BPA and Nutraceuticals, Simultaneous Effects on Endocrine Functions

Author(s): Stefania D'Angelo, Marika Scafuro, Rosaria Meccariello*.

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
(Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders)

Volume 19 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Bisphenol A (BPA) is worldwide diffused as a monomer of epoxy resins and polycarbonate plastics and has recognized activity as Endocrine Disruptor (ED). It is capable to interfere or compete with endogenous hormones in many physiological activities thus having adverse outcomes on health. Diet highly affects health status and in addition to macronutrients, provides a large number of substances with recognized pro-heath activity, and thus called nutraceuticals.

Objective: This mini-review aims at summarizing the possible opposite and simultaneous effects of BPA and nutraceuticals on endocrine functions. The possibility that diet may represent the first instrument to preserve health status against BPA damages has been discussed.

Methods: The screening of recent literature in the field has been carried out.

Results: The therapeutic and anti-oxidant properties of many nutraceuticals may reverse the adverse health effects of BPA.

Conclusion: In vitro and in vivo studies provided evidence that nutraceuticals can preserve the health. Thus, the use of nutraceuticals can be considered a support for clinical treatment. In conclusion, dietary remediation may represent a successful therapeutic approach to maintain and preserve health against BPA damage.

Keywords: BPA, endocrine disruptors, nutraceuticals, diet, health, endocrine functions, reproduction, metabolism.

[1]
Frye, C.A.; Bo, E.; Calamandrei, G.; Dessì-Fulgheri, C.L.F.; Fernández, M.; Fusani, L.; Kah, O.; Kajta, M.; Le Page, Y.; Patisaul, H.B.; Venerosi, A.; Wojtowicz, A.K.; Panzica, G.C. Endocrine disrupters: A review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J. Neuroendocrinol., 2012, 24(1), 144-159.
[2]
Chianese, R.; Troisi, J.; Richards, S.; Scafuro, M.; Fasano, S.; Guida, M.; Pierantoni, R.; Meccariello, R. Bisphenol A in reproduction: Epigenetic effects. Curr. Med. Chem., 2018, 25(6), 748-770.
[3]
Richter, C.A.; Birnbaum, L.S.; Farabollini, F.; Newbold, R.R.; Rubin, B.S.; Talsness, C.E.; Vandenbergh, J.G.; Walser-Kuntz, D.R.; vom Saal, F.S. In vivo effects of bisphenol A in laboratory rodent studies. Reprod. Toxicol., 2007, 24, 199-224.
[4]
Tavares, R.S.; Escada-Rebelo, S.; Correia, M.; Mota, P.C.; Ramalho-Santos, J. The non-genomic effects of endocrine-disrupting chemicals on mammalian sperm. Reprod., 2016, 151(1), R1-R13.
[5]
Peretz, J.; Vrooman, L.; Ricke, W.A.; Hunt, P.A.; Ehrlich, S.; Hauser, R.; Padmanabhan, V.; Taylor, H.S.; Swan, S.H.; VandeVoort, C.A.; Flaws, J.A. Bisphenol A and reproductive health: Update of experimental and human evidence, 2007-2013. Environ. Health Perspect., 2014, 122, 775-786.
[6]
Rubin, B.S.; Bisphenol, A. An endocrine disruptor with widespread exposure and multiple effects. J. Steroid Biochem. Mol. Biol., 2011, 127, 27-34.
[7]
Caserta, D.; Di Segni, N.; Mallozzi, M.; Giovanale, V.; Mantovani, A.; Marci, R.; Moscarini, M. Bisphenol A and the female reproductive tract: An overview of recent laboratory evidence and epidemiological studies. Reprod. Biol. Endocrinol., 2014, 12, 37.
[8]
Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global assessment of Bisphenol A in the environment: Review and analysis of its occurrence and bioaccumulation. Dose-Response. An. Int. J., 2015, 13, 1-29.
[9]
Muhamad, M.S.; Salim, M.R.; Lau, W.J.; Yusop, Z. A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water. Environ. Sci. Pollut. Res. Int., 2016, 23, 11549-11567.
[10]
Reif, D.M.; Martin, M.T.; Tan, S.W.; Houck, K.A.; Judson, R.S.; Richard, A.M.; Knudsen, T.B.; Dix, D.J.; Kavlock, R.J. Endocrine profiling and prioritization of environmental chemicals using ToxCast data. Environ. Health Perspect., 2010, 118, 1714-1720.
