Effect of Various Parameters and Mechanism of Reversal Order of Elution in Chiral HPLC

Author(s): Imran Ali*, Mohd. Suhail, Leonind Asnin, Hassan Y. Aboul-Enein*.

Journal Name: Current Analytical Chemistry

Volume 16 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Background: Chiral separation involves many phenomena in which the elution order of the enantiomers has its unique position. The phenomenon of elution order of the enantiomers has also been used in the determination of optical purity which is favorable to elute the major component after minor enantiomeric impurity but the main problem is that, this phenomenon is rare.

Results: This review rumors the reversal order of elution of many chiral molecules in HPLC. Besides, this review pronounces the effects of pH, derivatisation of drugs, the composition of the mobile phase, and temperature on the reversal order of elution of chiral drugs. The efforts are also made to discuss the possible future perspectives of reversal order of elution.

Conclusion: Various parameters such as pH, mobile phase composition, temperature, and chemical structure of the analytes play a role in the phenomena of the reversal order of elution of many chiral molecules which are discussed in the article.

Keywords: Chiral separation, enantiomers, mechanisms, reversal elution order, HPLC, chiral drugs.

Okamoto, M. Reversal of elution order during the chiral separation in high performance liquid chromatography. J. Pharm. Biomed. Anal., 2002, 27(3-4), 401-407.
[http://dx.doi.org/10.1016/S0731-7085(01)00646-X] [PMID: 11755741]
Aboul-Enein, H.Y.; Ali, I. Chiral Separations by Liquid Chromatography and Related Technologies; Marcel Dekker, Inc.: New York, 2003.
Ali, I.; Aboul-Enein, H.Y. Chiral Pollutants: Distribution, Toxicity and Analysis by Chromatography and Capillary Electrophoresis; John Wiley & Sons: New York, 2004.
Giddings, J.C.; Grushka, E.; Cazes, J.; Brown, P.R.; Davankov, V.A., Eds.; Advances in Chromatography; Marcel Dekker Inc.: New York, USA, 1980, Vol. 18, .
Krstulovic, A. Chiral Separations by HPLC: Applications to Pharmaceutical Compounds; Ellis Horwood: New York, 1989.
Allenmark, S. Chromatographic Enantioseparation: Methods and Applications, 2nd ed; Ellis Horwood: New York, 1991.
Subramanian, G., Ed.; A Practical Approach to Chiral Separations by Liquid Chromatography; VCH Verlagsgesellschaft: Weinheim, 1994.
Aboul-Enein, H.Y.; Wainer, I. The Impact of Stereochemistry on Drugs Development and Use; Wiley: New York, 1997, Vol. 142, .
Beesley, T.; Scott, R. Chiral Chromatography; Wiley: New York, 1998.
Sun, Q.; Olesik, S.V. Chiral separations performed by enhanced-fluidity liquid chromatography on a macrocyclic antibiotic chiral stationary phase. Anal. Chem., 1999, 71(11), 2139-2145.
[http://dx.doi.org/10.1021/ac981134m] [PMID: 21662749]
Medvedovici, A.; Albu, F.; Georgita, C.; Sora, D.I.; Galaon, T.; Udrescu, S.; David, V. Achiral-chiral LC/LC-FLD coupling for determination of carvedilol in plasma samples for bioequivalence purposes. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 850(1-2), 327-335.
[http://dx.doi.org/10.1016/j.jchromb.2006.12.004] [PMID: 17185049]
Ma, S.; Shen, S.; Lee, H.; Eriksson, M.; Zeng, X.; Xu, J.; Fandrick, K.; Yee, N.; Senanayake, C.; Grinberg, N. Mechanistic studies on the chiral recognition of polysaccharide-based chiral stationary phases using liquid chromatography and vibrational circular dichroism: reversal of elution order of N-substituted alpha-methyl phenylalanine esters. J. Chromatogr. A, 2009, 1216(18), 3784-3793.
