Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences

Author(s): Michele Romoli , Petra Mazzocchetti , Renato D'Alonzo , Sabrina Siliquini , Victoria Elisa Rinaldi , Alberto Verrotti , Paolo Calabresi , Cinzia Costa* .

Journal Name: Current Neuropharmacology

Volume 17 , Issue 10 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

After more than a century from its discovery, valproic acid (VPA) still represents one of the most efficient antiepileptic drugs (AEDs). Pre and post-synaptic effects of VPA depend on a very broad spectrum of actions, including the regulation of ionic currents and the facilitation of GABAergic over glutamatergic transmission. As a result, VPA indirectly modulates neurotransmitter release and strengthens the threshold for seizure activity. However, even though participating to the anticonvulsant action, such mechanisms seem to have minor impact on epileptogenesis. Nonetheless, VPA has been reported to exert anti-epileptogenic effects. Epigenetic mechanisms, including histone deacetylases (HDACs), BDNF and GDNF modulation are pivotal to orientate neurons toward a neuroprotective status and promote dendritic spines organization. From such broad spectrum of actions comes constantly enlarging indications for VPA. It represents a drug of choice in child and adult with epilepsy, with either general or focal seizures, and is a consistent and safe IV option in generalized convulsive status epilepticus. Moreover, since VPA modulates DNA transcription through HDACs, recent evidences point to its use as an anti-nociceptive in migraine prophylaxis, and, even more interestingly, as a positive modulator of chemotherapy in cancer treatment. Furthermore, VPA-induced neuroprotection is under investigation for benefit in stroke and traumatic brain injury. Hence, VPA has still got its place in epilepsy, and yet deserves attention for its use far beyond neurological diseases. In this review, we aim to highlight, with a translational intent, the molecular basis and the clinical indications of VPA.

Keywords: Valproic acid, epilepsy, epileptogenesis, neuroprotection, pharmacology, epigenetics.

[1]
Löscher, W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs, 2002, 16(10), 669-694.
[http://dx.doi.org/10.2165/00023210-200216100-00003] [PMID: 12269861 ]
[2]
Tomson, T.; Battino, D.; Perucca, E. Valproic acid after five decades of use in epilepsy: time to reconsider the indications of a time-honoured drug. Lancet Neurol., 2016, 15(2), 210-218.
[http://dx.doi.org/10.1016/S1474-4422(15)00314-2] [PMID: 26655849 ]
[3]
Gobbi, G.; Debonnel, G. What is a recommended treatment for aggression in a patient with schizophrenia? J. Psychiatry Neurosci., 2003, 28(4), 320.
[PMID: 12921225 ]
[4]
Duenas-Gonzalez, A.; Candelaria, M.; Perez-Plascencia, C.; Perez-Cardenas, E.; de la Cruz-Hernandez, E.; Herrera, L.A. Valproic acid as epigenetic cancer drug: Preclinical, clinical and transcriptional effects on solid tumors. Cancer Treat. Rev., 2008, 34(3), 206-222.
[http://dx.doi.org/10.1016/j.ctrv.2007.11.003] [PMID: 18226465 ]
[5]
Burton, B.S. On the propyl derivatives and decomposition products of ethylacetoacetate. Am. Chem. J., 1882, 3, 385-395.
[6]
Henry, T.R. The history of valproate in clinical neuroscience. Psychopharmacol. Bull., 2003, 37(Suppl. 2), 5-16.
[PMID: 14624229 ]
[7]
Lebreton, S.; Carraz, G.; Meunier, H.; Beriel, H. [Pharmacodynamic properties of 2,2-dipropylacetic acid. 2D report on its anti-epileptic properties]. Therapie, 1964, 19, 451-456.[Pharmacodynamic Properties of 2,2-Dipropylacetic Acid. 2d Report on Its Anti-Epileptic Properties]..
[PMID: 14138082]
[8]
Peterson, G.M.; Naunton, M. Valproate: a simple chemical with so much to offer. J. Clin. Pharm. Ther., 2005, 30(5), 417-421.
[http://dx.doi.org/10.1111/j.1365-2710.2005.00671.x ] [PMID: 16164485 ]
[9]
Tan, N.N.; Tang, H.L.; Lin, G.W.; Chen, Y.H.; Lu, P.; Li, H.J.; Gao, M.M.; Zhao, Q.H.; Yi, Y.H.; Liao, W.P.; Long, Y.S. Epigenetic downregulation of Scn3a expression by valproate: a possible role in its anticonvulsant activity. Mol. Neurobiol., 2017, 54(4), 2831-2842[SRC -.]. .
[http://dx.doi.org/10.1007/s12035-016-9871-9] [PMID: 27013471 ]
[10]
Perucca, E. Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs, 2002, 16(10), 695-714.
[http://dx.doi.org/10.2165/00023210-200216100-00004] [PMID: 12269862 ]
[11]
Löscher, W. In vivo administration of valproate reduces the nerve terminal (synaptosomal) activity of GABA aminotransferase in discrete brain areas of rats. Neurosci. Lett., 1993, 160(2), 177-180.
[http://dx.doi.org/10.1016/0304-3940(93)90407-C] [PMID: 8247350 ]
[12]
Gean, P.W.; Huang, C.C.; Hung, C.R.; Tsai, J.J. Valproic acid suppresses the synaptic response mediated by the NMDA receptors in rat amygdalar slices. Brain Res. Bull., 1994, 33(3), 333-336.
[http://dx.doi.org/10.1016/0361-9230(94)90202-X] [PMID: 7904890 ]
[13]
Johannessen, C.U.; Johannessen, S.I. Valproate: past, present, and future. CNS Drug Rev., 2003, 9(2), 199-216.
[http://dx.doi.org/10.1111/j.1527-3458.2003.tb00249.x] [PMID: 12847559 ]
[14]
Löscher, W. Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Prog. Neurobiol., 1999, 58(1), 31-59.
[http://dx.doi.org/10.1016/S0301-0082(98)00075-6] [PMID: 10321796 ]
[15]
Göttlicher, M.; Minucci, S.; Zhu, P.; Krämer, O.H.; Schimpf, A.; Giavara, S.; Sleeman, J.P.; Lo Coco, F.; Nervi, C.; Pelicci, P.G.; Heinzel, T. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J., 2001, 20(24), 6969-6978.
[http://dx.doi.org/10.1093/emboj/20.24.6969] [PMID: 11742974 ]
[16]
Brigo, F.; Storti, M.; Del Felice, A.; Fiaschi, A.; Bongiovanni, L.G. IV IV Valproate in generalized convulsive status epilepticus: a systematic review. Eur. J. Neurol., 2012, 19(9), 1180-1191.
[http://dx.doi.org/10.1111/j.1468-1331.2011.03606.x] [PMID: 22182304 ]
[17]
Ximenes, J.C.; de Oliveira, G.D.; Siqueira, R.M.; Neves, K.R.; Santos, C.G.; Correia, A.O.; Félix, F.H.; Leal, L.K.; de Castro Brito, G.A.; da Graça Naffah-Mazzacorati, M.; Viana, G.S. Valproic acid: an anticonvulsant drug with potent antinociceptive and anti-inflammatory properties. Naunyn Schmiedebergs Arch. Pharmacol., 2013, 386(7), 575-587.
[http://dx.doi.org/10.1007/s00210-013-0853-4 ] [PMID: 23584602 ]
[18]
Chen, S.; Wu, H.; Klebe, D.; Hong, Y.; Zhang, J. Valproic acid: a new candidate of therapeutic application for the acute central nervous system injuries. Neurochem. Res., 2014, 39(9), 1621-1633.
[http://dx.doi.org/10.1007/s11064-014-1241-2 ] [PMID: 24482021 ]
[19]
Rogawski, M.A.; Löscher, W. The neurobiology of antiepileptic drugs. Nat. Rev. Neurosci., 2004, 5(7), 553-564.
[http://dx.doi.org/10.1038/nrn1430 ] [PMID: 15208697 ]
[20]
Cunningham, M.O.; Woodhall, G.L.; Jones, R.S. Valproate modifies spontaneous excitation and inhibition at cortical synapses in vitro. Neuropharmacology, 2003, 45(7), 907-917.
[http://dx.doi.org/10.1016/S0028-3908(03)00270-3 ] [PMID: 14573383 ]
[21]
Löscher, W.; Schmidt, D. Increase of human plasma GABA by sodium valproate. Epilepsia, 1980, 21(6), 611-615.
[http://dx.doi.org/10.1111/j.1528-1157.1980.tb04314.x] [PMID: 6777153 ]
[22]
Johannessen, C.U. Mechanisms of action of valproate: a commentatory. Neurochem. Int., 2000, 37(2-3), 103-110.
[http://dx.doi.org/10.1016/S0197-0186(00)00013-9] [PMID: 10812195 ]
[23]
Löscher, W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure, 2011, 20(5), 359-368.
[http://dx.doi.org/10.1016/j.seizure.2011.01.003] [PMID: 21292505 ]
[24]
Gobbi, G.; Janiri, L. Sodium- and magnesium-valproate in vivo modulate glutamatergic and GABAergic synapses in the medial prefrontal cortex. Psychopharmacology (Berl.), 2006, 185(2), 255-262.
[http://dx.doi.org/10.1007/s00213-006-0317-3 ] [PMID: 16496131 ]
[25]
Rinaldi, T.; Kulangara, K.; Antoniello, K.; Markram, H. Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proc. Natl. Acad. Sci. USA, 2007, 104(33), 13501-13506.
[http://dx.doi.org/10.1073/pnas.0704391104] [PMID: 17675408 ]
[26]
Kim, M.J.; Dunah, A.W.; Wang, Y.T.; Sheng, M. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron, 2005, 46(5), 745-760.
[http://dx.doi.org/10.1016/j.neuron.2005.04.031] [PMID: 15924861 ]
[27]
Ghiglieri, V.; Picconi, B.; Sgobio, C.; Bagetta, V.; Barone, I.; Paillè, V.; Di Filippo, M.; Polli, F.; Gardoni, F.; Altrock, W.; Gundelfinger, E.D.; De Sarro, G.; Bernardi, G.; Ammassari-Teule, M.; Di Luca, M.; Calabresi, P. Epilepsy-induced abnormal striatal plasticity in Bassoon mutant mice. Eur. J. Neurosci., 2009, 29(10), 1979-1993.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06733.x] [PMID: 19453636 ]
[28]
Du, J.; Creson, T.K.; Wu, L.J.; Ren, M.; Gray, N.A.; Falke, C.; Wei, Y.; Wang, Y.; Blumenthal, R.; Machado-Vieira, R.; Yuan, P.; Chen, G.; Zhuo, M.; Manji, H.K. The role of hippocampal GluR1 and GluR2 receptors in manic-like behavior. J. Neurosci., 2008, 28(1), 68-79.