[11]
Vandenberg, L.N.; Ehrlich, S.; Belcher, S.M.; Ben-Jonathan, N.; Dolinoy, D.C.; Hugo, E.R.; Hunt, P.A.; Newbold, R.R.; Rubin, B.S.; Saili, K.S.; Soto, A.M.; Wang, H.S.; Vom Saal, F.S. Low dose effects of Bisphenol A: An integrated review of in vitro, laboratory animal and epidemiology studies. Endocr. Disrupt., 2013, 1e25078
[12]
Calafat, A.M.; Ye, X.; Wong, L.Y.; Reidy, J.A.; Needham, L.L. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ. Health Perspect., 2008, 116(1), 39-44.
[13]
Nerín, C.; Fernández, C.; Domeño, C.; Salafranca, J. Determination of potential migrants in polycarbonate containers used for microwave ovens by high-performance liquid chromatography with ultraviolet and fluorescence detection. J. Agric. Food Chem., 2003, 51, 5647-5653.
[14]
Kang, J.H.; Kito, K.; Kondo, F. Factors influencing the migration of Bisphenol A from cans. J. Food Prot., 2003, 66, 1444-1447.
[15]
Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human exposure to bisphenol A (BPA). Reprod. Toxicol., 2007, 24, 139-177.
[16]
Nunez, A.A.; Kannan, K.; Giesy, J.P.; Fang, J.; Clemens, L.G. Effects of bisphenol A on energy balance and accumulation in brown adipose tissue in rats. Chemosphere, 2001, 42, 917-922.
[17]
EFSA panel on food contact materials, enzymes, flavourings and processing aids (CEF). Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J., 2015, 13(1), 3978.
[18]
EFSA A statement on the developmental immunotoxicity of bisphenol A (BPA): Answer to the question from the Dutch Ministry of Health, Welfare and Sport. EFSA J., 2016, 14(10), 4580.
[19]
Mørck, T.J.; Sorda, G.; Bechi, N.; Rasmussen, B.S.; Nielsen, J.B.; Ietta, F.; Rytting, E.; Mathiesen, L.; Paulesu, L.; Knudsen, L.E. Placental transport and in vitro effects of Bisphenol A. Reprod. Toxicol., 2010, 30, 131-137.
[20]
Corbel, T.; Gayrard, V.; Puel, S.; Lacroix, M.Z.; Berrebi, A.; Gil, S.; Viguié, C.; Toutain, P.L.; Picard-Hagen, N. Bidirectional placental transfer of Bisphenol A and its main metabolite, Bisphenol A glucuronide, in the isolated perfused human placenta. Reprod. Toxicol., 2014, 47, 51-58.
[21]
Mercogliano, R.; Santonicola, S. Investigation on bisphenol A levels in human milk and dairy supply chain: A review. Food Chem. Toxicol., 2018, 114, 98-107.
[22]
Legeay, S.; Faure, S. Is bisphenol A an environmental obesogen? Food Chem. Toxicol., 2018, 114, 98-107.
[23]
Murata, M.; Kang, J.H.; Bisphenol, A. BPA) and cell signaling pathways. Biotechnol. Adv., 2018, 36(1), 311-327.
[24]
Hugo, E.R.; Brandebourg, T.D.; Woo, J.G.; Loftus, J.; Alexander, J.W.; Ben-Jonathan, N. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ. Health Perspect., 2008, 116(12), 1642-1647.
[25]
Ben-Jonathan, N.; Hugo, E.R.; Brandebourg, T.D. Effects of bisphenol A on adipokine release from human adipose tissue: Implications for the metabolic syndrome. Mol. Cell. Endocrinol., 2009, 304(1-2), 49-54.
[26]
Huc, L.; Lemarié, A.; Guéraud, F.; Héliès-Toussaint, C. Low concentrations of bisphenol A induce lipid accumulation mediated by the production of reactive oxygen species in the mitochondria of HepG2 cells. Toxicol. In Vitro, 2012, 26(5), 709-717.
[27]
Le Magueresse-Battistoni, B.; Multigner, L.; Beausoleil, C.; Rousselle, C. Effects of bisphenol A on metabolism and evidences of a mode of action mediated through endocrine disruption. Mol. Cell. Endocrinol., 2018, 475, 74-91.
[28]
Roepke, T.A.; Yang, J.A.; Yasrebi, A.; Mamounis, K.J.; Oruc, E.; Zama, A.M.; Uzumcu, M. Regulation of arcuate genes by developmental exposures to endocrine-disrupting compounds in female rats. Reprod. Toxicol., 2016, 62, 18-26.
