Elimination of Fluoride, Arsenic, and Nitrate from Water Through Adsorption onto Nano-adsorbent: A Review

Author(s): Ravi Kumar Patel, Sanjay Kumar, Amit Kumar Chawla, Prasenjit Mondal, Neelam, Benoit Teychene, Jitendra K. Pandey*.

Journal Name: Current Nanoscience

Volume 15 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Fluoride, arsenic, and nitrate are considered as major pollutants of water around the world, affecting millions of people mainly through the potable groundwater. Presence of these contaminants in drinking water can cause health issues like dental fluorosis, skeletal fluorosis, blackfoot disease, blue-baby syndrome, reproductive disorders, skin cancer, thyroid dysfunction, hypertension etc. The removal of fluoride, arsenic, and nitrate is mainly carried out through ion-exchange, membrane, adsorption, and other chemical treatments. Owing to the cost competitiveness, energy consumption and customized operating procedure, adsorption has been a popular choice for the removal of these contaminants. The adsorbent based on natural material either in native form or modified at the surface, have gained the momentum to be utilized for fluoride, arsenic, and nitrate free drinking water because of their adequate disposability. Recently, adsorbent of nanomaterial has shown the significant potential for water treatment because of their higher surface area and tailored selectivity. Nanoadsorbents prepared by wet-chemical precipitation, co-precipitation, sol-gel, electro-coextrusion, hydrothermal, thermal refluxing methods etc. can be effectively employed at comparatively lower concentration for water treatment. The adsorption capacity, durability, recyclability, and toxicity of nano-adsorbent are further explored particularly, at commercial scale. The present article is mainly aimed to provide a comprehensive review about the applicability and challenges associated with the use of nano-adsorbents for the removal of fluoride, arsenic, and nitrate with a brief discussion on options and future perspective to meet the challenges of complexity for the selection of environmentfriendly adsorbents.

Keywords: Fluoride, arsenic, nitrate, adsorption, nano-adsorbent, elimination, aqueous medium.

[1]
Organization, W.H. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, 2004, Vol. 1, .
[2]
Project, H. Major Ions in Water, New Delhi, September 1999; pp. 41.
[3]
Ayoob, S.; Gupta, A.K. Fluoride in drinking water: A review on the status and stress effects. Crit. Rev. Environ. Sci. Technol., 2006, 36(6), 433-487.
[4]
Fawell, J.K.; Bailey, K.; Chilton, J.; Dahi, E.; Lennon, M.; Jackson, P. Fluoride in Drinking-Water; World Health Organization, 2006.
[5]
Suthar, S.; Garg, V.K.; Jangir, S.; Kaur, S.; Goswami, N.; Singh, S. Fluoride contamination in drinking water in rural habitations of Northern Rajasthan, India. Environ. Monit. Assess., 2008, 145(1), 1-6.
[6]
Ghosh, A.; Mukherjee, K.; Ghosh, S.K.; Saha, B. Sources and toxicity of fluoride in the environment. Res. Chem. Intermed., 2013, 39(7), 2881-2915.
[7]
Lapworth, D.; Baran, N.; Stuart, M.; Ward, R. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut., 2012, 163, 287-303.
[8]
World Health Organization. Health criteria and other supporting information. Guidelines for Drinking-Water Quality, 1996, 2, 796-803.
[9]
WHO. Guidelines for Drinking Water Quality; World Health Organization, 2011.
[10]
Specification for Drinking Water IS 10500: 2012. New Delhi, India, 2012.
[11]
Miretzky, P.; Cirelli, A.F. Fluoride removal from water by chitosan derivatives and composites: A review. J. Fluor. Chem., 2011, 132(4), 231-240.
[12]
Maheshwari, R. Fluoride in drinking water and its removal. J. Hazard. Mater., 2006, 137(1), 456-463.
[13]
Li, Y.; Liang, C.; Slemenda, C.W.; Ji, R.; Sun, S.; Cao, J.; Emsley, C.L.; Ma, F.; Wu, Y.; Ying, P. Effect of long-term exposure to fluoride in drinking water on risks of bone fractures. J. Bone Miner. Res., 2001, 16(5), 932-939.
[14]
Alarcon-Herrera, M.T. MartIn-Dominguez, I.R.; Trejo-Vázquez, R.; Rodriguez-Dozal, S. Well water fluoride, dental fluorosis, and bone fractures in the Guadiana Valley of Mexico. Fluoride, 2001, 34(2), 139-149.
[15]
Cauley, J.A.; Buhari, A.M.; Murphy, P.A.; Riley, T.J. Effects of fluoridated drinking water on bone mass and fractures: the study of osteoporotic fractures. J. Bone Miner. Res., 1995, 10(7), 1076-1086.