[http://dx.doi.org/10.1523/JNEUROSCI.3080-07.2008] [PMID: 18171924 ]
[29]
Biggs, C.S.; Pearce, B.R.; Fowler, L.J.; Whitton, P.S. Regional effects of sodium valproate on extracellular concentrations of 5-hydroxytryptamine, dopamine, and their metabolites in the rat brain: an in vivo microdialysis study. J. Neurochem., 1992, 59(5), 1702-1708.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb11001.x] [PMID: 1402915 ]
[30]
Ichikawa, J.; Meltzer, H.Y. Valproate and carbamazepine increase prefrontal dopamine release by 5-HT1A receptor activation. Eur. J. Pharmacol., 1999, 380(1), R1-R3.
[http://dx.doi.org/10.1016/S0014-2999(99)00517-8 ] [PMID: 10513560 ]
[31]
Lee, S.; Jeong, J.; Park, Y.U.; Kwak, Y.; Lee, S.A.; Lee, H.; Son, H.; Park, S.K. Valproate alters dopamine signaling in association with induction of Par-4 protein expression. PLoS One, 2012, 7(9)e45618
[http://dx.doi.org/10.1371/journal.pone.0045618] [PMID: 23029138 ]
[32]
Park, S.K.; Nguyen, M.D.; Fischer, A.; Luke, M.P.; Affar, B.; Dieffenbach, P.B.; Tseng, H.C.; Shi, Y.; Tsai, L.H. Par-4 links dopamine signaling and depression. Cell, 2005, 122(2), 275-287.
[http://dx.doi.org/10.1016/j.cell.2005.05.031] [PMID: 16051151 ]
[33]
Löscher, W. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy. Epilepsy Res., 2002, 50(1-2), 105-123.
[http://dx.doi.org/10.1016/S0920-1211(02)00073-6] [PMID: 12151122 ]
[34]
Qiu, H.M.; Yang, J.X.; Jiang, X.H.; Fei, H.Z.; Liu, D.; Hu, X.Y.; Zhou, Q.X. Upregulating serotonin transporter expression and downregulating monoamine oxidase-A and indoleamine 2, 3-dioxygenase expression involved in the antidepressant effect of sodium valproate in a rat model. Neuroreport, 2014, 25(17), 1338-1343.
[http://dx.doi.org/10.1097/WNR.0000000000000269 ] [PMID: 25304496 ]
[35]
McLean, M.J.; Macdonald, R.L. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J. Pharmacol. Exp. Ther., 1986, 237(3), 1001-1011.
[PMID: 3086538 ]
[36]
Van den Berg, R.J.; Kok, P.; Voskuyl, R.A. Valproate and sodium currents in cultured hippocampal neurons. Exp. Brain Res., 1993, 93(2), 279-287.
[http://dx.doi.org/10.1007/BF00228395] [PMID: 8387930 ]
[37]
Taverna, S.; Mantegazza, M.; Franceschetti, S.; Avanzini, G. Valproate selectively reduces the persistent fraction of Na+ current in neocortical neurons. Epilepsy Res., 1998, 32(1-2), 304-308.
[http://dx.doi.org/10.1016/S0920-1211(98)00060-6] [PMID: 9761329 ]
[38]
Kelly, K.M.; Gross, R.A.; Macdonald, R.L. Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. Neurosci. Lett., 1990, 116(1-2), 233-238.
[http://dx.doi.org/10.1016/0304-3940(90)90416-7] [PMID: 2175404 ]
[39]
Walden, J.; Altrup, U.; Reith, H.; Speckmann, E. J. Effects of valproate on early and late potassium currents of single neurons Eur. Neuropsychopharmacol., 1993, 3, 137-141.
[http://dx.doi.org/10.1016/0924-977X(93)90265-N]
[40]
Costa, C.; Martella, G.; Picconi, B.; Prosperetti, C.; Pisani, A.; Di Filippo, M.; Pisani, F.; Bernardi, G.; Calabresi, P. Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia. Stroke, 2006, 37(5), 1319-1326.
[http://dx.doi.org/10.1161/01.STR.0000217303.22856.38] [PMID: 16574927 ]
[41]
Pitkänen, A.; Kharatishvili, I.; Karhunen, H.; Lukasiuk, K.; Immonen, R.; Nairismägi, J.; Gröhn, O.; Nissinen, J. Epileptogenesis in experimental models. Epilepsia, 2007, 48(Suppl. 2), 13-20.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01063.x] [PMID: 17571349 ]
[42]
Sitges, M.; Chiu, L.M.; Reed, R.C. Effects of levetiracetam, carbamazepine, phenytoin, valproate, lamotrigine, oxcarbazepine, topiramate, vinpocetine and sertraline on presynaptic hippocampal Na+ and Ca2+ channels permeability. Neurochem. Res., 2016, 41(4), 758-769.
[http://dx.doi.org/10.1007/s11064-015-1749-0] [PMID: 26542150 ]
[43]
Kay, H.Y.; Greene, D.L.; Kang, S.; Kosenko, A.; Hoshi, N. M-current preservation contributes to anticonvulsant effects of valproic acid. J. Clin. Invest., 2015, 125(10), 3904-3914.
[http://dx.doi.org/10.1172/JCI79727 ] [PMID: 26348896 ]
[44]
Monti, B.; Polazzi, E.; Contestabile, A. Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. Curr. Mol. Pharmacol., 2009, 2(1), 95-109.
[http://dx.doi.org/10.2174/1874467210902010095 ] [PMID: 20021450 ]
[45]
Feinberg, A.P. Phenotypic plasticity and the epigenetics of human disease. Nature, 2007, 447(7143), 433-440.
[http://dx.doi.org/10.1038/nature05919 ] [PMID: 17522677 ]
[46]
Kobow, K.; Blümcke, I. The methylation hypothesis: do epigenetic chromatin modifications play a role in epileptogenesis? Epilepsia, 2011, 52(Suppl. 4), 15-19.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03145.x] [PMID: 21732935 ]
[47]
Nalivaeva, N.N.; Belyaev, N.D.; Turner, A.J. Sodium valproate: an old drug with new roles. Trends Pharmacol. Sci., 2009, 30(10), 509-514.
[http://dx.doi.org/10.1016/j.tips.2009.07.002 ] [PMID: 19762089 ]
[48]
Ghiglieri, V.; Sgobio, C.; Patassini, S.; Bagetta, V.; Fejtova, A.; Giampà, C.; Marinucci, S.; Heyden, A.; Gundelfinger, E.D.; Fusco, F.R.; Calabresi, P.; Picconi, B. TrkB/BDNF-dependent striatal plasticity and behavior in a genetic model of epilepsy: modulation by valproic acid. Neuropsychopharmacology, 2010, 35(7), 1531-1540.
[http://dx.doi.org/10.1038/npp.2010.23] [PMID: 20200504 ]
[49]
Cervoni, N.; Szyf, M. Demethylase activity is directed by histone acetylation. J. Biol. Chem., 2001, 276(44), 40778-40787.
[http://dx.doi.org/10.1074/jbc.M103921200] [PMID: 11524416 ]
[50]
Cervoni, N.; Detich, N.; Seo, S.B.; Chakravarti, D.; Szyf, M. The oncoprotein Set/TAF-1beta, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. J. Biol. Chem., 2002, 277(28), 25026-25031.
[http://dx.doi.org/10.1074/jbc.M202256200 ] [PMID: 11978794 ]
[51]
Chateauvieux, S.; Morceau, F.; Dicato, M.; Diederich, M. Molecular and therapeutic potential and toxicity of valproic acid. J. Biomed. Biotechnol., 2010, 2010479364
[52]
Milutinovic, S.; D’Alessio, A.C.; Detich, N.; Szyf, M. Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis, 2007, 28(3), 560-571.
[http://dx.doi.org/10.1093/carcin/bgl167] [PMID: 17012225 ]
[53]
Chen, G.; Yuan, P.X.; Jiang, Y.M.; Huang, L.D.; Manji, H.K. Valproate robustly enhances AP-1 mediated gene expression. Brain Res. Mol. Brain Res., 1999, 64(1), 52-58.
[http://dx.doi.org/10.1016/S0169-328X(98)00303-9 ] [PMID: 9889318 ]
[54]
Fukuchi, M.; Nii, T.; Ishimaru, N.; Minamino, A.; Hara, D.; Takasaki, I.; Tabuchi, A.; Tsuda, M. Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci. Res., 2009, 65(1), 35-43.
[http://dx.doi.org/10.1016/j.neures.2009.05.002] [PMID: 19463867 ]
[55]
Chen, G.; Yuan, P.; Hawver, D.B.; Potter, W.Z.; Manji, H.K. Increase in AP-1 transcription factor DNA binding activity by valproic acid. Neuropsychopharmacology, 1997, 16(3), 238-245.
[http://dx.doi.org/10.1016/S0893-133X(96)00239-4] [PMID: 9138440 ]
[56]
Sullivan, N.R.; Burke, T.; Siafaka-Kapadai, A.; Javors, M.; Hensler, J.G. Effect of valproic acid on serotonin-2A receptor signaling in C6 glioma cells. J. Neurochem., 2004, 90(5), 1269-1275.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02690.x] [PMID: 15312182 ]
[57]
Ichiyama, T.; Okada, K.; Lipton, J.M.; Matsubara, T.; Hayashi, T.; Furukawa, S. Sodium valproate inhibits production of TNF-alpha and IL-6 and activation of NF-kappaB. Brain Res., 2000, 857(1-2), 246-251.
[http://dx.doi.org/10.1016/S0006-8993(99)02439-7] [PMID: 10700573 ]
[58]
Lonze, B.E.; Ginty, D.D. Function and regulation of CREB family transcription factors in the nervous system. Neuron, 2002, 35(4), 605-623.
[http://dx.doi.org/10.1016/S0896-6273(02)00828-0 ] [PMID: 12194863 ]
[59]
Chen, B.; Wang, J.F.; Hill, B.C.; Young, L.T. Lithium and valproate differentially regulate brain regional expression of phosphorylated CREB and c-Fos. Brain Res. Mol. Brain Res., 1999, 70(1), 45-53.
[http://dx.doi.org/10.1016/S0169-328X(99)00125-4] [PMID: 10381542 ]
[60]
Chao, M.V. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci., 2003, 4(4), 299-309.
[http://dx.doi.org/10.1038/nrn1078 ] [PMID: 12671646 ]
[61]
Baquet, Z.C.; Gorski, J.A.; Jones, K.R. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J. Neurosci., 2004, 24(17), 4250-4258.
[http://dx.doi.org/10.1523/JNEUROSCI.3920-03.2004 ] [PMID: 15115821 ]
[62]
Bath, K. G.; Pimentel, T. Effect of early postnatal exposure to valproate on neurobehavioral development and regional BDNF expression in two strains of mice Epilepsy Behav, 2017, 70(Pt A), 110-117.
