Bio-Active Pyridinium Salts: A Mini-Review on Properties and Selected Reactions

Author(s): Andrzej Günther*, Robert Pełech.

Journal Name: Mini-Reviews in Organic Chemistry

Volume 16 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Pyridium salts are very valuable compounds with various activities, especially biological, and therefore their preparation can be very useful in the synthesis of various compounds, such as drugs, dyes or surfactants. In this mini-review authors focused mostly on bioactive properties of pyridinium salts, and main preparations of these compounds such, synthesis pyridinium salts from pyrylium salts via nucleophilic substitution SN(ANRORC), obtaining pyridinium salts via directs arylation, and via Addition at Nitrogen atom, and the last method is synthesis of pyridinium salts via ring opening and re-cyclisation.

Keywords: Pyridinium derivatives, pyridinium ion, pyridinium salts, SNANRORC mechanism, nicotinamide adenine dinucleotide, nucleophiles.

[1]
Katritzky, A.R.; Ramsden, C.A.; Joule, J.; Zhdankin, V. Handbook of Heterocyclic Chemistry, 3rd ed; Elsevier: Amsterdam, 2010.
[2]
Belenky, P.; Bogan, K.L.; Brenner, C. NAD+ metabolism in health and disease. Trends Biochem. Sci., 2007, 32, 12-19.
[3]
Pollak, N.; Dölle, C.; Ziegler, M. The power to reduce: Pyridine nucleotides - small molecules with a multitude of functions. Biochem. J., 2007, 402, 205-218.
[4]
Fujimoto, K.; Morisaki, D.; Yoshida, M.; Namba, T.; Hye-Sook, K.; Wataya, Y.; Kourai, H.; Kakuta, H.; Sasaki, K. Antimalarial effect of bis-pyridinium salts, N,N′-hexamethylenebis(4-carbamoyl-1-alkylpyridinium bromide). Bioorg. Med. Chem. Lett., 2006, 16, 2758-2760.
[5]
Alptüzün, V.; Parlar, S.; Taşlı, H.; Erciyas, E. Synthesis and antimicrobial activity of some pyridinium salts. Molecules, 2009, 14, 5203-5215.
[6]
Plunkett, A.O. Pyrrole, pyrrolidine, pyridine, piperidine, and azepine alkaloids. Nat. Prod. Rep., 1994, 11, 581-590.
[7]
Fusetani, N.; Asai, N.; Matsunaga, S.; Honda, K.; Yasumuro, K. Cyclostellettamines A-F, pyridine alkaloids which inhibit binding of methyl quinuclidinyl benzilate (QNB) to muscarinic acetylcholine receptors, from the marine sponge, Stelletta maxima. Tetrahedron Lett., 1994, 35, 3967-3970.
[8]
Tsuda, M.; Shigemori, H.; Ishibashi, M.; Kobayashi, J. Purealidin D, a new pyridine alkaloid from the okinawan marine sponge Psammaplysilla purea. Tetrahedron Lett., 1992, 33, 2597-2598.
[9]
Vafadarnejad, F.; Mahdavi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sameem, B.; Khanavi, M.; Saeedi, M.; Akbarzadeh, T. Design and synthesis of novel coumarin-pyridinium hybrids: In vitro cholinesterase inhibitory activity. Bioorg. Chem., 2018, 77, 311-319.
[10]
Wu, Y.; Klein, V.; Killian, M.; Behling, C.; Chea, S.; Tsogoeva, S.; Bachmann, J. Novel fully organic water oxidation electrocatalysts: A quest for simplicity. ACS Omega, 2018, 3, 2602-2608.
[11]
Harjani, R.D.; Singer, M.T.; Garciac, P.J. Biodegradable pyridinium ionic liquids: Design, synthesis and evaluation. Green Chem., 2009, 11, 83-90.
[12]
Ilies, M.A.; Seitz, W.A.; Ghiviriga, I.; Johnson, B.H.; Miller, A.; Thompson, E.B.; Balaban, A.T. Pyridinium cationic lipids in gene delivery: A structure-activity correlation study. J. Med. Chem., 2004, 47(15), 3744-3754.
[13]
Günther, A.; Soroka, A.J. The main synthesis of pyrylium salts. Wiadomości. Chem, 2017, 72(1-2), 87-108.
[14]
Liao, J.; Guan, W.; Boscoe, B.P.; Tucker, J.W.; Tomlin, J.W.; Garnsey, M.R.; Watson, M.P. Transforming benzylic amines into diarylmethanes: Cross-couplings of benzylic pyridinium salts via C-N bond activation. Org. Lett., 2018, 20(10), 3030-3033.
[15]