[16]
Smith, A.H.; Lopipero, P.A.; Bates, M.N.; Steinmaus, C.M. Arsenic epidemiology and drinking water standards. Science, 2002, 296(5576), 2145-2146.
[17]
Chatterjee, A.; Das, D.; Mandal, B.K.; Chowdhury, T.R.; Samanta, G.; Chakraborti, D. Arsenic in ground water in six districts of West Bengal, India: The biggest arsenic calamity in the world. Part I. Arsenic species in drinking water and urine of the affected people. Analyst, 1995, 120, 643-650.
[18]
Karmacharya, M.; Gupta, V.K.; Tyagi, I.; Agarwal, S.; Jha, V. Removal of As (III) and As (V) using rubber tire derived activated carbon modified with alumina composite. J. Mol. Liq., 2016, 216, 836-844.
[19]
Samadder, S.R. Impact of arsenic pollution on spatial distribution of human development index. KSCE J. Civ. Eng., 2011, 15(6), 975-982.
[20]
Smith, A.H.; Hopenhayn-Rich, C.; Bates, M.N.; Goeden, H.M.; Hertz-Picciotto, I.; Duggan, H.M.; Wood, R.; Kosnett, M.J.; Smith, M.T. Cancer risks from arsenic in drinking water. Environ. Health Perspect., 1992, 97, 259.
[21]
Chen, C.J.; Chen, C.; Wu, M.; Kuo, T. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br. J. Cancer, 1992, 66(5), 888-892.
[22]
Smith, A.H.; Goycolea, M.; Haque, R.; Biggs, M.L. Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am. J. Epidemiol., 1998, 147(7), 660-669.
[23]
Argos, M.; Kalra, T.; Rathouz, P.J.; Chen, Y.; Pierce, B.; Parvez, F.; Islam, T.; Ahmed, A.; Rakibuz-Zaman, M.; Hasan, R. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): A prospective cohort study. Lancet, 2010, 376(9737), 252-258.
[24]
Rahman, M.M.; Naidu, R.; Bhattacharya, P. Arsenic contamination in groundwater in the Southeast Asia region. Environ. Geochem. Health, 2009, 31(1), 9-21.
[25]
Radloff, K.; Zheng, Y.; Michael, H.; Stute, M.; Bostick, B.; Mihajlov, I.; Bounds, M.; Huq, M.; Choudhury, I.; Rahman, M. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand. Nat. Geosci., 2011, 4(11), 793.
[26]
Pang, Z.; Yuan, L.; Huang, T.; Kong, Y.; Liu, J.; Li, Y. Impacts of human activities on the occurrence of groundwater nitrate in an alluvial plain: A multiple isotopic tracers approach. J. Earth Sci., 2013, 24(1), 111-124.
[27]
Viers, J.; Liptzin, D.; Rosenstock, T.; Jensen, V.; Hollander, A.; McNally, A.; King, A.; Kourakos, G.; Lopez, E. E.; De La Mora, N.; Canada, H.E.; Laybourne, S.; McKenney, C.; Darby, J.; Quinn, J.F.; Harter, T. Nitrogen Sources and Loading to Groundwater. Technical Report 2 in: Addressing Nitrate in California’s Drinking Water with a Focus on Tulare Lake Basin and Salinas Valley Groundwater. Report for the State Water Resources Control Board Report to the Legislature. Center for Watershed Sciences, University of California, Davis 2012.
[28]
Haller, L.; McCarthy, P.; O’Brien, T.; Riehle, J.; Stuhldreher, T. Nitrate pollution of groundwater. 2014: alpha water systems INC; Google Scholar, 2013.
[29]
Logeshkumaran, A.; Magesh, N.; Godson, P.S.; Chandrasekar, N. Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India. Appl. Water Sci., 2015, 5(4), 335-343.
[30]
Fewtrell, L. Drinking-water nitrate, methemoglobinemia, and global burden of disease: A discussion. Environ. Health Perspect., 2004, 112(14), 1371.
[31]
Fan, A.M.; Steinberg, V.E. Health implications of nitrate and nitrite in drinking water: An update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul. Toxicol. Pharmacol., 1996, 23(1), 35-43.
[32]
Knobeloch, L.; Salna, B.; Hogan, A.; Postle, J.; Anderson, H. Blue babies and nitrate-contaminated well water. Environ. Health Perspect., 2000, 108(7), 675.
[33]
Comly, H.H. Cyanosis in infants caused by nitrates in well water. JAMA, 1945, 129(2), 112-116.