[http://dx.doi.org/10.1016/j.yebeh.2017.02.026 ]
[63]
Bittigau, P.; Sifringer, M.; Ikonomidou, C. Antiepileptic drugs and apoptosis in the developing brain. Ann. N. Y. Acad. Sci., 2003, 993, 103-114.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb07517.x] [PMID: 12853301 ]
[64]
Shi, X.Y.; Wang, J.W.; Cui, H.; Li, B.M.; Lei, G.F.; Sun, R.P. Effects of antiepileptic drugs on mRNA levels of BDNF and NT-3 and cell neogenesis in the developing rat brain. Brain Dev., 2010, 32(3), 229-235.
[http://dx.doi.org/10.1016/j.braindev.2009.03.012] [PMID: 19394173 ]
[65]
Wu, X.; Chen, P.S.; Dallas, S.; Wilson, B.; Block, M.L.; Wang, C.C.; Kinyamu, H.; Lu, N.; Gao, X.; Leng, Y.; Chuang, D.M.; Zhang, W.; Lu, R.B.; Hong, J.S. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int. J. Neuropsychopharmacol., 2008, 11(8), 1123-1134.
[http://dx.doi.org/10.1017/S1461145708009024 ] [PMID: 18611290 ]
[66]
Laeng, P.; Pitts, R.L.; Lemire, A.L.; Drabik, C.E.; Weiner, A.; Tang, H.; Thyagarajan, R.; Mallon, B.S.; Altar, C.A. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J. Neurochem., 2004, 91(1), 238-251.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02725.x] [PMID: 15379904 ]
[67]
Sinn, D.I.; Kim, S.J.; Chu, K.; Jung, K.H.; Lee, S.T.; Song, E.C.; Kim, J.M.; Park, D.K.; Kun , Lee. S.; Kim, M.; Roh, J.K. Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. Neurobiol. Dis., 2007, 26(2), 464-472.
[http://dx.doi.org/10.1016/j.nbd. 2007.02.006] [PMID: 17398106 ]
[68]
Whitaker, W.R.; Faull, R.L.; Waldvogel, H.J.; Plumpton, C.J.; Emson, P.C.; Clare, J.J. Comparative distribution of voltage-gated sodium channel proteins in human brain. Brain Res. Mol. Brain Res., 2001, 88(1-2), 37-53.
[http://dx.doi.org/10.1016/S0169-328X(00)00289-8] [PMID: 11295230 ]
[69]
Guo, F.; Yu, N.; Cai, J.Q.; Quinn, T.; Zong, Z.H.; Zeng, Y.J.; Hao, L.Y. Voltage-gated sodium channel Nav1.1, Nav1.3 and beta1 subunit were up-regulated in the hippocampus of spontaneously epileptic rat. Brain Res. Bull., 2008, 75(1), 179-187.
[http://dx.doi.org/10.1016/j.brainresbull.2007.10.005 ] [PMID: 18158113 ]
[70]
Löscher, W.; Schmidt, D. Experimental and clinical evidence for loss of effect (tolerance) during prolonged treatment with antiepileptic drugs. Epilepsia, 2006, 47(8), 1253-1284.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00607.x] [PMID: 16922870 ]
[71]
In:Experimental models of status epilepticus;; CRC Press: Boca Raton,. , 1998. T.E. (Eds.) ed.
[72]
Jankowsky, J.L.; Patterson, P.H. The role of cytokines and growth factors in seizures and their sequelae. Prog. Neurobiol., 2001, 63(2), 125-149.
[http://dx.doi.org/10.1016/S0301-0082(00)00022-8 ] [PMID: 11124444 ]
[73]
Wyneken, U.; Smalla, K.H.; Marengo, J.J.; Soto, D.; de la Cerda, A.; Tischmeyer, W.; Grimm, R.; Boeckers, T.M.; Wolf, G.; Orrego, F.; Gundelfinger, E.D. Kainate-induced seizures alter protein composition and N-methyl-D-aspartate receptor function of rat forebrain postsynaptic densities. Neuroscience, 2001, 102(1), 65-74.
[http://dx.doi.org/10.1016/S0306-4522(00)00469-3 ] [PMID: 11226670 ]
[74]
Wyneken, U.; Marengo, J.J.; Villanueva, S.; Soto, D.; Sandoval, R.; Gundelfinger, E.D.; Orrego, F. Epilepsy-induced changes in signaling systems of human and rat postsynaptic densities. Epilepsia, 2003, 44(2), 243-246.
[http://dx.doi.org/10.1046/j.1528-1157.2003.17602.x] [PMID: 12558581 ]
[75]
Takahashi, M.; Hayashi, S.; Kakita, A.; Wakabayashi, K.; Fukuda, M.; Kameyama, S.; Tanaka, R.; Takahashi, H.; Nawa, H. Patients with temporal lobe epilepsy show an increase in brain-derived neurotrophic factor protein and its correlation with neuropeptide Y. Brain Res., 1999, 818(2), 579-582.
[http://dx.doi.org/10.1016/S0006-8993(98)01355-9] [PMID: 10082852 ]
[76]
Binder, D.K.; Routbort, M.J.; McNamara, J.O. Immunohistochemical evidence of seizure-induced activation of trk receptors in the mossy fiber pathway of adult rat hippocampus. J. Neurosci., 1999, 19(11), 4616-4626.
[http://dx.doi.org/10.1523/JNEUROSCI.19-11-04616.1999] [PMID: 10341259 ]
[77]
Zuccato, C.; Cattaneo, E. Brain-derived neurotrophic factor in neurodegenerative diseases.Nature reviews Neurology, 2009, 5SRC-G., 311-322.
[http://dx.doi.org/10.1038/nrneurol.2009.54]
[78]
Löscher, W. Animal models of epilepsy and epileptic seizures; Springer: Berlin, 1999.
[http://dx.doi.org/10.1007/978-3-642-60072-2_2]
[79]
Pitkänen, A. Drug-mediated neuroprotection and antiepilepto-genesis: animal data. Neurology, 2002, 59(9)(Suppl. 5), S27-S33.
[http://dx.doi.org/10.1212/WNL.59.9_suppl_5.S27] [PMID: 12428029 ]
[80]
Löscher, W.; Brandt, C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol. Rev., 2010, 62(4), 668-700.
[http://dx.doi.org/10.1124/pr.110.003046] [PMID: 21079040 ]
[81]
Kandratavicius, L.; Balista, P.A.; Lopes-Aguiar, C.; Ruggiero, R.N.; Umeoka, E.H.; Garcia-Cairasco, N.; Bueno-Junior, L.S.; Leite, J.P. Animal models of epilepsy: use and limitations. Neuropsychiatr. Dis. Treat., 2014, 10, 1693-1705.
[http://dx.doi.org/ 10.2147/NDT.S50371] [PMID: 25228809 ]
[82]
Leite, J.P.; Garcia-Cairasco, N.; Cavalheiro, E.A. New insights from the use of pilocarpine and kainate models. Epilepsy Res., 2002, 50(1-2), 93-103.
[http://dx.doi.org/10.1016/S0920-1211(02)00072-4] [PMID: 12151121 ]
[83]
Curia, G.; Longo, D.; Biagini, G.; Jones, R.S.; Avoli, M. The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods, 2008, 172(2), 143-157.
[http://dx.doi.org/10.1016/j.jneumeth.2008.04.019] [PMID: 18550176 ]
[84]
Klitgaard, H.V.; Matagne, A.C.; Vanneste-Goemaere, J.; Margineanu, D.G. Effects of prolonged administration of levetiracetam on pilocarpine-induced epileptogenesis in rats. Epilepsia, 2001, 42, 114-115.
[85]
Gasior, M.; Ungard, J.T.; Beekman, M.; Carter, R.B.; Witkin, J.M. Acute and chronic effects of the synthetic neuroactive steroid, ganaxolone, against the convulsive and lethal effects of pentylenetetrazol in seizure-kindled mice: comparison with diazepam and valproate. Neuropharmacology, 2000, 39(7), 1184-1196.
[http://dx.doi.org/10.1016/S0028-3908(99)00190-2] [PMID: 10760361 ]
[86]
White, H.S. Preclinical development of antiepileptic drugs: past, present, and future directions. Epilepsia, 2003, 44(Suppl. 7), 2-8.
[http://dx.doi.org/10.1046/j.1528-1157.44.s7.10.x] [PMID: 12919332 ]
[87]
El-Azab, M.F.; Moustafa, Y.M. Influence of calcium channel blockers on anticonvulsant and antinociceptive activities of valproic acid in pentylenetetrazole-kindled mice. Pharmacol. Rep., 2012, 64(2), 305-314.
[http://dx.doi.org/10.1016/S1734-1140(12)70769-7] [PMID: 22661180 ]
[88]
Löscher, W.; Nau, H.; Marescaux, C.; Vergnes, M. Comparative evaluation of anticonvulsant and toxic potencies of valproic acid and 2-en-valproic acid in different animal models of epilepsy. Eur. J. Pharmacol., 1984, 99(2-3), 211-218.
[http://dx.doi.org/10.1016/0014-2999(84)90243-7] [PMID: 6428923 ]
[89]
Löscher, W.; Hönack, D. Comparison of anticonvulsant efficacy of valproate during prolonged treatment with one and three daily doses or continuous (“controlled release”) administration in a model of generalized seizures in rats. Epilepsia, 1995, 36(9), 929-937.
[http://dx.doi.org/10.1111/j.1528-1157.1995.tb01637.x] [PMID: 7649133 ]
[90]
Luszczki, J.J.; Trojnar, M.K.; Ratnaraj, N.; Patsalos, P.N.; Czuczwar, S.J. Interactions of stiripentol with clobazam and valproate in the mouse maximal electroshock-induced seizure model. Epilepsy Res., 2010, 90(3), 188-198.
[http://dx.doi.org/10.1016/j.eplepsyres.2010.04.006] [PMID: 20493662 ]
[91]
Blanco, M.M.; dos Santos, J.G., Jr; Perez-Mendes, P.; Kohek, S.R.; Cavarsan, C.F.; Hummel, M.; Albuquerque, C.; Mello, L.E. Assessment of seizure susceptibility in pilocarpine epileptic and nonepileptic Wistar rats and of seizure reinduction with pentylenetetrazole and electroshock models. Epilepsia, 2009, 50(4), 824-831.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01797.x] [PMID: 19054404 ]
[92]
Bertram, E. The relevance of kindling for human epilepsy. Epilepsia, 2007, 48(Suppl. 2), 65-74.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01068.x] [PMID: 17571354 ]
[93]
Silver, J.M.; Shin, C.; McNamara, J.O. Antiepileptogenic effects of conventional anticonvulsants in the kindling model of epilespy. Ann. Neurol., 1991, 29(4), 356-363.