[http://dx.doi.org/10.1016/j.chroma.2009.02.046] [PMID: 19278683]
Wang, T.; Chen, Y.W.; Vailaya, A. Enantiomeric separation of some pharmaceutical intermediates and reversal of elution orders by high-performance liquid chromatography using cellulose and amylose tris(3,5-dimethylphenylcarbamate) derivatives as stationary phases. J. Chromatogr. A, 2000, 902(2), 345-355.
[http://dx.doi.org/10.1016/S0021-9673(00)00862-1] [PMID: 11192167]
Ali, I.; Suhail, M.; Asnin, L.; Aboul-Enein, H.Y. Reverse elution order of β-blockers in chiral Separation. J. Liq. Chromatogr. Relat. Technol., 2017, 40, 435-441.
Chankvetadze, L.; Ghibradze, N.; Karchkhadze, M.; Peng, L.; Farkas, T.; Chankvetadze, B. Enantiomer elution order reversal of fluorenylmethoxycarbonyl-isoleucine in high-performance liquid chromatography by changing the mobile phase temperature and composition. J. Chromatogr. A, 2011, 1218(37), 6554-6560.
[http://dx.doi.org/10.1016/j.chroma.2011.06.068] [PMID: 21802087]
Watabe, K.; Charles, R.; Gil-Av, E. Temperature dependent inversion of elution sequence in the resolution of α-amino acid enantiomers on chiral diamide selectors. Angew. Chem. Int. Ed. Engl., 1989, 28, 192-194.
Beesley, T.E. The effects of temperature on chiral selectivity as a function of solvent composition From Book of Abstracts 217th ACS National Meeting, Anaheim, Calif.1999.
Gasparrini, F.; Marini, F.; Misiti, D.; Pierini, M.; Villani, C. Temperature dependent elution order of enantiomers on a two-armed receptor HPLC chiral stationary phase. Enantiomer, 1999, 4, 325-332.
Karlsson, A.; Skoog, A.; Ohlén, K. Effect of temperature on the reversal in the retention order of the enantiomers of mosapride on Chiral-AGP. J. Biochem. Biophys. Methods, 2002, 54(1-3), 347-356.
[http://dx.doi.org/10.1016/S0165-022X(02)00130-6] [PMID: 12543510]
Forstedt, T.; Sajonz, P.; Guiochon, G. A closer study of chiral retention mechanisms. Chirality, 1998, 10, 375-381.
Götmar, G.; Fornstedt, T.; Guiochon, G. Apparent and true enantioselectivity in enantioseparations. Chirality, 2000, 12(7), 558-564.
[http://dx.doi.org/10.1002/1520-636X(2000)12:7<558:AID-CHIR2>3.0.CO;2-2] [PMID: 10861955]
Asnin, L. Adsorption models in chiral chromatography. J. Chromatogr. A, 2012, 1269, 3-25.
[http://dx.doi.org/10.1016/j.chroma.2012.08.096] [PMID: 23022240]
Pirkle, W.H.; Murray, P.G. An instance of temperature-dependent elution order of enantiomers from a chiral brush-type HPLC column. J. High Resolut. Chromatogr., 1993, 16, 285-288.
Schurig, V.; Ossig, J.; Link, R. Evidence for a temperature dependent reversal of the enantioselectivity in complexation gas chromatography on chiral phases. Angew. Chem. Int. Ed. Engl., 1989, 28, 194-196.
Knoppenhöfer, B.; Bayer, E. Chiral Recognition in the Resolution of Enantiomers by GLC. Chromatographia, 1984, 19, 123-130.
Asnin, L.D.; Cavazzini, A.; Marchetti, N. Advances in Chromatography; Grushka, E; Grinberg, N., Ed.; CRC Press: Boca Raton, FL, 2016, Vol. 53, pp. 1-73.
Stringham, R.W.; Blackwell, J.A. “Entropically driven” chiral separations in supercritical fluid chromatography. Confirmation of isoelution temperature and reversal of elution order. Anal. Chem., 1996, 68(13), 2179-2185.