[29]
Desai, M.; Ferrini, M.G.; Han, G.; Jellyman, J.K.; Ross, M.G. In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators. Environ. Res., 2018, 164, 45-52.
[30]
Chianese, R.; Coccurello, R.; Viggiano, A.; Scafuro, M.; Fiore, M.; Coppola, G.; Operto, F.F.; Fasano, S. Layé, S.; Pierantoni, R.; Meccariello, R. Impact of dietary fats on brain functions. Curr. Neuropharmacol., 2018, 16(7), 1059-1085.
[31]
Chevalier, N.; Fénichel, P.; Bisphenol, A. Targeting metabolic tissues. Rev. Endocr. Metab. Disord., 2015, 16, 299-309.
[32]
Sharpe, R.M. Regulation of spermatogenesis. In: The Physiology of Reproduction; E., Knobil, Ed.; J.D. Neil, 1994; pp. 1363-1434.
[33]
Pierantoni, R.; Cobellis, G.; Meccariello, R.; Fasano, S. Evolutionary aspects of cellular communication in the vertebrate hypothalamo-hypophysio-gonadal axis. Int. Rev. Cytol., 2002, 218, 69-141.
[34]
Chianese, R.; Cobellis, G.; Chioccarelli, T.; Ciaramella, V.; Migliaccio, M.; Fasano, S.; Pierantoni, R.; Meccariello, R. Kisspeptins, estrogens and male fertility. Curr. Med. Chem., 2016, 23, 4070-4091.
[35]
Akingbemi, B.T.; Sottas, C.M.; Koulova, A.I.; Klinefelter, G.R.; Hardy, M.P. Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinol, 2004, 145, 592-603.
[36]
Jin, P.; Wang, X.; Chang, F.; Bay, Y.; Li, Y.; Zhou, R.; Chen, L. Low dose bisphenol A impairs spermatogenesis by suppressing reproductive hormone production and promoting germ cell apoptosis in adult rats. J. Biomed. Res., 2013, 27(2), 135-144.
[37]
Kalb, A.C.; Kalb, A.L.; Cardoso, T.F.; Fernandes, C.G.; Corcini, C.D.; Varela, J.A.S.; Martínez, P.E. Maternal transfer of bisphenol a during nursing causes sperm impairment in male offspring. Arch. Environ. Contam. Toxicol., 2016, 70(4), 793-801.
[38]
Wang, P.; Luo, C.; Li, Q.; Chen, S.; Hu, Y. Mitochondrion-mediated apoptosis is involved in reproductive damage caused by BPA in male rats. Environ. Toxicol. Pharmacol., 2014, 38(3), 1025-1033.
[39]
Wisniewski, P.; Romano, R.M.; Kizys, M.M.; Oliveira, K.C.; Kasamatsu, T.; Giannocco, G.; Chiamolera, M.I.; Dias-da-Silva, M.R.; Romano, M.A. Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic-pituitary-testicular axis. Toxicol., 2015, 329, 1-9.
[40]
Adoamnei, E.; Mendiola, J.; Vela-Soria, F.; Fernández, M.F.; Olea, N.; Jørgensen, N.; Swan, S.H.; Torres-Cantero, A.M. Urinary bisphenol A concentrations are associated with reproductive parameters in young men. Environ. Res., 2018, 161, 122-128.
[41]
Chianese, R.; Viggiano, A.; Urbanek, K.; Cappetta, D.; Troisi, J.; Scafuro, M.; Guida, M.; Esposito, G.; Ciuffreda, L.P.; Rossi, F.; Berrino, L.; Fasano, S.; Pierantoni, R.; De Angelis, A.; Meccariello, R. Chronic exposure to low dose of bisphenol A impacts the first round of spermatogenesis via SIRT1 modulation. Sci. Rep., 2018, 8(1), 2961.
[42]
Ogo, F.M.; de Lion Siervo, G.E.M. Staurengo-Ferrari. L.; de Oliveira Mendes, L.; Luchetta, N.R.; Vieira, H.R.; Fattori, V.; Verri, W.A.Jr.; Scarano, W.R.; Fernandes, G.S.A. Bisphenol A Exposure Impairs Epididymal Development during the Peripubertal Period of Rats: Inflammatory Profile and Tissue Changes. Basic Clin. Pharmacol. Toxicol., 2018, 122, 262-270.
