Highly Efficient Michael Reactions of Nitroolefins by Grinding Means

Author(s): Dong-Xiao Cui, Yue-Dan Li, Jun-Chao Zhu, Yan-Yan Jia, Ai-Dong Wen*, Ping-An Wang*.

Journal Name: Current Organic Synthesis

Volume 16 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Aim and Objective: The direct β-functionalization of trans-β-nitroolefins by Michael reaction is regarded as an efficient way to provide precursors for β-functional amines. However, Michael additions by grinding means with solvent-free conditons are rarely reported. We have developed facile access to β-functional nitroalkanes by grinding means under solvent-free conditions.

Materials and Methods: From commercially available materials including ethyl 2-nitroacetate, alkyl 2-cyanoacetates and malononitrile, the grinding reactions between these above-mentioned activated methylenecompounds and various trans-β-nitroolefins were performed at room temperature and solvent-free conditions.

Results: A highly efficient direct Michael reaction of nitroolefins by simple grinding means has been developed. Various trans-nitrostyrenes were easily converted into corresponding β-functional nitroalkanes in excellent yields within 5~10 min (up to 36 examples).

Conclusion: Herein, we have developed a simple and efficient way to β-functional nitroalkanes through Michael reactions by grinding means. The grinding Michael reaction is fast, clean and stable and these Michael adducts could be easily converted into the other amino compounds served as building blocks in organic synthesis.

Keywords: Michael reaction, nitroolefin, grinding, catalyst-free, nitroalkane, β-functional nitroalkanes, organic synthesis.