[http://dx.doi.org/10.1021/ac960029e] [PMID: 21619303]
Fulde, K.; Frahm, A.W. Temperature-induced inversion of elution order in the enantioseparation of sotalol on a cellobiohydrolase I-based stationary phase. J. Chromatogr. A, 1999, 858(1), 33-43.
[http://dx.doi.org/10.1016/S0021-9673(99)00798-0] [PMID: 10544889]
Stringham, R.W.; Blackwell, J.A. Factors that control successful entropically driven chiral separations in SFC and HPLC. Anal. Chem., 1997, 69(7), 1414-1420.
[http://dx.doi.org/10.1021/ac9609283] [PMID: 21639346]
Ilisz, I.; Pataj, Z.; Gecse, Z.; Szakonyi, Z.; Fülöp, F.; Lindner, W.; Péter, A. Unusual temperature-induced retention behavior of constrained β-amino acid enantiomers on the zwitterionic chiral stationary phases ZWIX(+) and ZWIX. Chirality, 2014, 26(8), 385-393.
[http://dx.doi.org/10.1002/chir.22333] [PMID: 24839210]
Balmér, K.; Lagerstrom, P-O.; Persson, B-A.; Schill, G. Reversed-retention order and other stereoselective effects in the separation of amino alcohols on Chiralcel OD. J. Chromatogr. A, 1992, 592, 331-337.
Yang, X.; Su, L.; Hou, X.; Ding, S.; Xu, W.; Wang, B.; Fang, H. High-performance liquid chromatographic enantioseparation of 3,5-disubstituted hydantoins analogs and temperature-induced reversals of elution orders on a polysaccharide-based chiral stationary phase. J. Chromatogr. A, 2014, 1355, 291-295.
[http://dx.doi.org/10.1016/j.chroma.2014.06.022] [PMID: 24973033]
Karlsson, A.; Aspegren, A. The use of mobile phase pH and column temperature to reverse the retention order of enantiomers on Chiral-AGP. Chromatographia, 1998, 47, 189-196.
Cirilli, R.; Ferretti, R.; Gallinella, B.; Zanitti, L.; La Torre, F. A new application of stopped-flow chiral HPLC: inversion of enantiomer elution order. J. Chromatogr. A, 2004, 1061(1), 27-34.
[http://dx.doi.org/10.1016/j.chroma.2004.11.001] [PMID: 15633741]
Mskhiladze, A.; Karchkhadze, M.; Dadianidze, A.; Fanali, S.; Farkas, T.; Chankvetadze, B. Enantioseparation of chiral antimycotic drugs by HPLC with polysaccharide-based chiral columns and polar organic mobile phases with emphasis on enantiomer elution order. Chromatographia, 2013, 76, 1449-1458.
Schlauch, M.; Frahm, A.W.A. A thermodynamic study of the temperature-dependent elution order of cyclic α-amino acid enantiomers on a copper(II)-D-penicillamine chiral stationary phase. Anal. Chem., 2001, 73(2), 262-266.
[http://dx.doi.org/10.1021/ac0009999] [PMID: 11199975]
Choi, H.J.; Park, Y.J.; Hyun, M.H. Liquid chromatographic resolution of secondary amino alcohols on a chiral stationary phase based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid Dependence of temperature effect on analyte structure. J. Chromatogr. A, 2007, 1164(1-2), 235-239.
[http://dx.doi.org/10.1016/j.chroma.2007.07.025] [PMID: 17673222]
Matarashvili, I.; Chankvetadze, L.; Fanali, S.; Farkas, T.; Chankvetadze, B. HPLC separation of enantiomers of chiral arylpropionic acid derivatives using polysaccharide-based chiral columns and normal-phase eluents with emphasis on elution order. J. Sep. Sci., 2013, 36(1), 140-147.
