Why Should Psychiatrists and Neuroscientists Worry about Paraoxonase 1?

Author(s): Estefania Gastaldello Moreira*, Karine Maria Boll, Dalmo Guilherme Correia, Janaina Favaro Soares, Camila Rigobello, Michael Maes.

Journal Name: Current Neuropharmacology

Volume 17 , Issue 11 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Nitro-oxidative stress (NOS) has been implicated in the pathophysiology of psychiatric disorders. The activity of the polymorphic antioxidant enzyme paraoxonase 1 (PON1) is altered in diseases where NOS is involved. PON1 activity may be estimated using different substrates some of which are influenced by PON1 polymorphisms.

Objectives: 1) to review the association between PON1 activities and psychiatric diseases using a standardized PON1 substrate terminology in order to offer a state-of-the-art review; and 2) to review the efficacy of different strategies (nutrition, drugs, lifestyle) to enhance PON1 activities.

Methods: The PubMed database was searched using the terms paraoxonase 1 and psychiatric diseases. Moreover, the database was also searched for clinical trials investigating strategies to enhance PON1 activity.

Results: The studies support decreased PON1 activity as determined using phenylacetate (i.e., arylesterase or AREase) as a substrate, in depression, bipolar disorder, generalized anxiety disorder (GAD) and schizophrenia, especially in antipsychotic-free patients. PON1 activity as determined with paraoxon (i.e., POase activity) yields more controversial results, which can be explained by the lack of adjustment for the Q192R polymorphism. The few clinical trials investigating the influence of nutritional, lifestyle and drugs on PON1 activities in the general population suggest that some polyphenols, oleic acid, Mediterranean diet, no smoking, being physically active and statins may be effective strategies that increase PON1 activity.

Conclusion: Lowered PON1 activities appear to be a key component in the ongoing NOS processes that accompany affective disorders, GAD and schizophrenia. Treatments increasing attenuated PON1 activity could possibly be new drug targets for treating these disorders.

Keywords: PON1, major depressive disorder, bipolar disorder, schizophrenia, inflammation, oxidative stress, PON1 modulators.

[1]
Steel, Z.; Marnane, C.; Iranpour, C.; Chey, T.; Jackson, J.W.; Patel, V.; Silove, D. The global prevalence of common mental disorders: a systematic review and meta-analysis 1980-2013. Int. J. Epidemiol., 2014, 43(2), 476-493.
[http://dx.doi.org/10.1093/ije/dyu038] [PMID: 24648481]
[2]
Merikangas, K.R.; Kalaydjian, A. Magnitude and impact of comorbidity of mental disorders from epidemiologic surveys. Curr. Opin. Psychiatry, 2007, 20(4), 353-358.
[http://dx.doi.org/10.1097/YCO. 0b013e3281c61dc5] [PMID: 17551350]
[3]
Kessler, R.C.; Merikangas, K.R.; Wang, P.S. Prevalence, comorbidity, and service utilization for mood disorders in the United States at the beginning of the twenty-first century. Annu. Rev. Clin. Psychol., 2007, 3, 137-158.
[http://dx.doi.org/10.1146/annurev. clinpsy.3.022806.091444] [PMID: 17716051]
[4]
Ng, F.; Berk, M.; Dean, O.; Bush, A.I. Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int. J. Neuropsychopharmacol., 2008, 11(6), 851-876.
[http://dx.doi.org/ 10.1017/S1461145707008401] [PMID: 18205981]
[5]
Maes, M.; Kubera, M.; Obuchowiczwa, E.; Goehler, L.; Brzeszcz, J. Depression’s multiple comorbidities explained by (neuro) inflammatory and oxidative & nitrosative stress pathways. Neuroendocrinol. Lett., 2011, 32(1), 7-24.
[PMID: 21407167]
[6]
Bar-Rogovsky, H.; Hugenmatter, A.; Tawfik, D.S. The evolutionary origins of detoxifying enzymes: the mammalian serum paraoxonases (PONs) relate to bacterial homoserine lactonases. J. Biol. Chem., 2013, 288(33), 23914-23927.