[1]
Tan, X-F.; Gao, S.; Zeng, W-J.; Xin, S.; Yin, Q.; Zhang, X-M. Asymmetric synthesis of chiral primary amines by ruthenium-catalyzed direct reductive amination of alkyl aryl ketones with ammonium salts and molecular H2. J. Am. Chem. Soc., 2018, 140, 2024-2027.
[2]
Li, Z.; Hu, B.; Wu, Y-W.; Fei, C.; Deng, L. Control of chemoselectivity in asymmetric tandem reactions: Direct synthesis of chiral amines bearing nonadjacent stereocenters. Proc. Nat. Acad. Sci., 2018, 115, 1730-1735.
[3]
Li, K-N.; Shao, X-X.; Tseng, L.; Malcolmson, S.J. 2-Azadienes as reagents for preparing chiral amines: synthesis of 1,2-amino tertiary alcohols by Cu-catalyzed enantioselective reductive couplings with ketones. J. Am. Chem. Soc., 2018, 140, 598-601.
[4]
Afewerki, S.; Córdova, A. Combinations of aminocatalysts and metal catalysts: A powerful cooperative approach in selective organic synthesis. Chem. Rev., 2016, 116, 13512-13570.
[5]
Li, W-B.; Zhang, J-L. Recent developments in the synthesis and utilization of chiral β-aminophosphine derivatives as catalysts or ligands. Chem. Soc. Rev., 2016, 45, 1657-1677.
[6]
Niu, D-W.; Buchwald, S.L. Design of modified amine transfer reagents allows the synthesis of α-chiral secondary amines via CuH-catalyzed hydroamination. J. Am. Chem. Soc., 2015, 137, 9716-9721.
[7]
Laugeois, M.; Ponra, S.; Ratovelomanana-Vidal, V.; Michelet, V.; Vitale, M.R. Asymmetric preparation of polysubstituted cyclopentanes by synergistic Pd(0)/amine catalyzed formal [3+2] cycloadditions of vinyl cyclopropanes with enals. Chem. Commun., 2016, 52, 5332-5335.
[8]
Chauhan, P.; Mahajan, S.; Enders, D. Achieving molecular complexity via stereoselective multiple domino reactions promoted by a secondary amine organocatalyst. Acc. Chem. Res., 2017, 50, 2809-2821.
[9]
Zhan, G.; Du, W.; Chen, Y-C. Switchable divergent asymmetric synthesis via organocatalysis. Chem. Soc. Rev., 2017, 46, 1675-1692.
[10]
Hayashi, Y.; Umekubo, N. Direct asymmetric Michael reaction of α,β-unsaturated aldehydes and ketones catalyzed by two secondary amine catalysts. Angew. Chem. Int. Ed., 2018, 57, 1958-1962.
[11]
Tang, L.; Luo, Y.; Xue, J-W.; He, Y-L.; Guan, Z. Highly enantioselective Michael-aldol-dehydration reaction for the synthesis of chiral 3,5-diaryl-cyclohexenones catalyzed by primary amine. Tetrahedron, 2017, 73, 1114-1119.
[12]
Sun, Y-L.; Wei, Y.; Shi, M. Applications of chiral thiourea-amine/phosphine organocatalysts in catalytic asymmetric reactions. ChemCatChem, 2017, 9, 718-727.
[13]
Cao, M-H.; Green, N.J.; Xu, S-Z. Application of the aza-Diels–Alder reaction in the synthesis of natural products. Org. Biomol. Chem., 2017, 15, 3105-3129.
[14]
Orejarena Pacheco, J.C.; Lipp, A.; Nauth, A.M.; Acke, F.; Dietz, J-P.; Opatz, T. A highly active system for the metal‐free aerobic photocyanation of tertiary amines with visible light: Application to the synthesis of tetraponerines and crispine A. Chem. Eur. J., 2016, 22, 5409-5415.
[15]
Zi, W-W.; Zuo, Z-W.; Ma, D-W. Intramolecular dearomative oxidative coupling of indoles: A unified strategy for the total synthesis of indoline alkaloids. Acc. Chem. Res., 2015, 48, 702-711.
[16]
Xiong, P.; Xu, F.; Qian, X-Y.; Yohannes, Y.; Song, J.; Lu, X.; Xu, H-C. Copper‐catalyzed intramolecular oxidative amination of unactivated internal alkenes. Chem. Eur. J., 2016, 22, 4379-4383.
[17]
Yang, Y.; Shi, S-L.; Niu, D-W.; Liu, P.; Buchwald, S.L. Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science, 2015, 349, 62-66.
[18]
Yoshimura, A.; Nemykin, V.N.; Zhdankin, V.V. O-Alkoxyphenylimino-iodanes: Highly efficient reagents for the catalytic aziridination of alkenes and the metal‐free amination of organic substrates. Chem. Eur. J., 2011, 17, 10538-10541.
[19]
Xiong, P.; Xu, H-H.; Xu, H-C. Metal- and reagent-free intramolecular oxidative amination of tri- and tetrasubstituted alkenes. J. Am. Chem. Soc., 2017, 139, 2956-2959.
[20]
Poulsen, T.B.; Alemparte, C.; Jørgensen, K.A. Enantioselective organocatalytic allylic amination. J. Am. Chem. Soc., 2005, 127, 11614-11615.
[21]
Sánchez-Roselló, M.; Aceña, J.L.; Simón-Fuentes, A.; Pozo, C. A general overview of the organocatalytic intramolecular aza-Michael reaction. Chem. Soc. Rev., 2014, 43, 7430-7453.
[22]
Nigam, M.; Rush, B.; Patel, J.; Castillo, R.; Dhar, P. Aza-Michael reaction for an undergraduate organic chemistry laboratory. J. Chem. Educ., 2016, 93, 753-756.
[23]