[34]
Inoue-Choi, M.; Jones, R.R.; Anderson, K.E.; Cantor, K.P.; Cerhan, J.R.; Krasner, S.; Robien, K.; Weyer, P.J.; Ward, M.H. Nitrate and nitrite ingestion and risk of ovarian cancer among postmenopausal women in Iowa. Int. J. Cancer, 2015, 137(1), 173-182.
[35]
Onyango, M.S.; Kojima, Y.; Kuchar, D.; Osembo, S.O.; Matsuda, H. Diffusion kinetic modeling of fluoride removal from aqueous solution by charge-reversed zeolite particles. J. Chem. Eng. Jpn, 2005, 38(9), 701-710.
[36]
Khoei, A.J.; Joogh, N.J.G.; Darvishi, P.; Rezaei, K. Application of physical and biological methods to remove heavy metal, arsenic and pesticides, malathion and diazinon from water. Turk. J. Fish. Aquat. Sci., 2019, 19(1), 21-28.
[37]
Onyango, M.S.; Kojima, Y.; Kumar, A.; Kuchar, D.; Kubota, M.; Matsuda, H. Uptake of fluoride by Al3+ pretreated low-silica synthetic zeolites: Adsorption equilibrium and rate studies. Sep. Sci. Technol., 2006, 41(4), 683-704.
[38]
Stephenson, R.J.; Duff, S.J. Coagulation and precipitation of a mechanical pulping effluent—I. Removal of carbon, colour and turbidity. Water Res., 1996, 30(4), 781-792.
[39]
Randtke, S.J. Organic contaminant removal by coagulation and related process combinations. J. Am. Water Works Assoc., 1988, 80, 40-56.
[40]
Madaeni, S. The application of membrane technology for water disinfection. Water Res., 1999, 33(2), 301-308.
[41]
Pendergast, M.M.; Hoek, E.M. A review of water treatment membrane nanotechnologies. Energy Environ. Sci., 2011, 4(6), 1946-1971.
[42]
Ali, I.; Gupta, V. Advances in water treatment by adsorption technology. Nat. Protoc., 2006, 1(6), 2661-2667.
[43]
Xie, Z.; Wang, J.; Wei, X.; Li, F.; Chen, M.; Wang, J.; Gao, B. Interactions between arsenic adsorption/desorption and indigenous bacterial activity in shallow high arsenic aquifer sediments from the Jianghan Plain, Central China. Sci. Total Environ., 2018, 644, 382-388.
[44]
Faust, S.D.; Aly, O.M. Adsorption Processes for Water Treatment; Elsevier Science: Burlington, 2013.
[45]
Etzel, J.E.; Wachinski, A.M. Environmental Ion Exchange: Principles and Design; CRC Press LLC: Boca Raton, Florida, 1997.
[46]
Helfferich, F.G. Ion Exchange; Courier Corporation, 1995.
[47]
Fan, X.; Parker, D.; Smith, M. Adsorption kinetics of fluoride on low cost materials. Water Res., 2003, 37(20), 4929-4937.
[48]
Lata, S.; Samadder, S. Removal of arsenic from water using nano adsorbents and challenges: A review. J. Environ. Manage., 2016, 166, 387-406.
[49]
Ruan, Z.; Tian, Y.; Ruan, J.; Cui, G.; Iqbal, K.; Iqbal, A.; Ye, H.; Yang, Z.; Yan, S. Synthesis of hydroxyapatite/multi-walled carbon nanotubes for the removal of fluoride ions from solution. Appl. Surf. Sci., 2017, 412, 578-590.
[50]
Tang, Q.; Duan, T.; Li, P.; Zhang, P.; Wu, D. Enhanced defluoridation capacity from aqueous media via hydroxyapatite decorated with carbon nanotube. Front Chem., 2018, 6, 104.
[51]
Smitha, K.; Thampi, S.G. Experimental investigations on fluoride removal from water using nanoalumina-carbon nanotubes blend. JWARP, 2017, 9(07), 760.
[52]
Li, Y-H.; Wang, S.; Zhang, X.; Wei, J.; Xu, C.; Luan, Z.; Wu, D. Adsorption of fluoride from water by aligned carbon nanotubes. Mater. Res. Bull., 2003, 38(3), 469-476.
[53]
Li, Y-H.; Wang, S.; Cao, A.; Zhao, D.; Zhang, X.; Xu, C.; Luan, Z.; Ruan, D.; Liang, J.; Wu, D. Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem. Phys. Lett., 2001, 350(5-6), 412-416.
[54]
Zhang, C.; Li, Y.; Wang, T-J.; Jiang, Y.; Fok, J. Synthesis and properties of a high-capacity iron oxide adsorbent for fluoride removal from drinking water. Appl. Surf. Sci., 2017, 425, 272-281.