[http://dx.doi.org/10.1002/jssc.201200885] [PMID: 23292850]
Lv, C.; Zhou, Z. Chiral HPLC separation and absolute configuration assignment of a series of new triazole compounds. J. Sep. Sci., 2011, 34(4), 363-370.
[http://dx.doi.org/10.1002/jssc.201000762] [PMID: 21298778]
Okamoto, M.; Nakazawa, H. Reversal of elution order during direct enantiomeric separation of pyriproxyfen on a cellulose-based chiral stationary phase. J. Chromatogr. A, 1991, 588, 177-180.
Gil-Av, E.; Tishbee, A.; Hare, P.E. Resolution of underivatized amino acids by reversed-phase chromatography. J. Am. Chem. Soc., 1980, 102, 5115-5117.
Lindner, W. HPLC separation of enantiomers on bonded chiral phases. Naturwissenschaften, 1980, 67, 354-356.
Gaffney, M.H.; Stiffin, R.M.; Wainer, I.W. The effect of alcoholic mobile phase modifiers on retention and stereoselectivity on a commercially available cellulose-based HPLC chiral stationary phase: an unexpected reversal in enantiometric elution order. Chromatographia, 1989, 27, 15-18.
Klemisch, W.; Von, H.A. Separation of the enantiomers of pirmenol by HPLC. J. High Resolut. Chromatogr., 1990, 13, 525-526.
Balmer, K.; Persson, B.; Lagerstroem, P. Stereoselective effects in the separation of enantiomers of omeprazole and other substituted benzimidazoles on different chiral stationary phases. J. Chromatogr. A, 1994, 660, 269-273.
Alfredson, T.V.; Towne, R.; Elliott, M.; Griffin, B.; Abubakai, A.; Dyson, N.; Kertesz, D.J. Enantioselectivity of azalanstat and its ketal tosylate intermediate in chiral high-performance liquid chromatography separations. J. Liq. Chromatogr. Relat. Technol., 1996, 19, 1653-1668.
Wang, T.; Chen, Y.W. Application and comparison of derivatized cellulose and amylose chiral stationary phases for the separation of enantiomers of pharmaceutical compounds by high-performance liquid chromatography. J. Chromatogr. A, 1999, 855(2), 411-421.
[http://dx.doi.org/10.1016/S0021-9673(99)00733-5] [PMID: 10519084]
Aboul-Enein, H.Y.; Ali, I. Studies on the effect of alcohols on the chiral discrimination mechanisms of amylose stationary phase on the enantioseparation of nebivolol by HPLC. J. Biochem. Biophys. Methods, 2001, 48(2), 175-188.
[http://dx.doi.org/10.1016/S0165-022X(01)00148-8] [PMID: 11356487]
Xiao, T.L.; Zhang, B.; Lee, J.T.; Hui, F.; Armstrong, D.W. Reversal of enantiomeric elution order on macrocyclic glycopeptide chiral stationary phases. J. Liq. Chromatogr. Relat. Technol., 2001, 24, 2673-2684.
Cui, X.; Fu, F.; Zhu, J.; Chi, Y.; Peng, X.; Liao, J.; Deng, J. Comparison of separation effect for the enantiomers of omeprazole, enantiomers of lansoprazole and related compounds on different chiral columns. Fenxi Huaxue., 2002, 30, 1494-1496.
Wang, R.; Jia, Z.; Chen, L.; Ge, X.; Ma, J.; Zhang, Q.; Xie, H.; Yan, A.; Wang, J. Separation of the enantiomers of thyroxine by HPLC with chiral mobile phases. Chromatographia, 2004, 59, 749-752.
Tatini, R.; Sadik, O.; Bernhard, S.; Abruna, H. Direct resolution of chiral ‘pineno’ fused terpyridyl ligands on amylose based chiral stationary phase using long chain alcohol modifiers. Anal. Chim. Acta, 2005, 534, 193-198.