[http://dx.doi.org/10.1002/ana.410290404] [PMID: 1929206 ]
[94]
Srivastava, A.K.; White, H.S. Carbamazepine, but not valproate, displays pharmacoresistance in lamotrigine-resistant amygdala kindled rats. Epilepsy Res., 2013, 104(1-2), 26-34.
[http://dx.doi.org/10.1016/j.eplepsyres.2012.10.003] [PMID: 23158096 ]
[95]
Bolanos, A.R.; Sarkisian, M.; Yang, Y.; Hori, A.; Helmers, S.L.; Mikati, M.; Tandon, P.; Stafstrom, C.E.; Holmes, G.L. Comparison of valproate and phenobarbital treatment after status epilepticus in rats. Neurology, 1998, 51(1), 41-48.
[http://dx.doi.org/10.1212/WNL.51.1.41] [PMID: 9674776 ]
[96]
Nissinen, J.; Pitkänen, A. Effect of antiepileptic drugs on spontaneous seizures in epileptic rats. Epilepsy Res., 2007, 73(2), 181-191.
[http://dx.doi.org/10.1016/j.eplepsyres.2006.10.003] [PMID: 17161937 ]
[97]
Angenstein, F.; Niessen, H.G.; Goldschmidt, J.; Lison, H.; Altrock, W.D.; Gundelfinger, E.D.; Scheich, H. Manganese-enhanced MRI reveals structural and functional changes in the cortex of Bassoon mutant mice. Cereb. Cortex, 2007, 17(1), 28-36.
[http://dx.doi.org/10.1093/cercor/bhj121] [PMID: 16452644 ]
[98]
Ghiglieri, V.; Sgobio, C.; Costa, C.; Picconi, B.; Calabresi, P. Striatum-hippocampus balance: from physiological behavior to interneuronal pathology. Prog. Neurobiol., 2011, 94(2), 102-114.
[http://dx.doi.org/10.1016/j.pneurobio.2011.04.005] [PMID: 21514357 ]
[99]
Sgobio, C.; Ghiglieri, V.; Costa, C.; Bagetta, V.; Siliquini, S.; Barone, I.; Di Filippo, M.; Gardoni, F.; Gundelfinger, E.D.; Di Luca, M.; Picconi, B.; Calabresi, P. Hippocampal synaptic plasticity, memory, and epilepsy: effects of long-term valproic acid treatment. Biol. Psychiatry, 2010, 67(6), 567-574.
[http://dx.doi.org/10.1016/j.biopsych.2009.11.008] [PMID: 20074705 ]
[100]
Shinnar, S.; Berg, A.T. Does antiepileptic drug therapy prevent the development of “chronic” epilepsy? Epilepsia, 1996, 37(8), 701-708.
[http://dx.doi.org/10.1111/j.1528-1157.1996.tb00639.x ] [PMID: 8764806 ]
[101]
Radzik, I.; Miziak, B.; Dudka, J.; Chrościńska-Krawczyk, M.; Czuczwar, S.J. Prospects of epileptogenesis prevention. Pharmacol. Rep., 2015, 67(3), 663-668.
[http://dx.doi.org/10.1016/j.pharep.2015.01.016] [PMID: 25933984 ]
[102]
Ueda, Y.; Willmore, L. J. Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis Exp Brain Res, 2000, 133 SRC -,, 334-339.
[http://dx.doi.org/10.1007/s002210000443]
[103]
Cavalheiro, E.A.; Leite, J.P.; Bortolotto, Z.A.; Turski, W.A.; Ikonomidou, C.; Turski, L. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia, 1991, 32(6), 778-782.
[http://dx.doi.org/10.1111/j.1528-1157.1991.tb05533.x] [PMID: 1743148 ]
[104]
Łukawski, K.; Andres-Mach, M.; Czuczwar, M.; Łuszczki, J.J.; Kruszyński, K.; Czuczwar, S.J. Mechanisms of epileptogenesis and preclinical approach to antiepileptogenic therapies. Pharmacol. Rep., 2018, 70(2), 284-293.
[http://dx.doi.org/10.1016/j.pharep.2017.07.012] [PMID: 29477036 ]
[105]
Brandt, C.; Glien, M.; Gastens, A.M.; Fedrowitz, M.; Bethmann, K.; Volk, H.A.; Potschka, H.; Löscher, W. Prophylactic treatment with levetiracetam after status epilepticus: lack of effect on epileptogenesis, neuronal damage, and behavioral alterations in rats. Neuropharmacology, 2007, 53(2), 207-221.
[http://dx.doi.org/10.1016/j.neuropharm.2007.05.001] [PMID: 17585956 ]
[106]
Langer, M.; Brandt, C.; Zellinger, C.; Löscher, W. Therapeutic window of opportunity for the neuroprotective effect of valproate versus the competitive AMPA receptor antagonist NS1209 following status epilepticus in rats. Neuropharmacology, 2011, 61(5-6), 1033-1047.
[http://dx.doi.org/10.1016/j.neuropharm.2011.06.015] [PMID: 21736883 ]
[107]
Kadiyala, S.B.; Yannix, J.Q.; Nalwalk, J.W.; Papandrea, D.; Beyer, B.S.; Herron, B.J.; Ferland, R.J. Eight flurothyl-induced generalized seizures lead to the rapid evolution of spontaneous seizures in mice: A model of epileptogenesis with seizure remission. J. Neurosci., 2016, 36(28), 7485-7496.
[http://dx.doi.org/10.1523/JNEUROSCI.3232-14.2016] [PMID: 27413158 ]
[108]
Brandt, C.; Gastens, A.M.; Sun, Mz.; Hausknecht, M.; Löscher, W. Treatment with valproate after status epilepticus: effect on neuronal damage, epileptogenesis, and behavioral alterations in rats. Neuropharmacology, 2006, 51(4), 789-804.
[http://dx.doi.org/10.1016/j.neuropharm.2006.05.021] [PMID: 16806297 ]
[109]
Mora, A.; González-Polo, R.A.; Fuentes, J.M.; Soler, G.; Centeno, F. Different mechanisms of protection against apoptosis by valproate and Li+. Eur. J. Biochem., 1999, 266(3), 886-891.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00919.x] [PMID: 10583382 ]
[110]
Kim, H.J.; Rowe, M.; Ren, M.; Hong, J.S.; Chen, P.S.; Chuang, D.M. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J. Pharmacol. Exp. Ther., 2007, 321(3), 892-901.
[http://dx.doi.org/10.1124/jpet.107.120188 ] [PMID: 17371805 ]
[111]
Wang, Z.; Leng, Y.; Tsai, L.K.; Leeds, P.; Chuang, D.M. Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J. Cereb. Blood Flow Metab., 2011, 31(1), 52-57.
[http://dx.doi.org/10.1038/jcbfm.2010.195] [PMID: 20978517 ]
[112]
Caccamo, D.; Pisani, L.R.; Mazzocchetti, P.; Ientile, R.; Calabresi, P.; Pisani, F.; Costa, C. Neuroprotection as a Potential Therapeutic Perspective in Neurodegenerative Diseases: Focus on Antiepileptic Drugs. Neurochem. Res., 2016, 41(1-2), 340-352.
[http://dx.doi.org/10.1007/s11064-015-1809-5] [PMID: 26721507 ]
[113]
Calabresi, P.; Cupini, L.M.; Centonze, D.; Pisani, F.; Bernardi, G. Antiepileptic drugs as a possible neuroprotective strategy in brain ischemia. Ann. Neurol., 2003, 53(6), 693-702.
[http://dx.doi.org/10.1002/ana.10603 ] [PMID: 12783414 ]
[114]
Picascia, A.; Grimaldi, V.; Iannone, C.; Soricelli, A.; Napoli, C. Innate and adaptive immune response in stroke: Focus on epigenetic regulation. J. Neuroimmunol., 2015, 289, 111-120.
[http://dx.doi.org/10.1016/j.jneuroim.2015.10.013] [PMID: 26616880 ]
[115]
Ren, M.; Leng, Y.; Jeong, M.; Leeds, P.R.; Chuang, D.M. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem., 2004, 89(6), 1358-1367.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02406.x] [PMID: 15189338 ]
[116]
Yildirim, F.; Gertz, K.; Kronenberg, G.; Harms, C.; Fink, K.B.; Meisel, A.; Endres, M. Inhibition of histone deacetylation protects wildtype but not gelsolin-deficient mice from ischemic brain injury. Exp. Neurol., 2008, 210(2), 531-542.
[http://dx.doi.org/10.1016/j.expneurol.2007.11.031] [PMID: 18234195 ]
[117]
Xuan, A.; Long, D.; Li, J.; Ji, W.; Hong, L.; Zhang, M.; Zhang, W. Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci., 2012, 90(11-12), 463-468.
[http://dx.doi.org/10.1016/j.lfs.2012.01.001] [PMID: 22285595 ]
[118]
Masuch, A.; Shieh, C.H.; van Rooijen, N.; van Calker, D.; Biber, K. Mechanism of microglia neuroprotection: Involvement of P2X7, TNFα, and valproic acid. Glia, 2016, 64(1), 76-89.
[http://dx.doi.org/10.1002/glia.22904] [PMID: 26295445 ]
[119]
van Weering, H.R.; Boddeke, H.W.; Vinet, J.; Brouwer, N.; de Haas, A.H.; van Rooijen, N.; Thomsen, A.R.; Biber, K.P. CXCL10/CXCR3 signaling in glia cells differentially affects NMDA-induced cell death in CA and DG neurons of the mouse hippocampus. Hippocampus, 2011, 21(2), 220-232.
[http://dx.doi.org/10.1002/hipo.20742] [PMID: 20082289 ]
[120]
Vinet, J.; Weering, H.R.; Heinrich, A.; Kälin, R.E.; Wegner, A.; Brouwer, N.; Heppner, F.L.; Rooijen, Nv.; Boddeke, H.W.; Biber, K. Neuroprotective function for ramified microglia in hippocampal excitotoxicity. J. Neuroinflammation, 2012, 9, 27.
[http://dx.doi.org/10.1186/1742-2094-9-27] [PMID: 22293457 ]
[121]
Dale, N.; Frenguelli, B.G. Release of adenosine and ATP during ischemia and epilepsy. Curr. Neuropharmacol., 2009, 7(3), 160-179.
[http://dx.doi.org/10.2174/157015909789152146] [PMID: 20190959 ]
[122]
Harrison, I.F.; Anis, H.K.; Dexter, D.T. Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate. Neurosci. Lett., 2016, 614, 16-23.
[http://dx.doi.org/10.1016/j.neulet.2015.12.052] [PMID: 26742637 ]
[123]
Harrison, I.F.; Crum, W.R.; Vernon, A.C.; Dexter, D.T. Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson’s is associated with histone acetylation and up-regulation of neurotrophic factors. Br. J. Pharmacol., 2015, 172(16), 4200-4215.