Fedotova, A.; Crousse, B.; Chataigner, I.; Maddaluno, J.; Yu Alexander, R.; Legros, J. Benefits of a dual chemical and physical activation: Direct aza-Michael addition of anilines promoted by solvent effect under high pressure. J. Org. Chem., 2015, 80, 10375-10379.
[24]
Kallitsakis, M.G.; Tancini, P.D.; Dixit, M.; Mpourmpakis, G.N.; Lykakis, I.N. Mechanistic studies on the Michael addition of amines and hydrazines to nitrostyrenes: Nitroalkane elimination via a retro-aza-Henry-type process. J. Org. Chem., 2018, 83, 1176-1184.
[25]
Huang, G-L.; Li, X. Applications of Michael addition reaction in organic synthesis. Curr. Org. Synth., 2017, 14, 568-571.
[26]
Mukhopadhyay, S.; Pan, S.C. Organocatalytic asymmetric synthesis of 2,4-disubstituted imidazolidines via domino addition-aza-Michael reaction. Chem. Commun., 2018, 54, 964-967.
[27]
Sallio, R.; Lebrun, S.; Capet, F.; Agbossou-Niedercorn, F.; Michon, C.; Deniau, E. Diastereoselective auxiliary- and catalyst-controlled intramolecular aza-Michael reaction for the elaboration of enantioenriched 3-substituted isoindolinones. Application to the synthesis of a new pazinaclone analogue. Beilstein J. Org. Chem., 2018, 14, 593-602.
[28]
Gholamhassan, I.; Farzaneh, A.; Mohammadreza, Z.; Yagoub, M. Tetrabutylammonium bromide media aza-Michael addition of 1,2,3,6-tetrahydrophthalimide to symmetrical fumaric esters and acrylic esters under solvent-free conditions. Molecules, 2010, 15, 7353-7362.
[29]
Li, C.; Jiang, K.; Chen, Y-C. Diastereodivergent and enantioselective [4+2] annulations of γ-butenolides with cyclic 1-azadienes. Molecules, 2015, 20, 13642-13658.
[30]
Andersen, J.; Mack, J. Mechanochemistry and organic synthesis: from mystical to practical. Green Chem., 2018, 20, 1435-1443.
[31]
Howard, J.L.; Cao, Q.; Browne, D.L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer?. Chem. Sci., 2018, 9, 3080-3094.
[32]
Leonardi, M.; Villacampa, M.; Menendez, J.C. Multicomponent mechanochemical synthesis. Chem. Sci., 2018, 9, 2042-2064.
[33]
Chauhan, P.; Chimni, S.S. Mechanochemistry assisted asymmetric organocatalysis: A sustainable approach. Beilstein J. Org. Chem., 2012, 8, 2132-2141.
[34]
Scettri, A.; Massa, A.; Palombi, L.; Villano, R.; Acocella, M.R. Organocatalytic asymmetric aza-Michael addition of aniline to chalcones under solvent-free conditions. Tetrahedron Asymmetry, 2008, 19, 2149-2152.
[35]
Bláha, M.; Trhlíková, O.; Podešva, J.; Abbrent, S.; Steinhart, M.; Dybal, J.; Dušková-Smrčková, M. Solvent-free, catalyst-free aza-Michael addition of cyclohexylamine to diethyl maleate: Reaction mechanism and kinetics. Tetrahedron, 2018, 74, 58-67.
[36]
Zigmee, T.B.; Avijit, D.; Malabika, B.; Amrita, C.; Mainak, B. 7-Oxa-4-thia-1-aza-bicyclo[3.2.1]octane4,4-dioxides: Mechano-chemical synthesis by tandem Michael addition-1,3-dipolar cycloaddition of aldoximes and evaluation of antibacterial activities. Eur. J. Org. Chem., 2018, 506-514.
[37]
Ying, A-G.; Liu, L.; Wu, G-F.; Chen, G.; Chen, X-Z.; Ye, W-D. Aza-Michael addition of aliphatic or aromatic amines to α,β-unsaturated compounds catalyzed by a DBU-derived ionic liquid under solvent-free conditions. Tetrahedron Lett., 2009, 50, 1653-1657.
[38]
Ying, A-G.; Li, Z-F.; Yang, J-G.; Liu, S.; Xu, S-L.; Yan, H.; Wu, C-L. DABCO-based ionic liquids: recyclable catalysts for aza-Michael addition of α, β-unsaturated amides under solvent-free conditions. J. Org. Chem., 2014, 79, 6510-6516.
[39]
Enders, D.; Wang, C.; Liebich, J. Organocatalytic asymmetric Aza-Michael additions. Chemistry, 2009, 15, 11058-11076.
[40]
Brindaban, C.R.; Banerjee, S. Significant rate acceleration of the aza-Michael reaction in water. Tetrahedron Lett., 2007, 48, 141-143.
[41]
Tang, X-J.; Yan, Z-L.; Chen, W-L.; Gao, Y-R.; Yan, S-M.; Zhang, L.; Wang, Y.Q. Aza-Michael reaction promoted by aqueous sodium carbonate solution. Tetrahedron Lett., 2013, 54, 2669-2673.
[42]
Xu, L-W.; Li, J-W.; Zhou, S-L.; Xia, C-G. A green, ionic liquid and quaternary ammonium salt-catalyzed aza-Michael reaction of α,β-ethylenic compounds with amines in water. New J. Chem., 2004, 28, 183-184.
[43]
Gawande, M.B.; Bonifácio, V.D.; Luque, R.; Branco, P.S.; Varma, R.S. Solvent-free and catalysts-free chemistry: a benign pathway to sustainability. ChemSusChem, 2014, 7, 24-44.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 3
Year: 2019
Page: [449 - 457]
Pages: 9
DOI: 10.2174/1570179416666190101122150
Price: $58

Article Metrics

PDF: 20
HTML: 3