[43]
Hart, R.J.; Doherty, D.A.; Keelan, J.A.; Minaee, N.S.; Thorstensen, E.B.; Dickinson, J.E.; Pennell, C.E.; Newnham, J.P.; McLachlan, R.; Norman, R.J.; Handelsman, D.J. The impact of antenatal Bisphenol A exposure on male reproductive function at 20-22 years of age. Reprod. Biomed. Online, 2018, 36(3), 340-347.
[44]
Troisi, J.; Mikelson, C.; Richards, S.; Symes, S.; Adair, D.; Zullo, F.; Guida, M. Placental concentrations of bisphenol A and birth weight from births in the Southeastern U.S. Placenta, 2014, 35, 947-952.
[45]
Troisi, J.; Giugliano, L.; D’Antonio, A.; Viggiano, A.; Meccariello, R.; Scafuro, M.; Monda, M.; Colucci, A.; Scala, G.; Cofano, M.; Guida, M. Placental vascularization and apoptosis in rats orally exposed to low doses of Bisphenol A. Open J. Obstetrics Gynecol., 2018, 8(11), Article ID 87102, 958-969.
[46]
Leclerc, F.; Dubois, M.F.; Aris, A. Maternal, placental and fetal exposure to bisphenol A in women with and without preeclampsia. Hypert. Pregnanc, 2014, 33(3), 341-348.
[47]
Brower, V. Nutraceuticals: Poised for a healthy slice of the healthcare market? Nat. Biotechnol., 1998, 16, 728-731.
[48]
Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients, 2010, 2, 611-625.
[49]
Divya, G.S.; Geetha, K.; Uma Maheswara Rao, V. Future trends in nutraceuticals - A Review. W. J. P. R., 2015, 4, 764-772.
[50]
Motti, M.L.; D’Angelo, S.; Meccariello, R. MicroRNAs, cancer and diet: Facts and new exciting perspectives. Curr. Molec. Pharmacol., 2018, 11(2), 90-96.
[51]
Rajat, S.; Manisha, S.; Robin, K. S. Nutraceuticals: A review. Int. Res. J. Pharmac., 2012, 3(4)
[52]
Kumar, P.; Kumar, N.; Omer, T. A review on nutraceutical “Critical supplement for building a healthy world”. World J. Pharm. Sci., 2016, 5(3), 579-594.
[53]
Halliwell, B. Dietary polyphenols: good, bad, or indifferent for your health? Cardiovasc. Res., 2007, 73(2), 341-347.
[54]
Laparra, J.M.; Sanz, Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol. Res., 2010, 61, 219-225.
[55]
Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9)
[56]
Cencic, A.; Chingwaru, W. Antimicrobial agents deriving from indigenous plants. Recent Pat. Food Nutr. Agric., 2010, 2, 83-92.
[57]
D’Angelo, S.; Martino, E.; Ilisso, C.P.; Bagarolo, M.L.; Porcelli, M.; Cacciapuoti, G. Pro-oxidant and pro-apoptotic activity of polyphenol extract from Annurca apple and its underlying mechanisms in human breast cancer cells. Int. J. Onc., 2017, 51, 939-948.
[58]
D’Angelo, S.; La Porta, R.; Napolitano, M.; Galletti, P.; Quagliuolo, L.; Boccellino, M.R. Effect of annurca apple polyphenols on human HaCaT keratinocytes proliferation. J. Med. Food, 2012, 15(11), 1024-1031.
[59]
Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal., 2013, 18(14), 1818-1892.
[60]
Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep., 2009, 26(8), 1001-1043.
[61]
Tressera-Rimbau, A.; Arranz, S.; Eder, M.; Vallverdú-Queralt, A. Dietary polyphenols in the prevention of stroke. Oxid. Med. Cell. Longev., 2017.7467962
[62]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2, 270-278.
[63]
Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anticancer efficacy of polyphenols and their combinations. Nutrients, 2016, 8(9)E552
[64]
Sosnowska, B.; Penson, P.; Banach, M. The role of nutraceuticals in the prevention of cardiovascular disease. Cardiovasc. Diagn. Ther., 2017, 7(1), S21-S31.
[65]
Khadem-Ansari, M.H.; Rasmi, Y.; Ramezani, F. Effects of red grape juice consumption on high density lipoprotein-cholesterol, apolipoprotein AI, apolipoprotein B and homocysteine in healthy human volunteers. Open Biochem. J., 2010, 4, 96-99.