[http://dx.doi.org/10.1111/bph.13208] [PMID: 26040297 ]
[124]
Harrison, I.F.; Dexter, D.T. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson’s disease? Pharmacol. Ther., 2013, 140(1), 34-52.
[http://dx.doi.org/10.1016/j.pharmthera.2013.05.010] [PMID: 23711791 ]
[125]
Rouaux, C.; Jokic, N.; Mbebi, C.; Boutillier, S.; Loeffler, J.P.; Boutillier, A.L. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J., 2003, 22(24), 6537-6549.
[http://dx.doi.org/10.1093/emboj/cdg615] [PMID: 14657026 ]
[126]
Mark, R.J.; Ashford, J.W.; Goodman, Y.; Mattson, M.P. Anticonvulsants attenuate amyloid beta-peptide neurotoxicity, Ca2+ deregulation, and cytoskeletal pathology. Neurobiol. Aging, 1995, 16(2), 187-198.
[http://dx.doi.org/10.1016/0197-4580(94)00150-2] [PMID: 7777136 ]
[127]
Mishra, J.; Chaudhary, T.; Kumar, A. Rosiglitazone synergizes the neuroprotective effects of valproic acid against quinolinic acid-induced neurotoxicity in rats: targeting PPARγ and HDAC pathways. Neurotox. Res., 2014, 26(2), 130-151.
[http://dx.doi.org/10.1007/s12640-014-9458-z] [PMID: 24566814 ]
[128]
Jiang, H.Z.; Wang, S.Y.; Yin, X.; Jiang, H.Q.; Wang, X.D.; Wang, J.; Wang, T.H.; Qi, Y.; Yang, Y.Q.; Wang, Y.; Zhang, C.T.; Feng, H.L. Downregulation of Homer1b/c in SOD1 G93A Models of ALS: A Novel Mechanism of Neuroprotective Effect of Lithium and Valproic Acid. Int. J. Mol. Sci., 2016, 17(12)E2129
[http://dx.doi.org/10.3390/ijms17122129] [PMID: 27999308 ]
[129]
Avanzini, G.; Depaulis, A.; Tassinari, A.; de Curtis, M. Do seizures and epileptic activity worsen epilepsy and deteriorate cognitive function? Epilepsia, 2013, 54(Suppl. 8), 14-21.
[http://dx.doi.org/10.1111/epi.12418] [PMID: 24571112 ]
[130]
O’Connor, J.C.; André, C.; Wang, Y.; Lawson, M.A.; Szegedi, S.S.; Lestage, J.; Castanon, N.; Kelley, K.W.; Dantzer, R. Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J. Neurosci., 2009, 29(13), 4200-4209.
[http://dx.doi.org/10.1523/JNEUROSCI.5032-08.2009] [PMID: 19339614 ]
[131]
Choi, C.S.; Gonzales, E.L.; Kim, K.C.; Yang, S.M.; Kim, J.W.; Mabunga, D.F.; Cheong, J.H.; Han, S.H.; Bahn, G.H.; Shin, C.Y. The transgenerational inheritance of autism-like phenotypes in mice exposed to valproic acid during pregnancy. Sci. Rep., 2016, 6, 36250.
[http://dx.doi.org/10.1038/srep36250] [PMID: 27819277 ]
[132]
Fiala, J.C.; Spacek, J.; Harris, K.M. Dendritic spine pathology: Cause or consequence of neurological disorders? Brain Res. Brain Res. Rev., 2002, 39(1), 29-54.
[http://dx.doi.org/10.1016/S0165-0173(02)00158-3 ] [PMID: 12086707 ]
[133]
Meador, K.J.; Baker, G.A.; Browning, N.; Clayton-Smith, J.; Combs-Cantrell, D.T.; Cohen, M.; Kalayjian, L.A.; Kanner, A.; Liporace, J.D.; Pennell, P.B.; Privitera, M.; Loring, D.W.; Group, N.S. Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. N. Engl. J. Med., 2009, 360(16), 1597-1605.
[http://dx.doi.org/10.1056/NEJMoa0803531] [PMID: 19369666 ]
[134]
Carreño, M.; Donaire, A.; Sánchez-Carpintero, R. Cognitive disorders associated with epilepsy: diagnosis and treatment. Neurologist, 2008, 14(6)(Suppl. 1), S26-S34.
[http://dx.doi.org/10.1097/01.nrl.0000340789.15295.8f] [PMID: 19225368]
[135]
Hermann, B.P.; Lin, J.J.; Jones, J.E.; Seidenberg, M. The emerging architecture of neuropsychological impairment in epilepsy. Neurol. Clin., 2009, 27(4), 881-907.
[http://dx.doi.org/10.1016/j.ncl.2009.08.001] [PMID: 19853214]
[136]
Hassel, B.; Iversen, E.G.; Gjerstad, L.; Taubøll, E. Up-regulation of hippocampal glutamate transport during chronic treatment with sodium valproate. J. Neurochem., 2001, 77(5), 1285-1292.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00349.x] [PMID: 11389179]
[137]
Bruno, V.; Sortino, M.A.; Scapagnini, U.; Nicoletti, F.; Canonico, P.L. Antidegenerative effects of Mg(2+)-valproate in cultured cerebellar neurons. Funct. Neurol., 1995, 10(3), 121-130.
[PMID: 8557213]
[138]
Lynch, M.; Sayin, U.; Bownds, J.; Janumpalli, S.; Sutula, T. Long-term consequences of early postnatal seizures on hippocampal learning and plasticity. Eur. J. Neurosci., 2000, 12(7), 2252-2264.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00117.x] [PMID: 10947804]
[139]
Yuan, P. X.; Huang, L. D.; Jiang, Y. M.; Gutkind, J. S.; Manji, H. K.; Chen, G. The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth. J. Biol.Chem, 2001, 276,SRC, 31674-31683.
[http://dx.doi.org/10.1074/jbc.M104309200]
[140]
Jessberger, S.; Nakashima, K.; Clemenson, G.D., Jr; Mejia, E.; Mathews, E.; Ure, K.; Ogawa, S.; Sinton, C.M.; Gage, F.H.; Hsieh, J. Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J. Neurosci., 2007, 27(22), 5967-5975.
[http://dx.doi.org/10.1523/JNEUROSCI.0110-07.2007] [PMID: 17537967]
[141]
Halbsgut, L.R.; Fahim, E.; Kapoor, K.; Hong, H.; Friedman, L.K. Certain secondary antiepileptic drugs can rescue hippocampal injury following a critical growth period despite poor anticonvulsant activity and cognitive deficits. Epilepsy Behav., 2013, 29(3), 466-477.
[http://dx.doi.org/10.1016/j.yebeh.2013.08.019] [PMID: 24103817]
[142]
Umka, J.; Mustafa, S.; ElBeltagy, M.; Thorpe, A.; Latif, L.; Bennett, G.; Wigmore, P.M. Valproic acid reduces spatial working memory and cell proliferation in the hippocampus. Neuroscience, 2010, 166(1), 15-22.
[http://dx.doi.org/10.1016/j.neuroscience.2009.11.073] [PMID: 20006675]
[143]
Bromley, R.L.; Mawer, G.; Love, J.; Kelly, J.; Purdy, L.; McEwan, L.; Briggs, M.; Clayton-Smith, J.; Shi, X.; Baker, G.A. Early cognitive development in children born to women with epilepsy: a prospective report. Epilepsia, 2010, 51(10), 2058-2065.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02668.x] [PMID: 20633039]
[144]
Thomas, S. V.; Sukumaran, S.; Lukose, N.; George, A.; Sarma, P. S. Intellectual and language functions in children of mothers with epilepsy. Epilepsia, 2007, 48 SRC -,, 2234-2240.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01376.x]
[145]
Thomas, S.V.; Ajaykumar, B.; Sindhu, K.; Nair, M.K.; George, B.; Sarma, P.S. Motor and mental development of infants exposed to antiepileptic drugs in utero. Epilepsy Behav., 2008, 13(1), 229-236.
[http://dx.doi.org/10.1016/j.yebeh.2008.01.010] [PMID: 18346940]
[146]
Tomson, T.; Battino, D.; Bonizzoni, E.; Craig, J.; Lindhout, D.; Perucca, E.; Sabers, A.; Thomas, S.V.; Vajda, F.; Group, E.S. Dose-dependent teratogenicity of valproate in mono- and polytherapy: an observational study. Neurology, 2015, 85(10), 866-872.
[http://dx.doi.org/10.1212/WNL.0000000000001772] [PMID: 26085607]
[147]
Tomson, T.; Marson, A.; Boon, P.; Canevini, M.P.; Covanis, A.; Gaily, E.; Kälviäinen, R.; Trinka, E. Valproate in the treatment of epilepsy in girls and women of childbearing potential. Epilepsia, 2015, 56(7), 1006-1019.
[http://dx.doi.org/10.1111/epi.13021] [PMID: 25851171]
[148]
Meador, K.J.; Baker, G.A.; Browning, N.; Cohen, M.J.; Bromley, R.L.; Clayton-Smith, J.; Kalayjian, L.A.; Kanner, A.; Liporace, J.D.; Pennell, P.B.; Privitera, M.; Loring, D.W.; Group, N.S. Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): a prospective observational study. Lancet Neurol., 2013, 12(3), 244-252.
[http://dx.doi.org/10.1016/S1474-4422(12)70323-X] [PMID: 23352199]
[149]
Baker, G.A.; Bromley, R.L.; Briggs, M.; Cheyne, C.P.; Cohen, M.J.; García-Fiñana, M.; Gummery, A.; Kneen, R.; Loring, D.W.; Mawer, G.; Meador, K.J.; Shallcross, R.; Clayton-Smith, J. IQ at 6 years after in utero exposure to antiepileptic drugs: a controlled cohort study. Neurology, 2015, 84(4), 382-390.
[http://dx.doi.org/10.1212/WNL.0000000000001182] [PMID: 25540307]
[150]
Shallcross, R.; Bromley, R.L.; Irwin, B.; Bonnett, L.J.; Morrow, J.; Baker, G.A.; Liverpool Manchester Neurodevelopment, G.; Epilepsy, U.K.; Pregnancy, R. Child development following in utero exposure: levetiracetam vs sodium valproate. Neurology, 2011, 76(4), 383-389.
[http://dx.doi.org/10.1212/WNL.0b013e3182088297] [PMID: 21263139]
[151]
Meador, K.J.; Baker, G.A.; Browning, N.; Cohen, M.J.; Clayton-Smith, J.; Kalayjian, L.A.; Kanner, A.; Liporace, J.D.; Pennell, P.B.; Privitera, M.; Loring, D.W.; Group, N.S. Foetal antiepileptic drug exposure and verbal versus non-verbal abilities at three years of age. Brain, 2011, 134(Pt 2), 396-404.