[http://dx.doi.org/10. 1074/jbc.M112.427922] [PMID: 23788644]
[7]
Mackness, M.I.; Arrol, S.; Abbott, C.; Durrington, P.N. Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis, 1993, 104(1-2), 129-135.
[http://dx.doi.org/10.1016/0021-9150(93)90183-U] [PMID: 8141836]
[8]
Watson, A.D.; Berliner, J.A.; Hama, S.Y.; La Du, B.N.; Faull, K.F.; Fogelman, A.M.; Navab, M. Protective effect of high density lipoprotein associated paraoxonase. Inhibition of the biological activity of minimally oxidized low density lipoprotein. J. Clin. Invest., 1995, 96(6), 2882-2891.
[http://dx.doi.org/10.1172/JCI118359] [PMID: 8675659]
[9]
Maes, M.; Bonifacio, K.L.; Morelli, N.R.; Vargas, H.O.; Moreira, E.G.; St Stoyanov, D.; Barbosa, D.S.; Carvalho, A.F.; Nunes, S.O.V. Generalized anxiety disorder (GAD) and comorbid major depression with GAD are characterized by enhanced nitro-oxidative stress, increased lipid peroxidation, and lowered lipid-associated antioxidant defenses. Neurotox. Res., in press
[PMID: 29736827]
[10]
Maes, M.; Bonifacio, K.; Vargas, H.; Barbosa, D.; Carvalho, A.; Nunes, S. Major differences in neuro-oxidative and neuro-nitrosative stress pathways between major depressive disorder and types I and II bipolar disorders. Mol. Neurobiol., in press
[11]
Brinholi, F.F.; Noto, C.; Maes, M.; Bonifácio, K.L.; Brietzke, E.; Ota, V.K.; Gadelha, A.; Cordeiro, Q.; Belangero, S.I.; Bressan, R.A.; Vargas, H.O.; Higachi, L.; de Farias, C.C.; Moreira, E.G.; Barbosa, D.S. Lowered paraoxonase 1 (PON1) activity is associated with increased cytokine levels in drug naïve first episode psychosis. Schizophr. Res., 2015, 166(1-3), 225-230.
[http://dx.doi.org/10.1016/j.schres.2015.06.009] [PMID: 26123170]
[12]
Boll, K.M.; Noto, C.; Bonifácio, K.L.; Bortolasci, C.C.; Gadelha, A.; Bressan, R.A.; Barbosa, D.S.; Maes, M.; Moreira, E.G. Oxidative and nitrosative stress biomarkers in chronic schizophrenia. Psychiatry Res., 2017, 253, 43-48.
[http://dx.doi.org/10.1016/j. psychres.2017.03.038] [PMID: 28346888]
[13]
Moya, C.; Máñez, S. Paraoxonases: metabolic role and pharmacological projection. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(4), 349-359.
[http://dx.doi.org/10.1007/s00210-018-1473-9] [PMID: 29404699]
[14]
Ceron, J.J.; Tecles, F.; Tvarijonaviciute, A. Serum paraoxonase 1 (PON1) measurement: an update. BMC Vet. Res., 2014, 10, 74.
[http://dx.doi.org/10.1186/1746-6148-10-74] [PMID: 24666514]
[15]
Menini, T.; Gugliucci, A. Paraoxonase 1 in neurological disorders. Redox Rep., 2014, 19(2), 49-58.
[http://dx.doi.org/10.1179/1351000213Y.0000000071] [PMID: 24225313]
[16]
Furlong, C.E.; Marsillach, J.; Jarvik, G.P.; Costa, L.G. Paraoxonases- 1, -2 and -3: What are their functions? Chem. Biol. Interact, 2016, 259(Pt B), 51-62.
[http://dx.doi.org/10.1016/j.cbi.016.05.036] [PMID: 27238723]
[17]
Richter, R.J.; Jarvik, G.P.; Furlong, C.E. Determination of paraoxonase 1 status without the use of toxic organophosphate substrates. Circ Cardiovasc Genet, 2008, 1(2), 147-152.