[55]
Zhang, Y.; Lin, X.; Zhou, Q.; Luo, X. Fluoride adsorption from aqueous solution by magnetic core-shell Fe3O4@ alginate-La particles fabricated via electro-coextrusion. Appl. Surf. Sci., 2016, 389, 34-45.
[56]
Liu, L.; Cui, Z.; Ma, Q.; Cui, W.; Zhang, X. One-step synthesis of magnetic iron–aluminum oxide/graphene oxide nanoparticles as a selective adsorbent for fluoride removal from aqueous solution. RSC Advances, 2016, 6(13), 10783-10791.
[57]
Raul, P.K.; Devi, R.R.; Umlong, I.M.; Banerjee, S.; Singh, L.; Purkait, M. Removal of fluoride from water using iron oxide-hydroxide nanoparticles. J. Nanosci. Nanotechnol., 2012, 12(5), 3922-3930.
[58]
Li, L.; Zhu, Q.; Man, K.; Xing, Z. Fluoride removal from liquid phase by Fe-Al-La trimetal hydroxides adsorbent prepared by iron and aluminum leaching from red mud. J. Mol. Liq., 2017, 237, 164-172.
[59]
Hamamoto, S.; Kishimoto, N. Characteristics of fluoride adsorption onto aluminium (III) and iron (III) hydroxide flocs. Sep. Sci. Technol., 2017, 52(1), 42-50.
[60]
Zhou, J.; Zhu, W.; Yu, J.; Zhang, H.; Zhang, Y.; Lin, X.; Luo, X. Highly selective and efficient removal of fluoride from ground water by layered Al-Zr-La tri-metal hydroxide. Appl. Surf. Sci., 2018, 435, 920-927.
[61]
Mudzielwana, R.; Gitari, M.W.; Akinyemi, S.A.; Msagati, T.A.M. Synthesis and physicochemical characterization of MnO2 coated Na-bentonite for groundwater defluoridation: Adsorption modelling and mechanistic aspect. Appl. Surf. Sci., 2017, 422, 745-753.
[62]
Zhou, J.; Cheng, Y.; Yu, J.; Liu, G. Hierarchically porous calcined lithium/aluminum layered double hydroxides: Facile synthesis and enhanced adsorption towards fluoride in water. J. Mater. Chem., 2011, 21(48), 19353-19361.
[63]
Turner, B.D.; Binning, P.; Stipp, S. Fluoride removal by calcite: Evidence for fluorite precipitation and surface adsorption. Environ. Sci. Technol., 2005, 39(24), 9561-9568.
[64]
Islam, M.; Patel, R. Evaluation of removal efficiency of fluoride from aqueous solution using quick lime. J. Hazard. Mater., 2007, 143(1), 303-310.
[65]
Jain, S.; Jayaram, R.V. Removal of fluoride from contaminated drinking water using unmodified and aluminium hydroxide impregnated blue lime stone waste. Sep. Sci. Technol., 2009, 44(6), 1436-1451.
[66]
Roy, S.; Das, P.; Sengupta, S.; Manna, S. Calcium impregnated activated charcoal: Optimization and efficiency for the treatment of fluoride containing solution in batch and fixed bed reactor. Process Saf. Environ. Prot., 2017, 109, 18-29.
[67]
Sivasamy, A.; Singh, K.P.; Mohan, D.; Maruthamuthu, M. Studies on defluoridation of water by coal-based sorbents. J. Chem. Technol. Biotechnol., 2001, 76(7), 717-722.
[68]
Borah, L.N.; Dey, N.C. Removal of fluoride from low TDS water using low grade coal. Indian J. Chem. Technol., 2009, 16(4), 361-363.
[69]
Moges, G.; Zewge, F.; Socher, M. Preliminary investigations on the defluoridation of water using fired clay chips. J. Afr. Earth Sci., 1996, 22(4), 479-482.
[70]
Karthikeyan, G.; Pius, A.; Alagumuthu, G. Fluoride adsorption studies of montmorillonite clay. Indian J. Chem. Technol., 2005, 12, 263-272.
[71]
Parmar, H.S.; Patel, J.B.; Sudhakar, P.; Koshy, V. Removal of fluoride from water with powdered corn cobs. J. Environ. Sci. Eng., 2006, 48(2), 135-138.
[72]
Mohan, D.; Singh, K.P.; Singh, V.K. Wastewater treatment using low cost activated carbons derived from agricultural byproducts-a case study. J. Hazard. Mater., 2008, 152(3), 1045-1053.