Nozoe, T.; Takase, K.; Shimazaki, N. The synthesis of diethyl 2-hydroxyazulene-1, 3-dicarboxylate from troponoids and some reactions of 2-hydroxyazulene derivatives. Bull. Chem. Soc. Japan., 1964, 37, 1644-1648.
[16]
McRae, J.A.; Moir, R.Y.; Ursprung, J.J.; Gibbs, H.H. Reactions of the iodometameconines. J. Org. Chem., 1954, 19, 1500-1508.
[17]
Barnett, B. Beiträge zur Kenntnis der Anthracen-Derivate (I. Mitteil). Ber. Dtsch. Chem. Ges., 1930, 63, 1690-1697.
[18]
Boyd, G.V. An aza-analogue of N-phyridinium cyclopentadienide. Tetrahedron Lett., 1966, 29, 3369-3371.
[19]
Letsinger, R.L.; Ramsay, O.B.; McCain, J.H. Photoinduced substitution. II. Substituent effects in nucleophilic displacement on substituted nitrobenzenes. J. Am. Chem. Soc., 1965, 87, 2945-2953.
[20]
Steller, E.K.; Letsinger, R.L. Photoinduced substitution. VIII. Effects of distant substituents on photoinduced aromatic substitution reactions. J. Org. Chem., 1970, 35, 308-313.
[21]
Nesmeyanov, A.N. The position of substituents in ferrocene compounds, as determined from infrared absorption spectra. Dokl. Akad. Nauk SSSR, 1957, 117, 1049.
[22]
Marek, J.; Stodulka, P.; Cabal, J.; Soukup, O.; Pohanka, M.; Korabecny, J.; Musilek, K.; Kuca, K. Preparation of the pyridinium salts differing in the length of the N-alkyl substituent. Molecules, 2010, 15(3), 1967-1972.
[23]
Olah, G.A.; Narang, S.C.; Olah, J.A.; Pearson, R.L.; Cupas, C.A. Aromatic substitution. 45. Transfer nitration of aromatics with N-nitropyridinium and quinolinium ions. J. Am. Chem. Soc., 1980, 102, 3507-3510.
[24]
Popov, A.I.; Rygg, R.H. Studies on the chemistry of halogens and of polyhalides. XI. Molecular complexes of pyridine, 2-picoline and 2,6-lutidine with iodine and iodine halides. J. Am. Chem. Soc., 1957, 79, 4622-4625.
[25]
Caron, S.; Nga, M.D.; Sieser, J.E. A practical, efficient, and rapid method for the oxidation of electron deficient pyridines using trifluoroacetic anhydride and hydrogen peroxide-urea complex. Tetrahedron Lett., 2000, 41(14), 2299-2302.
[26]
Rezki, N.; Al-Sodies, S.A.; Aouad, M.R.; Bardaweel, S.; Messali, M.; El Ashry, E.S.H. An eco-friendly ultrasound-assisted synthesis of novel fluorinated pyridinium salts-based hydrazones and antimicrobial and antitumor screening. Int. J. Mol. Sci., 2016, 17(5), 766.
[27]
Hou, Q.; Xu, J.; Yu, J.; Wang, T.; Xu, J. Synthesis and structural characterization of three copper coordination polymers with pyridine derivatives from hydro (solvo) thermal in situ decarboxylation reactions of 2,5-dicarboxylpyridine. J. Solid State Chem., 2010, 183, 1561-1566.
[28]
Zincke, T.; Mühlhausen, G. Ueber arylaminderivate, des furfurols und deren umwandlung in pyridinverbindungen. Ber. Dtsch. Chem. Gesellschaft., 1905, 38, 3824-3829.
[29]
Paulsen, H.; Todt, K.; Heyns, K. Monosaccharide mit stickstoffhaltigem Ring, IV. 5-Alkylamino-zucker und deren Umwandlung in N-Alkyl-pyridiniumsalze. Eur. J. Org. Chem., 1964, 679(1), 168-177.
[30]
Petersen, J.B.; Norris, K.; Clauson-Kaas, N.; Svanholt, K. New method for the preparation of quaternary 3-hydroxypyridinium chlorides. Acta Chem. Scand., 1969, 23, 1785-1790.
[31]
Unheim, K.; Gacek, M. N-quaternary compounds. Part X. Further syntheses of pyridinium-3-oxide derivatives from amino acids. Acta Chem. Scand., 1969, 23, 2488-2500.
[32]
Unheim, K.; Johan, R.; Greibrokk, T. N-quaternary compounds. Part XI. The synthesis of dihydrothiazolo[3,2-a]pyridinium-8-oxide derivatives from L-cysteine. Acta Chem. Scand., 1969, 23, 2501-2504.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 7
Year: 2019
Page: [610 - 616]
Pages: 7
DOI: 10.2174/1570193X16666181228102304
Price: $58

Article Metrics

PDF: 30
HTML: 4
PRC: 1