[http://dx.doi.org/10.1161/CIRCGENETICS.108.811638] [PMID: 20031556]
[18]
Jarvik, G.P.; Jampsa, R.; Richter, R.J.; Carlson, C.S.; Rieder, M.J.; Nickerson, D.A.; Furlong, C.E. Novel paraoxonase (PON1) nonsense and missense mutations predicted by functional genomic assay of PON1 status. Pharmacogenetics, 2003, 13(5), 291-295.
[http://dx.doi.org/10.1097/00008571-200305000-00009] [PMID: 12724622]
[19]
Mackness, M.; Mackness, B. Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles. Gene, 2015, 567(1), 12-21.
[http://dx.doi.org/10.1016/j.gene.2015.04.088] [PMID: 25965560]
[20]
Li, W.F.; Costa, L.G.; Richter, R.J.; Hagen, T.; Shih, D.M.; Tward, A.; Lusis, A.J.; Furlong, C.E. Catalytic efficiency determines the in-vivo efficacy of PON1 for detoxifying organophosphorus compounds. Pharmacogenetics, 2000, 10(9), 767-779.
[http://dx.doi.org/10.1097/00008571-200012000-00002] [PMID: 11191881]
[21]
Mackness, B.; Davies, G.K.; Turkie, W.; Lee, E.; Roberts, D.H.; Hill, E.; Roberts, C.; Durrington, P.N.; Mackness, M.I. Paraoxonase status in coronary heart disease: are activity and concentration more important than genotype? Arterioscler. Thromb. Vasc. Biol., 2001, 21(9), 1451-1457.
[http://dx.doi.org/10.1161/hq0901. 094247] [PMID: 11557671]
[22]
Marsillach, J.; Camps, J.; Ferré, N.; Beltran, R.; Rull, A.; Mackness, B.; Mackness, M.; Joven, J. Paraoxonase-1 is related to inflammation, fibrosis and PPAR delta in experimental liver disease. BMC Gastroenterol., 2009, 9, 3.
[http://dx.doi.org/10.1186/1471-230X-9-3] [PMID: 19144177]
[23]
Costa, L.G.; Cole, T.B.; Furlong, C.E. Paraoxonase (PON1): from toxicology to cardiovascular medicine. Acta Biomed., 2005, 76(Suppl. 2), 50-57.
[PMID: 16353344]
[24]
Jarvik, G.P.; Rozek, L.S.; Brophy, V.H.; Hatsukami, T.S.; Richter, R.J.; Schellenberg, G.D.; Furlong, C.E. Paraoxonase (PON1) phenotype is a better predictor of vascular disease than is PON1(192) or PON1(55) genotype. Arterioscler. Thromb. Vasc. Biol., 2000, 20(11), 2441-2447.
[http://dx.doi.org/10.1161/01.ATV.20.11.2441] [PMID: 11073850]
[25]
Mackness, B.; Mackness, M.I.; Arrol, S.; Turkie, W.; Durrington, P.N. Effect of the human serum paraoxonase 55 and 192 genetic polymorphisms on the protection by high density lipoprotein against low density lipoprotein oxidative modification. FEBS Lett., 1998, 423(1), 57-60.
[http://dx.doi.org/10.1016/S0014-5793(98) 00064-7] [PMID: 9506841]
[26]
Leviev, I.; James, R.W. Promoter polymorphisms of human paraoxonase PON1 gene and serum paraoxonase activities and concentrations. Arterioscler. Thromb. Vasc. Biol., 2000, 20(2), 516-521.
[http://dx.doi.org/10.1161/01.ATV.20.2.516] [PMID: 10669651]
[27]
Richter, R.J.; Furlong, C.E. Determination of paraoxonase (PON1) status requires more than genotyping. Pharmacogenetics, 1999, 9(6), 745-753.
[http://dx.doi.org/10.1097/00008571-199912000-00009] [PMID: 10634137]
[28]
Costa, L.G.; Cole, T.B.; Jarvik, G.P.; Furlong, C.E. Functional genomic of the paraoxonase (PON1) polymorphisms: effects on pesticide sensitivity, cardiovascular disease, and drug metabolism. Annu. Rev. Med., 2003, 54, 371-392.