[73]
Sivabalan, R.; Rengaraj, S.; Arabindoo, B.; Murugesan, V. Cashewnut sheath carbon: A new sorbent for defluoridation of water. Indian J. Chem. Technol., 2003, 10, 217-222.
[74]
Chaturvedi, A.; Yadava, K.; Pathak, K.; Singh, V. Defluoridation of water by adsorption on fly ash. Water Air Soil Pollut., 1990, 49(1), 51-61.
[75]
Nigussie, W.; Zewge, F.; Chandravanshi, B. Removal of excess fluoride from water using waste residue from alum manufacturing process. J. Hazard. Mater., 2007, 147(3), 954-963.
[76]
Yadav, A.K.; Kaushik, C.; Haritash, A.K.; Kansal, A.; Rani, N. Defluoridation of groundwater using brick powder as an adsorbent. J. Hazard. Mater., 2006, 128(2), 289-293.
[77]
Oguz, E. Adsorption of fluoride on gas concrete materials. J. Hazard. Mater., 2005, 117(2), 227-233.
[78]
Kagne, S.; Jagtap, S.; Dhawade, P.; Kamble, S.; Devotta, S.; Rayalu, S. Hydrated cement: A promising adsorbent for the removal of fluoride from aqueous solution. J. Hazard. Mater., 2008, 154(1), 88-95.
[79]
Tor, A.; Danaoglu, N.; Arslan, G.; Cengeloglu, Y. Removal of fluoride from water by using granular red mud: Batch and column studies. J. Hazard. Mater., 2009, 164(1), 271-278.
[80]
Naghizadeh, A.; Yari, A.R.; Tashauoei, H.R.; Mahdavi, M.; Derakhshani, E.; Rahimi, R.; Bahmani, P.; Daraei, H.; Ghahremani, E. Carbon nanotubes technology for removal of arsenic from water. Arch. Hyg. Sci., 2012, 1(1), 6-11.
[81]
Ntim, S.A.; Mitra, S. Adsorption of arsenic on multiwall carbon nanotube–zirconia nanohybrid for potential drinking water purification. J. Colloid Interface Sci., 2012, 375(1), 154-159.
[82]
Liu, H.; Zuo, K.; Vecitis, C.D. Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption. Environ. Sci. Technol., 2014, 48(23), 13871-13879.
[83]
Moradi, R.; Rokni, F.F. Synthesis, characterization and performance of nio/cnt nanocomposite for arsenic removal from aqueous media. Curr. Nanosci., 2017, 13(6), 579-585.
[84]
Martinson, C.A.; Reddy, K. Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. J. Colloid Interface Sci., 2009, 336(2), 406-411.
[85]
Goswami, A.; Raul, P.; Purkait, M. Arsenic adsorption using copper (II) oxide nanoparticles. Chem. Eng. Res. Des., 2012, 90(9), 1387-1396.
[86]
Bang, S.; Patel, M.; Lippincott, L.; Meng, X. Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere, 2005, 60(3), 389-397.
[87]
Lee, H.; Choi, W. Photocatalytic oxidation of arsenite in TiO2 suspension: Kinetics and mechanisms. Environ. Sci. Technol., 2002, 36(17), 3872-3878.
[88]
Pena, M.; Meng, X.; Korfiatis, G.P.; Jing, C. Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environ. Sci. Technol., 2006, 40(4), 1257-1262.
[89]
Dutta, P.K.; Ray, A.K.; Sharma, V.K.; Millero, F.J. Adsorption of arsenate and arsenite on titanium dioxide suspensions. J. Colloid Interface Sci., 2004, 278(2), 270-275.
[90]
Han, D.S.; Abdel-Wahab, A.; Batchelor, B. Surface complexation modeling of arsenic (III) and arsenic (V) adsorption onto nanoporous titania adsorbents (NTAs). J. Colloid Interface Sci., 2010, 348(2), 591-599.
[91]
Deedar, N.; Aslam, I. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. J. Environ. Sci., 2009, 21(3), 402-408.
[92]
Singh, N.; Singh, S.; Gupta, V.; Yadav, H.K.; Ahuja, T.; Tripathy, S.S. A process for the selective removal of arsenic from contaminated water using acetate functionalized zinc oxide nanomaterials. Environ. Prog. Sustain. Energy, 2013, 32(4), 1023-1029.
[93]
Sharma, A.; Verma, N.; Sharma, A.; Deva, D.; Sankararamakrishnan, N. Iron doped phenolic resin based activated carbon micro and nanoparticles by milling: Synthesis, characterization and application in arsenic removal. Chem. Eng. Sci., 2010, 65(11), 3591-3601.
[94]
Pintor, A.M.; Vieira, B.R.; Santos, S.C.; Boaventura, R.A.; Botelho, C.M. Arsenate and arsenite adsorption onto iron-coated cork granulates. Sci. Total Environ., 2018, 642, 1075-1089.