[66]
Bui, T.T.; Nguyen, T.H. Natural product for the treatment of Alzheimer’s disease. J. Basic Clin. Physiol. Pharmacol., 2017, 28(5), 413-423.
[67]
Babaei, F.; Mirzababaei, M.; Nassiri-Asl, M. Quercetin in food: Possible mechanisms of its effect on memory. J. Food Sci., 2018, 83(9), 2280-2287.
[68]
Rauf, A.; Imran, M.; Khan, I.A.; Ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res., 2018, 32(11), 2109-2130.
[69]
Patel, R.V.; Mistry, B.M.; Shinde, S.K.; Syed, R.; Singh, V.; Shin, H.S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem., 2018, 15(155), 889-904.
[70]
Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci., 2015, 16(10), 24673-24706.
[71]
Nancy, N.; Zikri, K.; Riedl, M.; Li-Shu, W.; Lechner, J.F.; Schwartz, S.J.; Gary, D.; Black, S. Raspberry components inhibit proliferation, induce apoptosis and modulate gene expression in rat esophageal epithelial cells. Nutr. Cancer. Nutr. Cancer, 2009, 61(6), 816-826.
[72]
Rahmani, A.H.; Alsahli, M.A.; Aly, S.M.; Khan, M.A.; Aldebasi, Y.H. Role of curcumin in disease prevention and treatment. Adv. Biomed. Res., 2018, 7, 38.
[73]
Pajari, A.M.; Päivärinta, E.; Paavolainen, L.; Vaara, E.; Koivumäki, T.; Garg, R.; Heiman-Lindh, A.; Mutanen, M.; Marjomäki, V.; Ridley, A.J. Ellagitannin-rich cloudberry inhibits hepatocyte growth factor induced cell migration and phosphatidylinositol 3-kinase/AKT activation in colon carcinoma cells and tumors in Min mice. Oncotarget, 2016, 7(28), 43907-43923.
[74]
Reddy, R.C.; Vatsala, P.G.; Keshamouni, V.G.; Padmanaban, G.; Rangarajan, P.N. Curcumin for malaria therapy. Biochem. Biophys. Res. Commun., 2005, 326, 472-474.
[75]
Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol., 2009, 41(1), 40-59.
[76]
Sarkar, A.; De, R.; Mukhopadhyay, A.K. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases. World J. Gastroenterol., 2016, 22, 2736.
[77]
Liao, S.; Xia, J.; Chen, Z.; Chen, Z.; Zhang, S.; Ahmad, A.; Miele, L.; Sarkar, F.H.; Wang, Z. Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of Notch-1 and NF-κB signaling pathways. J. Cell. Biochem., 2011, 112(4), 1055-1065.
[78]
Zhou, S.; Zhang, S.; Shen, H.; Chen, W.; Xu, H.; Chen, X.; Sole, D.; Zhong, S.; Zhao, J.; Tang, J. Curcumin inhibits cancer progression through regulating expression of microRNAs. Tumour Biol., 2017, 39(2), 1-12.
[79]
Tian, B.; Zhao, Y.; Liang, T.; Ye, X.; Li, Z.; Yan, D.; Fu, Q.; Li, Y. Curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. J. Drug Target., 2017, 25(7), 626-636.
[80]
Zhang, H.; Xu, W.; Li, B.; Zhang, K.; Wu, Y.; Xu, H.; Wang, J.; Zhang, J.; Fan, R.; Wei, J. Curcumin promotes cell cycle arrest and inhibits survival of human renal cancer cells by negative modulation of the PI3K/AKT signaling pathway. Cell Biochem. Biophys., 2015, 73(3), 681-686.
[81]
Mudduluru, G.; George-William, J.N.; Muppala, S.; Asangani, I.A.; Kumarswamy, R.; Nelson, L.D.; Allgayer, H. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci. Rep., 2011, 31(3), 185-197.
[82]
Saini, S.; Arora, S.; Majid, S.; Shahryari, V.; Chen, Y.; Deng, G.; Yamamura, S.; Ueno, K.; Dahiya, R. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev. Res. (Phila.), 2011, 4(10), 1698-1709.
[83]
Zhu, X.; Zhu, R. Curcumin suppresses the progression of laryngeal squamous cell carcinoma through the upregulation of miR-145 and inhibition of the PI3K/Akt/mTOR pathway. OncoTargets Ther., 2018, 19(11), 3521-3531.