[http://dx.doi.org/10.1146/annurev.med.54.101601.152421] [PMID: 12525679]
[29]
Li, W.F.; Costa, L.G.; Furlong, C.E. Serum paraoxonase status: a major factor in determining resistance to organophosphates. J. Toxicol. Environ. Health, 1993, 40(2-3), 337-346.
[http://dx.doi.org/10.1080/15287399309531798] [PMID: 7693961]
[30]
Bulut, M.; Selek, S.; Bez, Y.; Karababa, I.F.; Kaya, M.C.; Gunes, M.; Emhan, A.; Aksoy, N.; Sir, A. Reduced PON1 enzymatic activity and increased lipid hydroperoxide levels that point out oxidative stress in generalized anxiety disorder. J. Affect. Disord., 2013, 150(3), 829-833.
[http://dx.doi.org/10.1016/j.jad.2013.03.011] [PMID: 23706841]
[31]
Ceylan, M.F.; Guney, E.; Alisik, M.; Ergin, M.; Dinc, G.S.; Goker, Z.; Eker, S.; Kizilgun, M.; Erel, O. Lipid peroxidation markers in children with anxiety disorders and their diagnostic implications. Redox Rep., 2014, 19(2), 92-96.
[http://dx.doi.org/10.1179/1351000213Y.0000000082] [PMID: 24520970]
[32]
Sklan, E.H.; Lowenthal, A.; Korner, M.; Ritov, Y.; Landers, D.M.; Rankinen, T.; Bouchard, C.; Leon, A.S.; Rice, T.; Rao, D.C.; Wilmore, J.H.; Skinner, J.S.; Soreq, H. Acetylcholinesterase/paraoxonase genotype and expression predict anxiety scores in health, risk factors, exercise training, and genetics study. Proc. Natl. Acad. Sci. USA, 2004, 101(15), 5512-5517.
[http://dx.doi.org/10.1073/pnas.0307659101] [PMID: 15060281]
[33]
Kandemir, H.; Abuhandan, M.; Aksoy, N.; Savik, E.; Kaya, C. Oxidative imbalance in child and adolescent patients with obsessive compulsive disorder. J. Psychiatr. Res., 2013, 47(11), 1831-1834.
[http://dx.doi.org/10.1016/j.jpsychires.2013.08.010] [PMID: 24011862]
[34]
Sarandol, A.; Sarandol, E.; Eker, S.S.; Karaagac, E.U.; Hizli, B.Z.; Dirican, M.; Kirli, S. Oxidation of apolipoprotein B-containing lipoproteins and serum paraoxonase/arylesterase activities in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2006, 30(6), 1103-1108.
[http://dx.doi.org/10.1016/j.pnpbp. 2006.04.012] [PMID: 16716479]
[35]
Kodydková, J.; Vávrová, L.; Zeman, M.; Jirák, R.; Macásek, J.; Stanková, B.; Tvrzická, E.; Zák, A. Antioxidative enzymes and increased oxidative stress in depressive women. Clin. Biochem., 2009, 42(13-14), 1368-1374.
[http://dx.doi.org/10.1016/j.clinbiochem. 2009.06.006] [PMID: 19527700]
[36]
Barim, A.O.; Aydin, S.; Colak, R.; Dag, E.; Deniz, O.; Sahin, I. Ghrelin, paraoxonase and arylesterase levels in depressive patients before and after citalopram treatment. Clin. Biochem., 2009, 42(10-11), 1076-1081.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.02. 020] [PMID: 19272368]
[37]
Kotan, V.O.; Sarandol, E.; Kirhan, E.; Ozkaya, G.; Kirli, S. Effects of long-term antidepressant treatment on oxidative status in major depressive disorder: a 24-week follow-up study. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(5), 1284-1290.
[http://dx.doi.org/10.1016/j.pnpbp.2011.03.021] [PMID: 21515329]
[38]
Bortolasci, C.C.; Vargas, H.O.; Souza-Nogueira, A.; Barbosa, D.S.; Moreira, E.G.; Nunes, S.O.V.; Berk, M.; Dodd, S.; Maes, M. Lowered plasma paraoxonase (PON)1 activity is a trait marker of major depression and PON1 Q192R gene polymorphism-smoking interactions differentially predict the odds of major depression and bipolar disorder. J. Affect. Disord., 2014, 159, 23-30.