[95]
Chandra, V.; Park, J.; Chun, Y.; Lee, J.W.; Hwang, I-C.; Kim, K.S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 2010, 4(7), 3979-3986.
[96]
Guivar, J.A.R.; Bustamante, A.; Gonzalez, J.; Sanches, E.A.; Morales, M.; Raez, J.M.; López-Muñoz, M-J.; Arencibia, A. Adsorption of arsenite and arsenate on binary and ternary magnetic nanocomposites with high iron oxide content. Appl. Surf. Sci., 2018, 454, 87-100.
[97]
Phanthasri, J.; Khamdahsag, P.; Jutaporn, P.; Sorachoti, K.; Wantala, K.; Tanboonchuy, V. Enhancement of arsenite removal using manganese oxide coupled with iron (III) trimesic. Appl. Surf. Sci., 2018, 427, 545-552.
[98]
Li, Z.; Deng, S.; Yu, G.; Huang, J.; Lim, V.C. As (V) and As (III) removal from water by a Ce–Ti oxide adsorbent: Behavior and mechanism. Chem. Eng. J., 2010, 161(1), 106-113.
[99]
Basu, T.; Ghosh, U.C. Influence of groundwater occurring ions on the kinetics of As (III) adsorption reaction with synthetic nanostructured Fe (III)–Cr (III) mixed oxide. Desalination, 2011, 266(1), 25-32.
[100]
Kong, S.; Wang, Y.; Zhan, H.; Yuan, S.; Yu, M.; Liu, M. Adsorption/oxidation of arsenic in groundwater by nanoscale Fe-Mn binary oxides loaded on zeolite. Water Environ. Res., 2014, 86(2), 147-155.
[101]
Gupta, K.; Ghosh, U.C. Arsenic removal using hydrous nanostructure iron (III)–titanium (IV) binary mixed oxide from aqueous solution. J. Hazard. Mater., 2009, 161(2), 884-892.
[102]
Zhang, S.; Niu, H.; Cai, Y.; Zhao, X.; Shi, Y. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J., 2010, 158(3), 599-607.
[103]
Parsons, J.; Lopez, M.; Peralta-Videa, J.; Gardea-Torresdey, J. Determination of arsenic (III) and arsenic (V) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents. Microchem. J., 2009, 91(1), 100-106.
[104]
Hokkanen, S.; Repo, E.; Lou, S.; Sillanpää, M. Removal of arsenic (V) by magnetic nanoparticle activated microfibrillated cellulose. Chem. Eng. J., 2015, 260, 886-894.
[105]
Zhou, S.; Wang, D.; Sun, H.; Chen, J.; Wu, S.; Na, P. Synthesis, characterization, and adsorptive properties of magnetic cellulose nanocomposites for arsenic removal. Water Air Soil Pollut., 2014, 225(5), 1945.
[106]
Tian, Y.; Wu, M.; Liu, R.; Wang, D.; Lin, X.; Liu, W.; Ma, L.; Li, Y.; Huang, Y. Modified native cellulose fibers-A novel efficient adsorbent for both fluoride and arsenic. J. Hazard. Mater., 2011, 185(1), 93-100.
[107]
Guo, X.; Chen, F. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ. Sci. Technol., 2005, 39(17), 6808-6818.
[108]
Martins, C.; Duarte, R.F.; Magalhães, M.C.; Evtuguin, D. Arsenic Removal via Cellulose-Based Organic/Inorganic Hybrid Materials from Drinking Water, In: Pinto, A.M.P.; Pouzada, A.S. (Eds.). Materials Science Forum, Trans Tech Publ: 2013; Vol. 730-732, pp. 563-568.
[109]
Agrafioti, E.; Kalderis, D.; Diamadopoulos, E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J. Environ. Manage., 2014, 133, 309-314.
[110]
Alimohammadi, V.; Sedighi, M.; Jabbari, E. Response surface modeling and optimization of nitrate removal from aqueous solutions using magnetic multi-walled carbon nanotubes. J. Environ. Chem. Eng., 2016, 4(4), 4525-4535.
[111]
Tofighy, M.A.; Mohammadi, T. Nitrate removal from water using functionalized carbon nanotube sheets. Chem. Eng. Res. Des., 2012, 90(11), 1815-1822.
[112]
Azari, A.; Babaie, A-A.; Rezaei-Kalantary, R.; Esrafili, A.; Moazzen, M.; Kakavandi, B. Nitrate removal from aqueous solution by carbon nanotubes magnetized with nano zero-valent iron. JMUMS, 2014, 23(2), 15-27.