[http://dx.doi.org/10.1093/brain/awq352] [PMID: 21224309]
[152]
Nadebaum, C.; Anderson, V.; Vajda, F.; Reutens, D.; Barton, S.; Wood, A. The Australian brain and cognition and antiepileptic drugs study: IQ in school-aged children exposed to sodium valproate and polytherapy. J. Int. Neuropsychol. Soc., 2011, 17(1), 133-142.
[http://dx.doi.org/10.1017/S1355617710001359] [PMID: 21092354]
[153]
Roullet, F.I.; Lai, J.K.; Foster, J.A. In utero exposure to valproic acid and autism--a current review of clinical and animal studies. Neurotoxicol. Teratol., 2013, 36, 47-56.
[http://dx.doi.org/10.1016/j.ntt.2013.01.004] [PMID: 23395807]
[154]
Schneider, T.; Przewłocki, R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology, 2005, 30(1), 80-89.
[http://dx.doi.org/10.1038/sj.npp.1300518] [PMID: 15238991]
[155]
Kim, J. W.; Seung, H.; Kim, K. C.; Gonzales, E. L. T.; Oh, H. A.; Yang, S. M.; Ko, M. J.; Han, S. H.; Banerjee, S.; Shin, C. Y. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism. Neuropharmacology, 2017, 113(Pt A), 71-81.
[http://dx.doi.org/10.1016/j.neuropharm.2016.09.014]
[156]
administration. U. f. a. d. Information for healthcare professionals: risk of neural tube birth defects following prenatal exposure to valproate http://www.fda.gov/Drugs/DrugSafety/PostmarketDrug
SafetyInformationforPatientsandProviders/DrugSafetyInformation
forHeathcareProfessionals/ucm192649.htm
[157]
Administration., U. F. a. D. Valproate products: drug safety communication — risk of impaired cognitive development in children exposed in utero (during pregnancy) http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm261610.htm(accessed June 30, 2011)..
[158]
Agency., E. M. Assessment report. Procedure under Article 31 of Directive 2001/83/EC resulting from pharmacovigilance data Available at: http://www.ema.europa.eu/docs/en_GB/document_
library/Referrals_document/Valproate_and_related_substances_31/Recommendation_provided_by_Pharmacovigilance_Risk_Assessment_ Committee/WC500177352.pdf.
[159]
Glauser, T.; Ben-Menachem, E.; Bourgeois, B.; Cnaan, A.; Guerreiro, C.; Kälviäinen, R.; Mattson, R.; French, J.A.; Perucca, E.; Tomson, T.; Guidelines, I.S.A. Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia, 2013, 54(3), 551-563.
[http://dx.doi.org/10.1111/epi.12074] [PMID: 23350722]
[160]
Guerrini, R. Valproate as a mainstay of therapy for pediatric epilepsy. Paediatr. Drugs, 2006, 8(2), 113-129.
[http://dx.doi.org/10.2165/00148581-200608020-00004] [PMID: 16608372]
[161]
Maheshwari, M.C.; Jeavons, P.M. Proceedings: The effect of sodium valproate (Epilim) on the EEG. Electroencephalogr. Clin. Neurophysiol., 1975, 39(4), 429.
[PMID: 51737]
[162]
Villarreal, H.J.; Wilder, B.J.; Willmore, L.J.; Bauman, A.W.; Hammond, E.J.; Bruni, J. Effect of valproic acid on spike and wave discharges in patients with absence seizures. Neurology, 1978, 28(9 Pt 1), 886-891.
[http://dx.doi.org/10.1212/WNL.28.9.886] [PMID: 99687]
[163]
Braathen, G.; Theorell, K.; Persson, A.; Rane, A. Valproate in the treatment of absence epilepsy in children: a study of dose-response relationships. Epilepsia, 1988, 29(5), 548-552.
[http://dx.doi.org/10.1111/j.1528-1157.1988.tb03759.x] [PMID: 3137019]
[164]
Davis, R.; Peters, D.H.; McTavish, D. Valproic acid. A reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs, 1994, 47(2), 332-372.
[http://dx.doi.org/10.2165/00003495-199447020-00008] [PMID: 7512905]
[165]
Glauser, T.A.; Cnaan, A.; Shinnar, S.; Hirtz, D.G.; Dlugos, D.; Masur, D.; Clark, P.O.; Adamson, P.C. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy: initial monotherapy outcomes at 12 months. Epilepsia, 2013, 54(1), 141-155.
[http://dx.doi.org/10.1111/epi.12028] [PMID: 23167925]
[166]
Hwang, H.; Kim, H.; Kim, S.H.; Kim, S.H.; Lim, B.C.; Chae, J.H.; Choi, J.E.; Kim, K.J.; Hwang, Y.S. Long-term effectiveness of ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. Brain Dev., 2012, 34(5), 344-348.
[http://dx.doi.org/10.1016/j.braindev.2011.08.007] [PMID: 21893390]
[167]
Brigo, F.; Igwe, S.C. Ethosuximide, sodium valproate or lamotrigine for absence seizures in children and adolescents. Cochrane Database Syst. Rev., 2017, 2CD003032.
[PMID: 28195639]
[168]
Basu, S.; Bhattacharyya, K.B.; Das, K.; Das, D. Ethosuximide, sodium valproate or lamotrigine for absence seizures in children and adolescents. Cochrane Database Syst. Rev., 2017, 2CD003032
[169]
Callaghan, N.; O’Hare, J.; O’Driscoll, D.; O’Neill, B.; Daly, M. Comparative study of ethosuximide and sodium valproate in the treatment of typical absence seizures (petit mal). Dev. Med. Child Neurol., 1982, 24(6), 830-836.
[PMID: 6818076]
[170]
Frank, L.M.; Enlow, T.; Holmes, G.L.; Manasco, P.; Concannon, S.; Chen, C.; Womble, G.; Casale, E.J. Lamictal (lamotrigine) monotherapy for typical absence seizures in children. Epilepsia, 1999, 40(7), 973-979.
[http://dx.doi.org/10.1111/j.1528-1157.1999.tb00805.x] [PMID: 10403222]
[171]
Coppola, G.; Auricchio, G.; Federico, R.; Carotenuto, M.; Pascotto, A. Lamotrigine versus valproic acid as first-line monotherapy in newly diagnosed typical absence seizures: An open-label, randomized, parallel-group study. Epilepsia, 2004, 45(9), 1049-1053.
[http://dx.doi.org/10.1111/j.0013-9580.2004.40903.x] [PMID: 15329068]
[172]
Huang, T.S.; Zhu, J.L.; Li, B.; Hu, Y.; Chen, L.; Liao, J.X. Valproic acid versus lamotrigine as a monotherapy for absence epilepsy in children Zhongguo Dang Dai Er Ke Za Zhi, 2009, 11(8), 653-655.
[PMID: 19695193]
[173]
Martinovic, Z. Comparison of ethosuximide with sodium valproate as monotherapies of absence seizures; Raven Press: New York, 1983.
[174]
Sato, S.; White, B.G.; Penry, J.K.; Dreifuss, F.E.; Sackellares, J.C.; Kupferberg, H.J. Valproic acid versus ethosuximide in the treatment of absence seizures. Neurology, 1982, 32(2), 157-163.
[http://dx.doi.org/10.1212/WNL.32.2.157] [PMID: 6798490]
[175]
Turnbull, D. M.; Rawlins, M. D.; Weightman, D.; Chadwicks, D. W. A comparison of phenytoin and valproate in previously untreated adult epileptic patients J. Neurol. Neurosurg. Psychiatry, 1982, 45 SRC, 55-59.
[http://dx.doi.org/10.1136/jnnp.45.1.55]
[176]
Callaghan, N.; Kenny, R.A.; O’Neill, B.; Crowley, M.; Goggin, T. A prospective study between carbamazepine, phenytoin and sodium valproate as monotherapy in previously untreated and recently diagnosed patients with epilepsy. J. Neurol. Neurosurg. Psychiatry, 1985, 48(7), 639-644.
[http://dx.doi.org/10.1136/jnnp.48.7.639] [PMID: 3928820]
[177]
Marson, A.G.; Al-Kharusi, A.M.; Alwaidh, M.; Appleton, R.; Baker, G.A.; Chadwick, D.W.; Cramp, C.; Cockerell, O.C.; Cooper, P.N.; Doughty, J.; Eaton, B.; Gamble, C.; Goulding, P.J.; Howell, S.J.; Hughes, A.; Jackson, M.; Jacoby, A.; Kellett, M.; Lawson, G.R.; Leach, J.P.; Nicolaides, P.; Roberts, R.; Shackley, P.; Shen, J.; Smith, D.F.; Smith, P.E.; Smith, C.T.; Vanoli, A.; Williamson, P.R. The SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy: an unblinded randomised controlled trial. Lancet, 2007, 369(9566), 1016-1026.
[http://dx.doi.org/10.1016/S0140-6736(07)60461-9] [PMID: 17382828]
[178]
Mattson, R.H.; Cramer, J.A.; Collins, J.F. A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic-clonic seizures in adults. The Department of Veterans Affairs Epilepsy Cooperative Study No. 264 Group. N. Engl. J. Med., 1992, 327(11), 765-771.
[http://dx.doi.org/10.1056/NEJM199209103271104] [PMID: 1298221]
[179]
Beydoun, A.; Sackellares, J.C.; Shu, V. Safety and efficacy of divalproex sodium monotherapy in partial epilepsy: a double-blind, concentration-response design clinical trial. Neurology, 1997, 48(1), 182-188.
[http://dx.doi.org/10.1212/WNL.48.1.182] [PMID: 9008516]
[180]
Guerrini, R.; Genton, P. Epileptic syndromes and visually induced seizures. Epilepsia, 2004, 45(Suppl. 1), 14-18.
[http://dx.doi.org/10.1111/j.0013-9580.2004.451011.x] [PMID: 14706039]
[181]
Covanis, A.; Stodieck, S.R.; Wilkins, A.J. Treatment of photosensitivity. Epilepsia, 2004, 45(Suppl. 1), 40-45.
[http://dx.doi.org/10.1111/j.0013-9580.2004.451006.x] [PMID: 14706045]
[182]
Belcastro, V.; Caraballo, R.H.; Romeo, A.; Striano, P. Early-onset absence epilepsy aggravated by valproic acid: a video-EEG report. Epileptic Disord., 2013, 15(4), 440-443.
[183]
Chen, J.H.; Zheng, Y.L.; Xu, C.Q.; Gu, L.Z.; Ding, Z.L.; Qin, L.; Wang, Y.; Fu, R.; Wan, Y.F.; Hu, C.P. Valproic acid (VPA) enhances cisplatin sensitivity of non-small cell lung cancer cells via HDAC2 mediated down regulation of ABCA1. Biol. Chem., 2017, 398(7), 785-792.