[http://dx.doi.org/10. 1016/j.jad.2014.02.018] [PMID: 24679385]
[39]
Liu, T.; Zhong, S.; Liao, X.; Chen, J.; He, T.; Lai, S.; Jia, Y. A Meta-Analysis of Oxidative Stress Markers in Depression. PLoS One, 2015, 10(10)e0138904
[http://dx.doi.org/10.1371/journal. pone.0138904] [PMID: 26445247]
[40]
Ogłodek, E.A. The role of PON-1, GR, IL-18, and OxLDL in depression with and without posttraumatic stress disorder. Pharmacol. Rep., 2017, 69(5), 837-845.
[http://dx.doi.org/10.1016/j. pharep.2017.03.015] [PMID: 28623707]
[41]
Lawlor, D.A.; Day, I.N.M.; Gaunt, T.R.; Hinks, L.J.; Timpson, N.; Ebrahim, S.; Davey, S.G. The association of the paraoxonase (PON1) Q192R polymorphism with depression in older women: findings from the British Women’s Heart and Health Study. J. Epidemiol. Community Health, 2007, 61(1), 85-87.
[http://dx.doi.org/ 10.1136/jech.2006.049247] [PMID: 17183021]
[42]
Rice, N.E.; Bandinelli, S.; Corsi, A.M.; Ferrucci, L.; Guralnik, J.M.; Miller, M.A.; Kumari, M.; Murray, A.; Frayling, T.M.; Melzer, D. The paraoxonase (PON1) Q192R polymorphism is not associated with poor health status or depression in the ELSA or INCHIANTI studies. Int. J. Epidemiol., 2009, 38(5), 1374-1379.
[http://dx.doi.org/10.1093/ije/dyp265] [PMID: 19651761]
[43]
Maes, M.; Fišar, Z.; Medina, M.; Scapagnini, G.; Nowak, G.; Berk, M. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates--Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology, 2012, 20(3), 127-150.
[http://dx.doi.org/10.1007/s10787-011-0111-7] [PMID: 22271002]
[44]
Maes, M.; Carvalho, A.F. The compensatory immune-regulatory reflex system (CIRS) in depression and bipolar disorder. Mol.Neurobiol,, 2018. epub ahead
[45]
Feingold, K.R.; Memon, R.A.; Moser, A.H.; Grunfeld, C. Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase response. Atherosclerosis, 1998, 139(2), 307-315.
[http://dx.doi.org/10.1016/S0021-9150(98)00084-7] [PMID: 9712337]
[46]
Ezzaher, A.; Mouhamed, D.H.; Mechri, A.; Araoud, M.; Neffati, F.; Douki, W.; Gaha, L.; Najjar, M.F. Lower paraoxonase 1 activity in Tunisian bipolar I patients. Ann. Gen. Psychiatry, 2010, 9, 36.
[http://dx.doi.org/10.1186/1744-859X-9-36] [PMID: 20964824]
[47]
Moreira, E.G.; Correia, D.G.; Bonifácio, K.L.; Moraes, J.B.D.; Cavicchioli, F.L.; Nunes, C.S.; Nunes, S.O.V.; Vargas, H.O.; Barbosa, D.S.; Maes, M. Lowered PON1 activities are strongly associated with depression and bipolar disorder, recurrence of (Hypo)mania and depression, increased disability and lowered quality of Life World J. Biol. Psychiatry, 2017. epub ahead
[48]
Ezzaher, A.; Mouhamed, D.H.; Mechri, A.; Neffati, F.; Rejeb, J.; Omezzine, A.; Douki, W.; Bouslama, A.; Gaha, L.; Najjar, M.F. Association between bipolar I disorder and the L55M and Q192R polymorphisms of the paraoxonase 1 (PON1) gene. J. Affect. Disord., 2012, 139(1), 12-17.