[84]
Spagnuolo, C.; Russo, G.L.; Orhan, I.E.; Habtemariam, S.; Daglia, M.; Sureda, A.; Nabavi, S.F.; Devi, K.P.; Loizzo, M.R.; Tundis, R.; Nabavi, S.M. Genistein and cancer: Current status, challenges, and future directions. Adv. Nutr., 2015, 6(4), 408-419.
[85]
Pavese, J.M.L.; Farmer, R.L.; Bergan, R.C. Inhibition of cancer cell invasion and metastasis by genistein. Canc Metastas Rev., 2010, 29(3), 465-482.
[86]
Ravindranath, M.H.L.; Muthugounder, S.; Presser, N.; Viswanathan, S. Anticancer therapeutic potential of soy isoflavone, genistein. Adv. Exp. Med. Biol., 2004, 546, 121-165.
[87]
Gupta, S.C.; Kim, J.H.; Prasad, S.; Aggarwal, B.B. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev., 2010, 29(3), 405-434.
[88]
Zhao, S.; Liu, H.; Gu, L. American cranberries and health benefits - an evolving story of 25 years. J. Sci. Food Agric., 2018. Jan 9. doi: 10.1002/jsfa.8882 [Epub ahead of print].
[89]
D’Angelo, S.; Sammartino, D. Protective Effect of Annurca Apple Extract Against Oxidative Damage in Human Erythrocytes. Curr. Nutr. Food Sci., 2015, 11(4), 248-256.
[90]
Mangels, D.R.; Mohler, E.R. Catechins as potential mediators of cardiovascular health. Arterioscler. Thromb. Vasc. Biol., 2017, 37(5), 757-763.
[91]
Han, X.D.; Zhang, Y.Y.; Wang, K.L.; Huang, Y.P.; Yang, Z.B.; Liu, Z. The involvement of Nrf2 in the protective effects of (-)-Epigallocatechin-3-gallate (EGCG) on NaAsO2-induced hepatotoxicity. Oncotarget, 2017, 8(39), 65302-65312.
[92]
Tessier, A.J.; Chevalier, S. An update on protein, leucine, omega-3 fatty acids, and vitamin D in the prevention and treatment of sarcopenia and functional decline. Nutrients, 2018, 10(8)E1099
[93]
Shirooie, S.; Nabavi, S.F.; Dehpour, A.R.; Belwal, T.; Habtemariam, S.; Argüelles, S.; Sureda, A.; Daglia, M.; Tomczyk, M.; Sobarzo-Sanchez, E.; Xu, S.; Nabavi, S.M. Targeting mTORs by omega-3 fatty acids: A possible novel therapeutic strategy for neurodegeneration? Pharmacol. Res., 2018, 135, 37-48.
[94]
Milani, A.; Basirnejad, M.; Shahbazi, S.; Bolhassani, A. Carotenoids: Biochemistry, pharmacology and treatment. Br. J. Pharmacol., 2017, 174(11), 1290-1324.
[95]
Evans, J.A.; Johnson, E.J. The role of phytonutrients in skin health. Nutrients, 2010, 2(8), 903-928.
[96]
Borek, C. Garlic reduces dementia and heart-disease risk. J. Nutr., 2006, 136, 810S-812S.
[97]
Silagy, C.; Neil, A. Garlic as a lipid lowering agent: A meta-analysis. J. R. Coll. Physic Lond., 1994, 28, 39-45.
[98]
Li, S.; Chen, S.; Yang, W.; Liao, L.; Li, S.; Li, J.; Zheng, Y.; Zhu, D. Allicin relaxes isolated mesenteric arteries through activation of PKA-KATP channel in rat. J. Rec. Sign. Trans. Res., 2017, 37, 17-24.
[99]
Kong, X.; Gong, S.; Su, L.; Li, C.; Kong, Y. Neuroprotective effects of allicin on ischemia-reperfusion brain injury. Oncotarget, 2017, 8(61), 104492-104507.
[100]
Wang, J. Chen, Chen, Z.J.; Meng, W.; Hai J.; Xiaoying, Z. Protective effect of Cordyceps militaris extract against bisphenol A induced reproductive damage. Syst Biol Reprod Med, 2016, 62(4), 249-257.
[101]
Geng, S.; Wang, S.; Zhu, W.; Xie, C.; Li, X.; Wu, J.; Zhu, J.; Jiang, Y.; Yang, X.; Li, Y. Curcumin attenuates BPA-induced insulin resistance in HepG2 cells through suppression of JNK/p38 pathways. Toxicol. Lett., 2017, 272, 75-83.