Mosiashvili, L.; Chankvetadze, L.; Farkas, T.; Chankvetadze, B. On the effect of basic and acidic additives on the separation of the enantiomers of some basic drugs with polysaccharide-based chiral selectors and polar organic mobile phases. J. Chromatogr. A, 2013, 1317, 167-174.
[http://dx.doi.org/10.1016/j.chroma.2013.08.029] [PMID: 23972462]
Wang, T.; Wenslow Jr, R.M. Effects of alcohol mobile-phase modifiers on the structure andchiral selectivity of amylose tris(3,5-dimethylphenylcarbamate)chiral stationary phase. J. Chromatogr. A, 2003, 1015, 99-110.
Gyllenhaal, O.; Stefansson, M. Reversal of elution order for profen acid enantiomers in normal phase LC on Chiralpak AD. J. Pharm. Biomed. Anal., 2008, 46(5), 860-863.
[http://dx.doi.org/10.1016/j.jpba.2007.03.009] [PMID: 17499474]
Hare.,P E., Gil-Av, E. Separation of D and L amino acids by liquid chromatography: use of chiral eluents. Science (New York, N.Y.), 1979, 204, 1226-1228.
Jibuti, G.; Mskhiladze, A.; Takaishvili, N.; Karchkhadze, M.; Chankvetadze, L.; Farkas, T.; Chankvetadze, B. HPLC separation of dihydropyridine derivatives enantiomers with emphasis on elution order using polysaccharide-based chiral columns. J. Sep. Sci., 2012, 35(19), 2529-2537.
[http://dx.doi.org/10.1002/jssc.201200443] [PMID: 22893517]
Czerwenka, C.; Zhang, M.M.; Kählig, H.; Maier, N.M.; Lipkowitz, K.B.; Lindner, W. Chiral recognition of peptide enantiomers by cinchona alkaloid derived chiral selectors: mechanistic investigations by liquid chromatography, NMR spectroscopy, and molecular modeling. J. Org. Chem., 2003, 68(22), 8315-8327.
[http://dx.doi.org/10.1021/jo0346914] [PMID: 14575453]
Bürgi, T.; Baiker, A. Conformational behavior of cinchonidine in different solvents: A combined NMR and ab initio investigation. J. Am. Chem. Soc., 1998, 120, 12920-12926.
Haginaka, J.; Seyama, C.; Yasuda, H.; Takahashi, K. Investigation of Enantioselectivity and Enantiomeric Elution Order of Propranolol and Its Ester Derivatives on an Ovomucoid-bonded Column. J. Chromatogr. A, 1992, 598, 67-72.
Kuhn, H.; Wiesner, R. Separation of hydroxylated polyenoic fatty acid enantiomers on Pirkle-type chiral phase high-performance liquid chromatographic columns. J. Chromatogr. A, 1990, 520, 391-401.
Chen, S. The factors that influence the elution order for the resolution of amino acids on vancomycin phase using the polar-organic mobile phases after their pre-column derivatization with electrophilic reagents. Biomed. Chromatogr., 2005, 19(6), 426-433.
[http://dx.doi.org/10.1002/bmc.501] [PMID: 16037926]
Lin, C.; Fan, J.; Liu, W.N.; Tan, Y.; Zhang, W.G. Comparative HPLC enantioseparation on substituted phenylcarbamoylated cyclodextrin chiral stationary phases and mobile phase effects. J. Pharm. Biomed. Anal., 2014, 98, 221-227.
[http://dx.doi.org/10.1016/j.jpba.2014.05.032] [PMID: 24937808]
Zhang, T.; Holder, E.; Franco, P.; Lindner, W. Method development and optimization on cinchona and chiral sulfonic acid-based zwitterionic stationary phases for enantiomer separations of free amino acids by high-performance liquid chromatography. J. Chromatogr. A, 2014, 1363, 191-199.
[http://dx.doi.org/10.1016/j.chroma.2014.06.012] [PMID: 24961168]
Hsu, T.; Shah, P.A.; Rogers, L.B. Synthesis and characterization of chiral stationary phases from amino acids and small peptides for liquid chromatography fractionations of a racemic alcohol. J. Chromatogr. A, 1987, 391, 145-160.