[http://dx.doi.org/10.1016/j.jad.2011.06. 029] [PMID: 21783258]
[49]
Küçükali, C.I.; Ulusoy, C.; Özkan, Ö.; Orhan, N.; Güleç, H.; Erdaʇ, E.; Buker, S.; Tüzün, E. Evaluation of Paraoxonase 1 Polymorphisms in Patients with Bipolar Disorder. In Vivo (Brooklyn);; , 2015, 29, pp. 103-108.
[50]
Noto, C.; Ota, V.K.; Gadelha, A.; Noto, M.N.; Barbosa, D.S.; Bonifácio, K.L.; Nunes, S.O.; Cordeiro, Q.; Belangero, S.I.; Bressan, R.A.; Maes, M.; Brietzke, E. Oxidative stress in drug naïve first episode psychosis and antioxidant effects of risperidone. J. Psychiatr. Res., 2015, 68, 210-216.
[http://dx.doi.org/10.1016/j.jpsychires.2015.07.003] [PMID: 26228421]
[51]
Sarandol, A.; Sarandol, E.; Acikgoz, H.E.; Eker, S.S.; Akkaya, C.; Dirican, M. First-episode psychosis is associated with oxidative stress: Effects of short-term antipsychotic treatment. Psychiatry Clin. Neurosci., 2015, 69(11), 699-707.
[http://dx.doi.org/10.1111/pcn.12333] [PMID: 26172069]
[52]
Noto, C.; Ota, V.K.; Gouvea, E.S.; Rizzo, L.B.; Spindola, L.M.N.; Honda, P.H.S.; Cordeiro, Q.; Belangero, S.I.; Bressan, R.A.; Gadelha, A.; Maes, M.; Brietzke, E. Effects of risperidone on cytokine profile in drug-naïve first-episode psychosis. Int. J. Neuropsychopharmacol., 2014, 18(4), 1-8.
[PMID: 25522386]
[53]
Yegin, A.; Ay, N.; Aydin, O.; Yargici, N.; Eren, E.; Yilmaz, N. Increased oxidant stress and inflammation in patients with chronic schizophrenia. Int. J. Clin. Med., 2012, 3, 368-376.
[http://dx.doi.org/10.4236/ijcm.2012.35070]
[54]
Kulaksizoglu, B.; Kulaksizoglu, S. Relationship between neutrophil/lymphocyte ratio with oxidative stress and psychopathology in patients with schizophrenia. Neuropsychiatr. Dis. Treat., 2016, 12, 1999-2005.
[http://dx.doi.org/10.2147/NDT.S110484] [PMID: 27574431]
[55]
Mabrouk, H.; Mechria, H.; Mechri, A.; Azizi, I.; Neffati, F.; Douki, W.; Gaha, L.; Najjar, M.F. Paraoxonase 1 activity and lipid profile in schizophrenic patients. Asian J. Psychiatr., 2014, 9, 36-40.
[http://dx.doi.org/10.1016/j.ajp.2013.12.019] [PMID: 24813034]
[56]
Güneş, M.; Camkurt, M.A.; Bulut, M.; Demir, S.; İbiloğlu, A.O.; Kaya, M.C.; Atlı, A.; Kaplan, İ.; Sir, A. Evaluation of paraoxonase, arylesterase and malondialdehyde levels in schizophrenia patients taking typical, atypical and combined antipsychotic treatment. Clin. Psychopharmacol. Neurosci., 2016, 14(4), 345-350.
[http://dx.doi.org/10.9758/cpn.2016.14.4.345] [PMID: 27776386]
[57]
Pavăl, D.; Nemeș, B.; Rusu, R.L.; Dronca, E. Genotype-phenotype analysis of paraoxonase 1 in schizophrenic patients treated with atypical antipsychotics. Clin. Psychopharmacol. Neurosci., 2018, 16(1), 32-38.
[http://dx.doi.org/10.9758/cpn.2018.16.1.32] [PMID: 29397664]
[58]
Unsal, C.; Albayrak, Y.; Albayrak, N.; Kuloglu, M.; Hashimoto, K. Reduced serum paraoxonase 1 (PON1) activity in patients with schizophrenia treated with olanzapine but not quetiapine. Neuropsychiatr. Dis. Treat., 2013, 9, 1545-1552.