[http://dx.doi.org/10.1515/hsz-2016-0307] [PMID: 28002023]
[184]
Damaskos, C.; Garmpis, N.; Valsami, S.; Kontos, M.; Spartalis, E.; Kalampokas, T.; Kalampokas, E.; Athanasiou, A.; Moris, D.; Daskalopoulou, A.; Davakis, S.; Tsourouflis, G.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone deacetylase inhibitors: An attractive therapeutic strategy against breast cancer. Anticancer Res., 2017, 37(1), 35-46.
[http://dx.doi.org/10.21873/anticanres.11286] [PMID: 28011471]
[185]
Caponigro, F.; Di Gennaro, E.; Ionna, F.; Longo, F.; Aversa, C.; Pavone, E.; Maglione, M.G.; Di Marzo, M.; Muto, P.; Cavalcanti, E.; Petrillo, A.; Sandomenico, F.; Maiolino, P.; D’Aniello, R.; Botti, G.; De Cecio, R.; Losito, N.S.; Scala, S.; Trotta, A.; Zotti, A.I.; Bruzzese, F.; Daponte, A.; Calogero, E.; Montano, M.; Pontone, M.; De Feo, G.; Perri, F.; Budillon, A. Phase II clinical study of valproic acid plus cisplatin and cetuximab in recurrent and/or metastatic squamous cell carcinoma of Head and Neck-V-CHANCE trial. BMC Cancer, 2016, 16(1), 918.
[http://dx.doi.org/10.1186/s12885-016-2957-y] [PMID: 27884140]
[186]
Thotala, D.; Karvas, R.M.; Engelbach, J.A.; Garbow, J.R.; Hallahan, A.N.; DeWees, T.A.; Laszlo, A.; Hallahan, D.E. Valproic acid enhances the efficacy of radiation therapy by protecting normal hippocampal neurons and sensitizing malignant glioblastoma cells. Oncotarget, 2015, 6(33), 35004-35022.
[http://dx.doi.org/10.18632/oncotarget.5253] [PMID: 26413814]
[187]
Happold, C.; Gorlia, T.; Chinot, O.; Gilbert, M.R.; Nabors, L.B.; Wick, W.; Pugh, S.L.; Hegi, M.; Cloughesy, T.; Roth, P.; Reardon, D.A.; Perry, J.R.; Mehta, M.P.; Stupp, R.; Weller, M. Does valproic acid or levetiracetam improve survival in glioblastoma? A pooled analysis of prospective clinical trials in newly diagnosed glioblastoma. J. Clin. Oncol., 2016, 34(7), 731-739.
[http://dx.doi.org/10.1200/JCO.2015.63.6563] [PMID: 26786929]
[188]
Schreur, L.; Middeljans-Tijssen, C.W.; Hengstman, G.J.; Olde Rikkert, M.G. Cognitive impairment and parkinsonism due to use of sodium valproate Tijdschr. Gerontol. Geriatr., , 2009, 40(1), 29-33.
[http://dx.doi.org/10.1007/BF03088474] [PMID: 19326700]
[189]
Romoli, M.; Costa, C.; Siliquini, S.; Corbelli, I.; Eusebi, P.; Bedetti, C.; Caproni, S.; Cupini, L. M.; Calabresi, P.; Sarchielli, P. Antiepileptic drugs in migraine and epilepsy: Who is at increased risk of adverse events? Cephalalgia : an international journal of headache , 2018, 38(2), 274-282.
[190]
Bryant, A.E., III; Dreifuss, F.E. Valproic acid hepatic fatalities. III. U.S. experience since 1986. Neurology, 1996, 46(2), 465-469.
[http://dx.doi.org/10.1212/WNL.46.2.465] [PMID: 8614514]
[191]
Lin, C.M.; Thajeb, P. Valproic acid aggravates epilepsy due to MELAS in a patient with an A3243G mutation of mitochondrial DNA. Metab. Brain Dis., 2007, 22(1), 105-109.
[http://dx.doi.org/10.1007/s11011-006-9039-9] [PMID: 17226098]
[192]
Wong, H. Y.; Chu, T. S.; Lai, J. C.; Fung, K. P.; Fok, T. F.; Fujii, T. Sodium valproate inhibits glucose transport and exacerbates Glut-1 deficiency. In vitro Biochem, 2005, 96 SRC -, 775-785.
[193]
Hamer, H.M.; Knake, S.; Schomburg, U.; Rosenow, F. Valproate-induced hyperammonemic encephalopathy in the presence of topiramate. Neurology, 2000, 54(1), 230-232.
[http://dx.doi.org/10.1212/WNL.54.1.230] [PMID: 10636156]
[194]
LaBuzetta, J.N.; Yao, J.Z.; Bourque, D.L.; Zivin, J. Adult nonhepatic hyperammonemia: a case report and differential diagnosis. Am. J. Med., 2010, 123(10), 885-891.
[http://dx.doi.org/10.1016/j.amjmed.2010.02.029] [PMID: 20920686]
[195]
Verrotti, A.; Trotta, D.; Morgese, G.; Chiarelli, F. Valproate-induced hyperammonemic encephalopathy. Metab. Brain Dis., 2002, 17(4), 367-373.
[http://dx.doi.org/10.1023/A:1021918104127] [PMID: 12602513]
[196]
Verrotti, A.; Manco, R.; Agostinelli, S.; Coppola, G.; Chiarelli, F. The metabolic syndrome in overweight epileptic patients treated with valproic acid. Epilepsia, 2010, 51(2), 268-273.
[http://dx.doi.org/10.1111/j.1528-1167.2009.02206.x] [PMID: 19682024]
[197]
DeWolfe, J.L.; Knowlton, R.C.; Beasley, M.T.; Cofield, S.; Faught, E.; Limdi, N.A. Hyperammonemia following intravenous valproate loading. Epilepsy Res., 2009, 85(1), 65-71.
[http://dx.doi.org/10.1016/j.eplepsyres.2009.02.012] [PMID: 19299111]
[198]
Finsterer, J.; Zarrouk, S. Epilepsy in mitochondrial disorders. Seizure, 2012, 21(5), 316-321.
[http://dx.doi.org/10.1016/j.seizure.2012.03.003] [PMID: 22459315]
[199]
Alonso-Juarez, M.; Torres-Russotto, D.; Crespo-Morfin, P.; Baizabal-Carvallo, J.F. The clinical features and functional impact of valproate-induced tremor. Parkinsonism Relat. Disord., 2017, 44, 147-150.
[http://dx.doi.org/10.1016/j.parkreldis.2017.09.011] [PMID: 28941829]
[200]
Nanau, R.M.; Neuman, M.G. Adverse drug reactions induced by valproic acid. Clin. Biochem., 2013, 46(15), 1323-1338.
[http://dx.doi.org/10.1016/j.clinbiochem.2013.06.012] [PMID: 23792104]
[201]
Yu, P.M.; Zhu, G.X.; Wu, X.Y.; Li, T.; Xu, L.; Yue, L.; Wang, B.; Hong, Z. A 6-month prospective study on efficacy safety and QOL profiles of extended-release formulation of valproate in patients with epilepsy. Seizure, 2011, 20(1), 23-26.
[http://dx.doi.org/10.1016/j.seizure.2010.09.014] [PMID: 20951067]
[202]
Penot, J.P.; Pradeau, F. Iatrogenic dementia and extrapyramidal syndrome: rare adverse effect of valproic acid-aspirin combination. Presse Med., 2010, 39(2), 279-280.
[http://dx.doi.org/10.1016/j.lpm.2009.02.024] [PMID: 19419832]
[203]
Jahromi, S.R.; Togha, M.; Fesharaki, S.H.; Najafi, M.; Moghadam, N.B.; Kheradmand, J.A.; Kazemi, H.; Gorji, A. Gastrointestinal adverse effects of antiepileptic drugs in intractable epileptic patients. Seizure, 2011, 20(4), 343-346.
[http://dx.doi.org/10.1016/j.seizure.2010.12.011] [PMID: 21236703]
[204]
Bale, J.F., Jr; Gay, P.E.; Madsen, J.A. Monitoring of serum amylase levels during valproic acid therapy. Ann. Neurol., 1982, 11(2), 217-218.
[http://dx.doi.org/10.1002/ana.410110226] [PMID: 6176180]
[205]
Grauso-Eby, N.L.; Goldfarb, O.; Feldman-Winter, L.B.; McAbee, G.N. Acute pancreatitis in children from Valproic acid: case series and review. Pediatr. Neurol., 2003, 28(2), 145-148.
[http://dx.doi.org/10.1016/S0887-8994(02)00517-9] [PMID: 12699868]
[206]
Acharya, S.; Bussel, J.B. Hematologic toxicity of sodium valproate. J. Pediatr. Hematol. Oncol., 2000, 22(1), 62-65.
[http://dx.doi.org/10.1097/00043426-200001000-00012] [PMID: 10695824]
[207]
Chakraborty, S.; Chakraborty, J.; Mandal, S.; Ghosal, M.K. A rare occurrence of isolated neutropenia with valproic acid: a case report. J. Indian Med. Assoc., 2011, 109(5), 345-346.
[PMID: 22187773]
[208]
Delgado, M.R.; Riela, A.R.; Mills, J.; Browne, R.; Roach, E.S. Thrombocytopenia secondary to high valproate levels in children with epilepsy. J. Child Neurol., 1994, 9(3), 311-314.
[http://dx.doi.org/10.1177/088307389400900318] [PMID: 7930412]
[209]
Köse, G.; Arhan, E.; Unal, B.; Ozaydin, E.; Guven, A.; Sayli, T.R. Valproate-associated coagulopathies in children during short-term treatment. J. Child Neurol., 2009, 24(12), 1493-1498.
[http://dx.doi.org/10.1177/0883073808331084] [PMID: 19482838]
[210]
Vasudev, K.; Keown, P.; Gibb, I.; McAllister-Williams, R.H. Hematological effects of valproate in psychiatric patients: what are the risk factors? J. Clin. Psychopharmacol., 2010, 30(3), 282-285.
[http://dx.doi.org/10.1097/JCP.0b013e3181db2684] [PMID: 20473063]
[211]
Knowles, S.R.; Shapiro, L.E.; Shear, N.H. Anticonvulsant hypersensitivity syndrome: incidence, prevention and management. Drug Saf., 1999, 21(6), 489-501.
[http://dx.doi.org/10.2165/00002018-199921060-00005] [PMID: 10612272]
[212]
Evans, M.D.; Shinar, R.; Yaari, R. Reversible dementia and gait disturbance after prolonged use of valproic acid. Seizure, 2011, 20(6), 509-511.