[113]
Beheshtian, J.; Peyghan, A.A.; Bagheri, Z. Nitrate adsorption by carbon nanotubes in the vacuum and aqueous phase. Monatsh. für Chem., 2012, 143(12), 1623-1626.
[114]
Fu, F.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater., 2014, 267, 194-205.
[115]
Zhang, H.; Jin, Z-H.; Lu, H.; Qin, C-H. Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate. Trans. Nonferrous Met. Soc. China, 2006, 16, s345-s349.
[116]
Sepehri, S.; Heidarpour, M.; Abedi-Koupai, J. Nitrate removal from aqueous solution using natural zeolite-supported zero-valent iron nanoparticles. Soil Water Res., 2014, 9(4), 224-232.
[117]
Imtiaz, A.; Rafique, U. Synthesis of metal oxides and its application as adsorbent for the treatment of wastewater effluents. Int. J. Chem. Environ. Eng., 2011, 2(6), 399.
[118]
Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J., 2010, 156(1), 11-24.
[119]
Arora, M.; Eddy, N.K.; Mumford, K.A.; Baba, Y.; Perera, J.M.; Stevens, G.W. Surface modification of natural zeolite by chitosan and its use for nitrate removal in cold regions. Cold Reg. Sci. Technol., 2010, 62(2-3), 92-97.
[120]
Bhattacharyya, K.G.; Gupta, S.S. Adsorption of a few heavy metals on natural; and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci., 2008, 140(2), 114-131.
[121]
Naidu, R.; Mallavarapu, M.; Xi, Y. Preparation, characterization of surfactants; modified clay minerals and nitrate adsorption. Appl. Clay Sci., 2010, 48(1-2), 92-96.
[122]
Orlando, U.S.; Baes, A.U.; Nishijima, W.; Okada, M. A new procedure to produce; lignocellulosic anion exchangers from agricultural waste materials. Bioresour. Technol., 2002, 83(3), 195-198.
[123]
Wang, Y.; Gao, B-y.; Yue, W-w.; Yue, Q-y. Preparation and utilization of wheat; straw anionic sorbent for the removal of nitrate from aqueous solution. J. Environ. Sci., 2007, 19(11), 1305-1310.
[124]
Wang, Y.; Gao, B-y.; Yue, W-w.; Yue, Q-y. Adsorption kinetics of nitrate from aqueous solutions onto modified wheat residue. Colloids Surf. A Physicochem. Eng. Asp., 2007, 308(1-3), 1-5.
[125]
Rezaee, A.; Godini, H.; Dehestani, S.; Khavanin, A. Application of impregnated almond shell activated carbon by zinc and zinc sulfate for nitrate removal from water. Iran. J. Environ. Health Sci. Eng., 2008, 5(2), 125-130.
[126]
Fan, C.; Zhang, Y. Adsorption isotherms, kinetics and thermodynamics of nitrate and phosphate in binary systems on a novel adsorbent derived from corn stalks. J. Geochem. Explor., 2018, 188, 95-100.
[127]
Cengeloglu, Y.; Tor, A.; Ersoz, M.; Arslan, G. Removal of nitrate from aqueous solution by using red mud. Separ. Purif. Tech., 2006, 51(3), 374-378.
[128]
Bhatnagar, A.; Sillanpää, M. Applications of chitin-and chitosan-derivatives for the detoxification of water and wastewater—a short review. Adv. Colloid Interface Sci., 2009, 152(1), 26-38.
[129]
Chatterjee, S.; Woo, S.H. The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater., 2009, 164(2), 1012-1018.
[130]
Jaafari, K.; Elmaleh, S.; Coma, J.; Benkhouja, K. Equilibrium and kinetics of nitrate removal by protonated cross-linked chitosan. Water S.A., 2001, 27(1), 9-14.
[131]
Jaafari, K.; Ruiz, T.; Elmaleh, S.; Coma, J.; Benkhouja, K. Simulation of a fixed bed adsorber packed with protonated cross-linked chitosan gel beads to remove nitrate from contaminated water. Chem. Eng. J., 2004, 99(2), 153-160.
[132]
Ghanizadeh, G.; Ehrampoush, M.; Ghaneian, M. Application of iron impregnated activated carbon for removal of arsenic from water. Iran. J. Environ. Health Sci. Eng., 2010, 7(2), 145.
[133]
Zhao, X.; Wang, J.; Wu, F.; Wang, T.; Cai, Y.; Shi, Y.; Jiang, G. Removal of fluoride from aqueous media by Fe3O4@ Al(OH)3 magnetic nanoparticles. J. Hazard. Mater., 2010, 173(1), 102-109.