[102]
Wang, J.; Jenkins, S.; Lamartiniere, C.A. Cell proliferation and apoptosis in rat mammary glands following combinational exposure to bisphenol A and genistein. BMC Cancer, 2014, 14, 379.
[103]
Jahan, S.; Ain, Q.U.; Ullah, H. Therapeutic effects of quercetin against bisphenol A induced testicular damage in male Sprague Dawley rats. Syst Biol Reprod Med, 2016, 62(2), 114-124.
[104]
Mlynarcikova, A.B.; Scsukova, S. Endocrine disruptors, nutraceuticals and their simultaneous effects in hormone-sensitive tissues: A Rev. Res. Rev. J. Pharm. Pharmac. Sci., 2016, 5(2), 12-20.
[105]
Kuruto-Niwa, R.; Inoue, S.; Ogawa, S.; Muramatsu, M.; Nozawa, R. Effects of tea catechins on the ERE-regulated estrogenic activity. J. Agric. Food Chem., 2000, 48(12), 6355-6361.
[106]
Oishi, K.; Sato, T.; Yokoi, W.; Yoshida, Y. Effect of Probiotics, Bifidobacterium breve and Lactobacillus casei, on Bisphenol A Exposure in Rats. Biosci. Biotechnol. Biochem., 2008, 72(6), 1409-1415.
[107]
Veiga-Lopez, A.; Pennathur, S.; Kannan, K.; Patisaul, H.B.; Dolinoy, D.C.; Zeng, L.; Padmanabhan, V. Impact of gestational bisphenol A on oxidative stress and free fatty acids: Human association and interspecies animal testing studies. Endocrinol, 2015, 156, 911-922.
[108]
Kaur, S.; Saluja, M.; Bansal, M.P. Bisphenol A induced oxidative stress and apoptosis in mice testes: Modulation by selenium. Andrologia, 2018, 50(3)
[http://dx.doi.org/10.1111/and.12834]
[109]
Lee, S.; Kim, Y.K.; Shin, T.Y.; Kim, S.H. Neurotoxic effects of bisphenol AF on calcium-induced ROS and MAPKs. Neurot. Res., 2013, 23(3), 249-529.
[110]
Wang, A.; Li, R.; Ren, L.; Gao, X.; Zhang, Y.; Ma, Z.; Ma, D.; Luo, Y. A comparative metabolomics study of flavonoids in sweet potato with different flesh colors (Ipomoea batatas (L.) Lam). Food Chem., 2018, 260, 124-134.
[111]
Rajendran, R.; Kulanthaivel, L.; Subbaraj, G.; Shanmugam, V.; Peranandam, T.; Maruthaiveeran, P.B. Anti-infertility significance of aqueous extract of Ipomoea batatas (L.) Lam. against exposure of bisphenol A (BPA) promoted testicular toxicity in male Sprague Dawley rats. Asian Pac. J. Reprod., 2013, 2(4), 263-271.
[112]
Park, B.; Kwon, J.E.; Cho, S.M.; Kim, C.W.; Lee, D.E.; Koo, Y.T.; Lee, S.H.; Lee, H.M.; Kang, S.C. Protective effect of Lespedeza cuneata ethanol extract on Bisphenol A-induced testicular dysfunction in vivo and in vitro. Biom. Pharmac., 2018, 102, 76-85.
[113]
Türedi, S.; Yuluğ, E.; Alver, A.; Kutlu, O.; Kahraman, C. Effects of resveratrol on doxorubicin induced testicular damage in rats. Experiment. Toxicol. Pathol., 2015, 67, 229-235.
[114]
Tamilselvan, P.; Bharathiraja, K.; Vijayaprakash, S.; Balasubramanian, M.P. Protective role of lycopene on bisphenol A induced changes in sperm characteristics, testicular damage and oxidative stress in rats. Int. J. Pharm Bio Sci., 2013, 4(4), 131-143.
[115]
Koda, T.; Morita, M.; Imai, H. Retinoic acid inhibits uterotrophic activity of bisphenol A in adult ovariectomized rats. J. Nutr. Sci. Vitaminol., 2007, 53(5), 432-436. [Tokyo].
[116]
Sharman, E.H.; Bondy, S.C. Melatonin: A safe nutraceutical and clinical agent. in nutraceuticals efficacy, safety and toxicity,, 2016, Chapter 36, pp. 501-509.