Chen, T.K.; Mills, R.J. Direct high-performance liquid chromatographic separation of an enantiomeric peptidoleukotriene antagonist and its homologues. J. Chromatogr. A, 1994, 659, 321-328.
Nacro, K.; Zedde, C.; Escudier, J.; Baltas, M.; Gorrichon, L.; Neier, R. Influence of the nature and substitution of chiral 2,3-epoxy alcohol derivatives on the enantiomeric elution order on Chiralcel OD column. Chirality, 1998, 10, 804-807.
Sato, R.; Fujishima, H.; Itabashi, Y. Analysis of algal phosphatidylglycerols by chiral phase high-performance liquid chromatography. Hokk. Daig. Suis. Kag. Kenk. Iho, 2003, 54, 7-12.
Itabashi, Y.; Fujishima, H.; Sato, R. Chiral phase high-performance liquid chromatographic separation of enantiomeric 1,2- and 2,3-O-isopropylidene-sn-glycerols as 3,5-dinitrophenylurethanes. J. Oleo Sci., 2004, 53, 405-412.
Brumbt, A.; Ravelet, C.; Grosset, C.; Ravel, A.; Villet, A.; Peyrin, E. Chiral stationary phase based on a biostable L-RNA aptamer. Anal. Chem., 2005, 77(7), 1993-1998.
[http://dx.doi.org/10.1021/ac048344l] [PMID: 15801729]
Zhong, Q.; Han, X.; He, L.; Beesley, T.E.; Trahanovsky, W. S., Armstrong, Daniel W. Chromatographic evaluation of poly(trans-1,2-cyclohexanediyl-bisacrylamide) as a chiral stationary phase for HPLC. J. Chromatogr. A, 2005, 1066, 55-70.
[http://dx.doi.org/10.1016/j.chroma.2004.12.088] [PMID: 15794555]
Hyun, M. Ho., Kim, K., S., Cho, Y., J., Liquid chromatographic resolution of 1,1′-bi-2-naphthol and 3,3′-diaryl-1,1′-bi-2-naphthols on Pirkle-type chiral stationary phases based on leucine and phenylglycine. J. Liq. Chromatogr. Relat. Technol., 2005, 28, 527-535.
Juvancz, Z.; Kiss, V.; Schindler, J.B. Use of achiral derivatization to increase selectivity and reverse the order of elution of enantiomers on Chirasil-Dex. Chromatographia, 2004, 60, 161-163.
Zhai, Z.; Shi, Y.; Wang, T. Development and validation of HPLC methods for enantioseparation of mirtazapine enantiomers at analytical and semipreparative scale using polysaccharide chiral stationary phases. Anal. Chim. Acta, 2005, 550, 123-129.
Bielejewska, A.; Duszczyk, K.; Zukowski, J. HPLC separation of linezolid enantiomers using polysaccharide-based chiral stationary phases. Acta Chromatogr., 2005, 15, 183-191.
Li, H.; Liang, X. Separation of alanine enantiomer derivatives by chiral HPLC. Fenxi Shiyanshi., 2005, 24, 5-7.
Jin, J.Y.; Lee, W.; Hyun, M. Development of the antipode of the covalently bonded crown ether type chiral stationary phase for the advantage of the reversal of elution order. J. Liq. Chromat. & Rel. Techn., 2006, 29, 841-848.
Yamashina, T.; Lee, J.; Itabashi, Y. Separation of 1-O-alkylglycerol enantiomers and identification of their alkyl groups by chiral-phase HPLC/MS. Bunseki Kagaku, 2006, 55, 643-650.
Hoffmann, C.V.; Laemmerhofer, M.; Lindner, W. Novel strong cation-exchange type chiral stationary phase for the enantiomer separation of chiral amines by high-performance liquid chromatography. J. Chromatogr. A, 2007, 1161(1-2), 242-251.