[134]
Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.; Xie, G.X. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ., 2012, 424, 1-10.
[135]
Chai, L.; Wang, Y.; Zhao, N.; Yang, W.; You, X. Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res., 2013, 47(12), 4040-4049.
[136]
Cumbal, L.; SenGupta, A.K. Arsenic removal using polymer-supported hydrated iron (III) oxide nanoparticles: Role of Donnan membrane effect. Environ. Sci. Technol., 2005, 39(17), 6508-6515.
[137]
Poursaberi, T.; Hassanisadi, M.; Torkestani, K.; Zare, M. Development of zirconium (IV)-metalloporphyrin grafted Fe3O4 nanoparticles for efficient fluoride removal. Chem. Eng. J., 2012, 189, 117-125.
[138]
Jayarathna, L.; Bandara, A.; Ng, W.; Weerasooriya, R. Fluoride adsorption on γ-Fe2O3 nanoparticles. J. Environ. Health Sci. Eng., 2015, 13(1), 54.
[139]
Yang, J.; Zhang, H.; Yu, M.; Emmanuelawati, I.; Zou, J.; Yuan, Z.; Yu, C. High-content, well-dispersed γ‐Fe2O3 nanoparticles encapsulated in macroporous silica with superior arsenic removal performance. Adv. Funct. Mater., 2014, 24(10), 1354-1363.
[140]
Lin, S.; Lu, D.; Liu, Z. Removal of arsenic contaminants with magnetic γ-Fe2O3 nanoparticles. Chem. Eng. J., 2012, 211, 46-52.
[141]
Ghorai, S.; Pant, K. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Separ. Purif. Tech., 2005, 42(3), 265-271.
[142]
Maliyekkal, S.M.; Shukla, S.; Philip, L.; Nambi, I.M. Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules. Chem. Eng. J., 2008, 140(1), 183-192.
[143]
Tripathy, S.S.; Bersillon, J-L.; Gopal, K. Removal of fluoride from drinking water by adsorption onto alum-impregnated activated alumina. Separ. Purif. Tech., 2006, 50(3), 310-317.
[144]
Ku, Y.; Chiou, H-M. The adsorption of fluoride ion from aqueous solution by activated alumina. Water Air Soil Pollut., 2002, 133(1), 349-361.
[145]
Lin, T-F.; Wu, J-K. Adsorption of arsenite and arsenate within activated alumina grains: Equilibrium and kinetics. Water Res., 2001, 35(8), 2049-2057.
[146]
Singh, T.S.; Pant, K. Equilibrium, kinetics and thermodynamic studies for adsorption of As (III) on activated alumina. Separ. Purif. Tech., 2004, 36(2), 139-147.
[147]
Jain, S.; Bansiwal, A.; Biniwale, R.B.; Milmille, S.; Das, S.; Tiwari, S.; Antony, P.S. Enhancing adsorption of nitrate using metal impregnated alumina. J. Environ. Chem. Eng., 2015, 3(4), 2342-2349.
[148]
Golie, W.M.; Upadhyayula, S. Continuous fixed-bed column study for the removal of nitrate from water using chitosan/alumina composite. J. Water Process Eng., 2016, 12, 58-65.
[149]
Lee, G.; Chen, C.; Yang, S-T.; Ahn, W-S. Enhanced adsorptive removal of fluoride using mesoporous alumina. Microporous Mesoporous Mater., 2010, 127(1), 152-156.
[150]
Kim, Y.; Kim, C.; Choi, I.; Rengaraj, S.; Yi, J. Arsenic removal using mesoporous alumina prepared via a templating method. Environ. Sci. Technol., 2004, 38(3), 924-931.
[151]
Bhatnagar, A.; Kumar, E.; Sillanpää, M. Nitrate removal from water by nano-alumina: Characterization and sorption studies. Chem. Eng. J., 2010, 163(3), 317-323.
[152]
Qiao, J.; Cui, Z.; Sun, Y.; Hu, Q.; Guan, X. Simultaneous removal of arsenate and fluoride from water by Al-Fe (hydr) oxides. Front. Environ. Sci. Eng., 2014, 8(2), 169-179.
[153]
Wu, K.; Zhang, N.; Liu, T.; Ma, C.; Jin, P.; Zhang, F.; Zhang, J.; Wang, X. Competitive adsorption behaviors of arsenite and fluoride onto manganese-aluminum binary adsorbents. Colloids Surf. A Physicochem. Eng. Asp., 2017, 529, 185-194.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 6
Year: 2019
Page: [557 - 575]
Pages: 19
DOI: 10.2174/1573413715666190101113651
Price: $65

Article Metrics

PDF: 32
HTML: 2