[117]
Anjum, S.; Rahman, S.; Kaur, M.; Ahmad, F.; Rashid, H.; Ansari, R.A.; Raisuddin, S. Melatonin ameliorates bisphenol A-induced biochemical toxicity in testicular mitochondria of mouse. Food Chem. Toxicol., 2011, 49(11), 2849-2854.
[118]
Wu, H.J.; Liu, C.; Duan, W.X.; Xu, S.C.; He, M.D.; Chen, C.H.; Wang, Y.; Zhou, Z.; Yu, Z.P.; Zhang, L.; Chen, Y. Melatonin ameliorates bisphenol A-induced DNA damage in the germ cells of adult male rats. Mutat. Res., 2013, 752(1-2), 57-67.
[119]
Othman, A.I.; Edrees, G.M.; El-Missiry, M.A.; Ali, D.A.; Aboel-Nour, M.; Dabdoub, B.R. Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity. Toxicol. Ind. Health, 2016, 32(9), 1537-1549.
[120]
Olukole, S.G.; Ajani, S.O.; Ola-Davies, E.O.; Lanipekun, D.O.; Aina, O.O.; Oyeyemi, M.O.; Oke, B.O. Melatonin ameliorates bisphenol A-induced perturbations of the prostate gland of adult Wistar rats. Biomed. Pharmacother., 2018, 105, 73-82.
[121]
Dernek, D.; Ömeroğlu, S.; Akçay, N.C.; Kartal, B.; Dizakar, S.Ö.A.; Türkoğlu, İ.; Aydin, V. Possible effects of melatonin against rat uterus exposure to bisphenol A during neonatal period. Environ. Sci. Pollut. Res. Int., 2017, 24(34), 26829-26838.
[122]
Zhang, M.; Dai, X.; Lu, Y.; Miao, Y.; Zhou, C.; Cui, Z.; Liu, H.; Xiong, B. Melatonin protects oocyte quality from Bisphenol A-induced deterioration in the mouse. J. Pineal Res., 2017, 62(3)
[123]
Zhang, T.; Zhou, Y.; Li, L.; Zhao, Y.; De Felici, M.; Reiter, R.J.; Shen, W. Melatonin protects prepuberal testis from deleterious effects of bisphenol A or diethylhexyl phthalate by preserving H3K9 methylation. J. Pineal Res., 2018, 65(2)e12497
[124]
Wu, G.; Song, D.; Wei, Q.; Xing, J.; Shi, X. Shi. F. Melatonin mitigates bisphenol A-induced estradiol production and proliferation by porcine ovarian granulosa cells in vitro. Anim. Reprod. Sci., 2018, 192, 91-98.
[125]
Lopes, J.; Arnosti, D.; Trosko, J.E.; Tai, M.H.; Zuccari, D. Melatonin decreases estrogen receptor binding to estrogen response elements sites on the OCT4 gene in human breast cancer stem cells. Genes Cancer, 2016, 7(5-6), 209-217.
[126]
Wang, T.; Liu, B.; Guan, Y.; Gong, M.; Zhang, W.; Pan, J.; Liu, Y.; Liang, R.; Yuan, Y.; Ye, L. Melatonin inhibits the proliferation of breast cancer cells induced by bisphenol A via targeting estrogen receptor-related pathways. Thorac. Cancer, 2018, 9(3), 368-375.
[127]
Dolinoy, D.C.; Huang, D.; Jirtle, R.L. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc. Natl. Acad. Sci. USA, 2007, 104, 13056-13061.
[128]
Rosenfeld, C.S.; Sieli, P.T.; Warzak, D.A.; Ellersieck, M.R.; Pennington, K.A.; Roberts, R.M. Maternal exposure to bisphenol A and genistein has minimal effect on Avy/a offspring coat color but favors birth of agouti over nonagouti mice. Proc. Natl. Acad. Sci. USA, 2013, 110, 537-542.
[129]
Sidorkiewicz, I.; Czerniecki, J.; Jarząbek, K.; Zbucka-Krętowska, M.; Wołczyński, S. Cellular, transcriptomic and methylome effects of individual and combined exposure to BPA, BPF, BPS on mouse spermatocyte GC-2 cell line. Toxicol. Appl. Pharmacol., 2018, 359, 1-11.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 19
ISSUE: 5
Year: 2019
Page: [594 - 604]
Pages: 11
DOI: 10.2174/1871530319666190101120119

Article Metrics

PDF: 28
HTML: 3
PRC: 1