[http://dx.doi.org/10.1016/j.seizure.2011.02.009] [PMID: 21435910]
[213]
Ozen, S.; Bulbul, I.; Soyucok, E. Valproate induced hypoactive delirium in a bipolar disorder patient with psychotic features. Turkish J. Psychiatry, 2010, 21(1), 79-84.
[214]
Ristić, A.J.; Vojvodić, N.; Janković, S.; Sindelić, A.; Sokić, D. The frequency of reversible parkinsonism and cognitive decline associated with valproate treatment: a study of 364 patients with different types of epilepsy. Epilepsia, 2006, 47(12), 2183-2185.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00711.x] [PMID: 17201721]
[215]
Belcastro, V.; D’Egidio, C.; Striano, P.; Verrotti, A. Metabolic and endocrine effects of valproic acid chronic treatment. Epilepsy Res., 2013, 107(1-2), 1-8.
[http://dx.doi.org/10.1016/j.eplepsyres.2013.08.016] [PMID: 24076030]
[216]
El-Khatib, F.; Rauchenzauner, M.; Lechleitner, M.; Hoppichler, F.; Naser, A.; Waldmann, M.; Trinka, E.; Unterberger, I.; Bauer, G.; Luef, G.J. Valproate, weight gain and carbohydrate craving: a gender study. Seizure, 2007, 16(3), 226-232.
[http://dx.doi.org/10.1016/j.seizure.2006.12.009] [PMID: 17210261]
[217]
Verrotti, A.; la Torre, R.; Trotta, D.; Mohn, A.; Chiarelli, F. Valproate-induced insulin resistance and obesity in children. Horm. Res., 2009, 71(3), 125-131.
[http://dx.doi.org/10.1159/000197868 ] [PMID: 19188736]
[218]
Verrotti, A.; D’Egidio, C.; Coppola, G.; Parisi, P.; Chiarelli, F. Epilepsy, sex hormones and antiepileptic drugs in female patients. Expert Rev. Neurother., 2009, 9(12), 1803-1814.
[http://dx.doi.org/10.1586/ern.09.112] [PMID: 19951139]
[219]
Isojärvi, J.I.; Laatikainen, T.J.; Knip, M.; Pakarinen, A.J.; Juntunen, K.T.; Myllylä, V.V. Obesity and endocrine disorders in women taking valproate for epilepsy. Ann. Neurol., 1996, 39(5), 579-584.
[http://dx.doi.org/10.1002/ana.410390506] [PMID: 8619542]
[220]
Greco, R.; Latini, G.; Chiarelli, F.; Iannetti, P.; Verrotti, A. Leptin, ghrelin, and adiponectin in epileptic patients treated with valproic acid. Neurology, 2005, 65(11), 1808-1809.
[http://dx.doi.org/10.1212/01.wnl.0000187074.27586.d1] [PMID: 16344528]
[221]
Biton, V.; Mirza, W.; Montouris, G.; Vuong, A.; Hammer, A.E.; Barrett, P.S. Weight change associated with valproate and lamotrigine monotherapy in patients with epilepsy. Neurology, 2001, 56(2), 172-177.
[http://dx.doi.org/10.1212/WNL.56.2.172] [PMID: 11160951]
[222]
Jallon, P.; Picard, F. Bodyweight gain and anticonvulsants: a comparative review. Drug Saf., 2001, 24(13), 969-978.
[http://dx.doi.org/10.2165/00002018-200124130-00004] [PMID: 11735653]
[223]
Kim, J.Y.; Lee, H.W. Metabolic and hormonal disturbances in women with epilepsy on antiepileptic drug monotherapy. Epilepsia, 2007, 48(7), 1366-1370.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01052.x] [PMID: 17565596]
[224]
Luef, G.; Abraham, I.; Hoppichler, F.; Trinka, E.; Unterberger, I.; Bauer, G.; Lechleitner, M. Increase in postprandial serum insulin levels in epileptic patients with valproic acid therapy. Metabolism, 2002, 51(10), 1274-1278.
[http://dx.doi.org/10.1053/meta.2002.34708 ] [PMID: 12370846]
[225]
Martin, C.K.; Han, H.; Anton, S.D.; Greenway, F.L.; Smith, S.R. Effect of valproic acid on body weight, food intake, physical activity and hormones: results of a randomized controlled trial. J. Psychopharmacol. (Oxford), 2009, 23(7), 814-825.
[http://dx.doi.org/10.1177/0269881108091595] [PMID: 18583434]
[226]
Morrell, M.J.; Isojärvi, J.; Taylor, A.E.; Dam, M.; Ayala, R.; Gomez, G.; O’Neill, F.; Tennis, P.; Messenheimer, J. Higher androgens and weight gain with valproate compared with lamotrigine for epilepsy. Epilepsy Res., 2003, 54(2-3), 189-199.
[http://dx.doi.org/10.1016/S0920-1211(03)00085-8] [PMID: 12837570]
[227]
Sharpe, C.; Wolfson, T.; Trauner, D.A. Weight gain in children treated with valproate. J. Child Neurol., 2009, 24(3), 338-341.
[http://dx.doi.org/10.1177/0883073808323023] [PMID: 19258293]
[228]
Wirrell, E.C. Valproic acid-associated weight gain in older children and teens with epilepsy. Pediatr. Neurol., 2003, 28(2), 126-129.
[http://dx.doi.org/10.1016/S0887-8994(02)00505-2] [PMID: 12699863]
[229]
Demir, E.; Aysun, S. Weight gain associated with valproate in childhood. Pediatr. Neurol., 2000, 22(5), 361-364.
[http://dx.doi.org/10.1016/S0887-8994(00)00133-8] [PMID: 10913727]
[230]
Lihn, A.S.; Pedersen, S.B.; Richelsen, B. Adiponectin: action, regulation and association to insulin sensitivity. Obes. Rev., 2005, 6(1), 13-21.
[http://dx.doi.org/10.1111/j.1467-789X.2005.00159.x] [PMID: 15655035]
[231]
Verrotti, A.; Greco, R.; Latini, G.; Chiarelli, F. Endocrine and Metabolic Changes in Epileptic Patients Receiving Valproic Acid J. Pediatric Endocrinol. Metabol., 2005, 423-430.18 SRC.
[http://dx.doi.org/10.1515/JPEM.2005.18.5.423]
[232]
Prabhakar, S.; Sahota, P.; Kharbanda, P.S.; Siali, R.; Jain, V.; Lal, V.; Khurana, D. Sodium valproate, hyperandrogenism and altered ovarian function in Indian women with epilepsy: a prospective study. Epilepsia, 2007, 48(7), 1371-1377.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01100.x] [PMID: 17441994]
[233]
Bilo, L.; Meo, R. Epilepsy and polycystic ovary syndrome: where is the link? Neurol. Sci., 2006, 27(4), 221-230.
[http://dx.doi.org/10.1007/s10072-006-0675-y] [PMID: 16998724]
[234]
Verrotti, A.; Loiacono, G.; Laus, M.; Coppola, G.; Chiarelli, F.; Tiboni, G.M. Hormonal and reproductive disturbances in epileptic male patients: emerging issues. Reprod. Toxicol., 2011, 31(4), 519-527.
[http://dx.doi.org/10.1016/j.reprotox.2011.02.002] [PMID: 21338669]
[235]
Genton, P.; Semah, F.; Trinka, E. Valproic acid in epilepsy: pregnancy-related issues. Drug Saf., 2006, 29(1), 1-21.
[http://dx.doi.org/10.2165/00002018-200629010-00001] [PMID: 16454531]
[236]
Morrow, J.; Russell, A.; Guthrie, E.; Parsons, L.; Robertson, I.; Waddell, R.; Irwin, B.; McGivern, R.C.; Morrison, P.J.; Craig, J. Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. J. Neurol. Neurosurg. Psychiatry, 2006, 77(2), 193-198.
[http://dx.doi.org/10.1136/jnnp.2005.074203] [PMID: 16157661]
[237]
Jentink, J.; Loane, M.A.; Dolk, H.; Barisic, I.; Garne, E.; Morris, J.K.; de Jong-van den Berg, L.T.; Group, E.A.S.W. Valproic acid monotherapy in pregnancy and major congenital malformations. N. Engl. J. Med., 2010, 362(23), 2185-2193.
[http://dx.doi.org/10.1056/NEJMoa0907328] [PMID: 20558369]
[238]
Tanoshima, M.; Kobayashi, T.; Tanoshima, R.; Beyene, J.; Koren, G.; Ito, S. Risks of congenital malformations in offspring exposed to valproic acid in utero: A systematic review and cumulative meta-analysis. Clin. Pharmacol. Ther., 2015, 98(4), 417-441.
[http://dx.doi.org/10.1002/cpt.158] [PMID: 26044279]
[239]
Jackson, A.; Bromley, R.; Morrow, J.; Irwin, B.; Clayton-Smith, J. In utero exposure to valproate increases the risk of isolated cleft palate. Arch. Dis. Child. Fetal Neonatal Ed., 2016, 101(3), F207-F211.
[http://dx.doi.org/10.1136/archdischild-2015-308278] [PMID: 26408639]
[240]
Diav-Citrin, O.; Shechtman, S.; Bar-Oz, B.; Cantrell, D.; Arnon, J.; Ornoy, A. Pregnancy outcome after in utero exposure to valproate: evidence of dose relationship in teratogenic effect. CNS Drugs, 2008, 22(4), 325-334.
[http://dx.doi.org/10.2165/00023210-200822040-00004] [PMID: 18336060]
[241]
Hernández-Díaz, S.; Smith, C.R.; Shen, A.; Mittendorf, R.; Hauser, W.A.; Yerby, M.; Holmes, L.B. Comparative safety of antiepileptic drugs during pregnancy. Neurology, 2012, 78(21), 1692-1699.
[http://dx.doi.org/10.1212/WNL.0b013e3182574f39] [PMID: 22551726]
[242]
Tomson, T.; Battino, D.; Bonizzoni, E.; Craig, J.; Lindhout, D.; Perucca, E.; Sabers, A.; Thomas, S.V.; Vajda, F.; Group, E.S. Comparative risk of major congenital malformations with eight different antiepileptic drugs: a prospective cohort study of the EURAP registry. Lancet Neurol., 2018, 17(6), 530-538.
[http://dx.doi.org/10.1016/S1474-4422(18)30107-8] [PMID: 29680205]]
[243]
Virta, L.J.; Kälviäinen, R.; Villikka, K.; Keränen, T. Declining trend in valproate use in Finland among females of childbearing age in 2012-2016 - a nationwide registry-based outpatient study. Eur. J. Neurol., 2018, 25(6), 869-874.
[http://dx.doi.org/10.1111/ene.13610] [PMID: 29509301]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 10
Year: 2019
Page: [926 - 946]
Pages: 21
DOI: 10.2174/1570159X17666181227165722
Price: $58

Article Metrics

PDF: 27
HTML: 2