chem. Biol. Phys. Sci., 2011, 1, 328-334.
[77]
Nalwade, A.R.; Neharkar, S.B. Carbon nanotubes enhance the growth and yield of hybrid Bt cotton Var. ACH-177-2. Int. J. Adv. Sci. Tech. Res., 2013, 3, 840-846.
[78]
Arora, S.; Sharma, P.; Kumar, S.; Nayan, R.; Khanna, P.K.; Zaidi, M.G.H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul., 2012, 66, 303-310.
[79]
Moaveni, P.; Karimi, K.; Valojerdi, M.Z. The nanoparticles in plants. J. Nanostruct. Chem., 2011, 2, 59-78.
[80]
Gao, X.; Zou, C.H.; Wang, L.; Zhang, F. Silican decreases transpiration rate and conductance from stomata of maize plants. J. Plant Nutr., 2011, 29, 1637-1647.
[81]
Tarafdar, J.C.; Raliya, R.; Mahawar, H.; Rathore, I. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric. Res., 2014, 3, 257-262.
[82]
Derosa, M.R.; Moreal, C.; Schitzer, M.; Walsh, R.; Sultan, Y. Nanotechnology in fertilizer. Nat. Nanotechnol., 2010, 5, 91.
[83]
Khodakovskay, M.; Dervishi, E.; Mahmood, M.; Xu, Y.; Li, Z.; Watanabe, F.; Biris, A.S. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano, 2009, 3, 3221-3227.
[84]
Laru, C.; Laurette, J.; Herlin-Boime, N.; Khodia, H.; Fayard, B.; Flank, A.; Brisset, F.; Carriere, M. Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): Influence of diameter and crystal phase. Sci. Total Environ., 2012, 431, 197-208.
[85]
Suriyaprabha, R.; Karunakarn, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J. Nanopart. Res., 2012, 14, 2-14.
[86]
Berahmand, A.A.; Panahi, A.G.; Sahabi, H.; Feizi, H.; Moghaddam, P.R.; Shahtahmassebi, N.; Fotovat, A.; Karimpour, H.; Gallehgir, O. Effects silver nanoparticles and magnetic field on growth of fodder maize (Zea mays L.). Biol. Trace Elem. Res., 2012, 149, 419-424.
[87]
Moghaddasi, S.; Khoshgoftarmanesha, A.H.; Karimzadehb, F.; Chaneyc, R.L. Preparation of nano-particles from waste tire rubber and evaluation of their effectiveness as zinc source for cucumber in nutrient solution culture. Sci. Hortic. , 2013, 160, 398-403.
[88]
Kalteh, M.; Alipour, M.Z.; Ashraf, S.; Aliabadi, M.M.; Nosratabadi, A.F. Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. JCHR, 2014, 4, 49-55.
[89]
Liu, R.; Lal, R. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep., 2014, 4, 5686.
[90]
Hafeez, A.; Razzaq, A.; Mahmood, T.; Jhanzab, H.M. Potental of copper nanopartcles to increase growth and yield of wheat. J. Nanosci. Adv. Technol., 2015, 1, 6-11.
[91]
Hua, K.; Wang, H.; Chung, R.; Hsu, J. Calcium carbonate nanoparticles can enhance plant nutrition and insect pest tolerance. J. Pestic. Sci., 2015, 40, 208-213.
[92]
Hasaneen, M.N.A.; Abdel-aziz, H.M.M.; Omer, A.M. Effect of foliar application of engineered nanomaterials: Carbon nanotubes NPK and chitosan nanoparticles NPK fertilizer on the growth of French bean plant. Biochem. Biotechnol. Res., 2016, 4, 68-76.
[93]
Siva, G.V.; Benita, L.F.J. Iron oxide nanoparticles promotes agronomic traits of ginger (Zingiber officinale). Int. J. Adv. Res. Biol. Sci., 2016, 3(3), 230-237.
[94]
Shankramma, K.; Yallappa, S.; Shivanna, M.B.; Manjanna, J. Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl. Nanosci., 2016, 6, 983-990.
[95]
Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J. Nanopart. Res., 2012, 14, 1294.
[96]
Alidoust, D.; Isoda, A. Effect of Fe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): Foliar spray versus soil amendment. Acta Physiol. Plant., 2013, 35, 3365-3375.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 5
Year: 2019
Page: [460 - 470]
Pages: 11
DOI: 10.2174/1573413715666190104143705
Price: $58

Article Metrics

PDF: 14
HTML: 1