[http://dx.doi.org/10.1016/j.chroma.2007.05.092] [PMID: 17582422]
Zhou, L.; Mao, B.; Ge, Z. Comparative study of immobilized α 1 acid glycoprotein and ovomucoid protein stationary phases for the enantiomeric separation of pharmaceutical compounds. J. Pharm. Biomed. Anal., 2008, 46(5), 898-906.
[http://dx.doi.org/10.1016/j.jpba.2007.07.008] [PMID: 17719197]
Okamoto, M. Direct chiral separation of pyrethroid isomers by HPLC with chiral stationary phases 242nd ACS National Meeting & Exposition, Denver, CO, United States, August 28-September 1, 2011. AGRO-189.
Macaudière, P.; Lienne, M.; Caude, M.; Rosset, R.; Tambuté, A. Resolution of π-acid racemates on π-acid chiral stationary phases in normal-phase liquid and subcritical fluid chromatographic modes. A unique reversal of elution order on changing the nature of the achiral modifier. J. Chromatogr. A, 1989, 467, 357-372.
Haroun, M.; Ravelet, C.; Grosset, C.; Ravel, A.; Villet, A.; Peyrin, E. Reversal of the enantiomeric elution order of some aromatic amino acids using reversed-phase chromatographic supports coated with the teicoplanin chiral selector. Talanta, 2006, 68(3), 1032-1036.
[http://dx.doi.org/10.1016/j.talanta.2005.07.009] [PMID: 18970428]
Ghanem, A. True and false reversal of the elution order of barbiturates on a bonded cellulose-based chiral stationary phase. J. Chromatogr. A, 2006, 1132(1-2), 329-332.
[http://dx.doi.org/10.1016/j.chroma.2006.09.043] [PMID: 17018232]
Schlauch, M.; Frahm, A.W. A thermodynamic study of the temperature-dependent elution order of cyclic alpha-amino acid enantiomers on a copper(II)-D-penicillamine chiral stationary phase. Anal. Chem., 2001, 73(2), 262-266.
[http://dx.doi.org/10.1021/ac0009999] [PMID: 11199975]
Rodger, W.S. John., A., B., Factors That Control Successful Entropically Driven Chiral Separations in SFC and HPLC CPR&D, The DuPont Merck Pharmaceutical Company, Chambers Works PRF (S1), Deepwater, New Jersey 08023-0999. Anal. Chem., 1997, 69, 1414-1420.
Ilisz, I.; Grecsó, N.; Palkó, M.; Fülöp, F.; Lindner, W.; Péter, A. Structural and temperature effects on enantiomer separations of bicyclo[2.2.2]octane-based 3-amino-2-carboxylic acids on cinchona alkaloid-based zwitterionic chiral stationary phases. J. Pharm. Biomed. Anal., 2014, 98, 130-139.
Ilisz, I.; Grecsó, N.; Aranyi, A.; Suchotin, P.; Tymecka, D.; Wilenska, B.; Misicka, A.; Fülöp, F.; Lindner, W.; Péter, A. Enantioseparation of β(2)-amino acids on cinchona alkaloid-based zwitterionic chiral stationary phases. Structural and temperature effects. J. Chromatogr. A, 2014, 1334, 44-54.
[http://dx.doi.org/10.1016/j.chroma.2014.01.075] [PMID: 24565234]
Watanabe, S.; Kawahara, M.; Miura, K.; Aso, I. Separation and control of the elution order of N-t-butyloxycarbonyl amino acids D/L isomers by reversed-phase HPLC using cyclodextrins as chiral selectors for the mobile phase. Anal. Sci., 2002, 18(1), 73-76.
[http://dx.doi.org/10.2116/analsci.18.73] [PMID: 11817733]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [59 - 78]
Pages: 20
DOI: 10.2174/1573411015666190103145916
Price: $65

Article Metrics

PDF: 23