[PMID: 24143103]
[59]
Kucukali, C.I.; Aydin, M.; Ozkok, E.; Orhan, N.; Cakir, U.; Kilic, G.; Ozbek, Z.; Ince, N.; Kara, I. Paraoxonase-1 55/192 genotypes in schizophrenic patients and their relatives in Turkish population. Psychiatr. Genet., 2008, 18(6), 289-294.
[http://dx.doi.org/10.1097/YPG.0b013e3283060f94] [PMID: 19018234]
[60]
Sarandol, A.; Kirli, S.; Akkaya, C.; Ocak, N.; Eroz, E.; Sarandol, E. Coronary artery disease risk factors in patients with schizophrenia: effects of short term antipsychotic treatment. J. Psychopharmacol. (Oxford), 2007, 21(8), 857-863.
[http://dx.doi.org/10.1177/0269881107077609] [PMID: 17715203]
[61]
Gilca, M.; Piriu, G.; Gaman, L.; Delia, C.; Iosif, L.; Atanasiu, V.; Stoian, I. A study of antioxidant activity in patients with schizophrenia taking atypical antipsychotics. Psychopharmacology (Berl.), 2014, 231(24), 4703-4710.
[http://dx.doi.org/10.1007/s00213-014-3624-0] [PMID: 24871701]
[62]
Matsumoto, C.; Ohmori, O.; Hori, H.; Shinkai, T.; Nakamura, J. Analysis of association between the Gln192Arg polymorphism of the paraoxonase gene and schizophrenia in humans. Neurosci. Lett., 2002, 321(3), 165-168.
[http://dx.doi.org/10.1016/S0304-3940(02) 00049-6] [PMID: 11880198]
[63]
Haj, M.D.; Ezzaher, A.; Mechri, A.; Neffati, F.; Omezzine, A.; Bouslama, A.; Gaha, L.; Douki, W.; Najjar, M.F. Effect of cigarette smoking on paraoxonase 1 activity according to PON1 L55M and PON1 Q192R gene polymorphisms. Environ. Health Prev. Med., 2012, 17(4), 316-321.
[http://dx.doi.org/10.1007/s12199-011-0256-4] [PMID: 22205545]
[64]
Nishio, E.; Watanabe, Y. Cigarette smoke extract inhibits plasma paraoxonase activity by modification of the enzyme’s free thiols. Biochem. Biophys. Res. Commun., 1997, 236(2), 289-293.
[http://dx.doi.org/10.1006/bbrc.1997.6961] [PMID: 9240427]
[65]
James, R.W.; Leviev, I.; Righetti, A. Smoking is associated with reduced serum paraoxonase activity and concentration in patients with coronary artery disease. Circulation, 2000, 101(19), 2252-2257.
[http://dx.doi.org/10.1161/01.CIR.101.19.2252] [PMID: 10811591]
[66]
Gugliucci, A.; Menini, T. Paraoxonase 1 and HDL maturation. Clin. Chim. Acta, 2015, 439, 5-13.
[http://dx.doi.org/10.1016/j.cca. 2014.09.016] [PMID: 25261854]
[67]
Vargas Nunes, S.O.; Pizzo de Castro, M.R.; Moreira, E.G.; Guembarovski, R.L.; Barbosa, D.S.; Vargas, H.O.; Piccoli de Melo, L.G.; Bortolasci, C.C.; Watanabe, M.A.E.; Dodd, S.; Berk, M.; Maes, M. Association of paraoxonase (PON)1 activity, glutathione S-transferase GST T1/M1 and STin.2 polymorphisms with comorbidity of tobacco use disorder and mood disorders. Neurosci. Lett., 2015, 585, 132-137.
[http://dx.doi.org/10.1016/j.neulet.2014.11.002] [PMID: 25445355]
[68]
Rafraf, M.; Bazyun, B.; Sarabchian, M.A.; Safaeiyan, A.; Gargari, B.P. Vitamin E improves serum paraoxonase-1 activity and some metabolic factors in patients with type 2 diabetes: No effects on nitrite/nitrate levels. J. Am. Coll. Nutr., 2016, 35(6), 521-528.
[http://dx.doi.org/10.1080/07315724.2015.1116896] [PMID: 26886716]
[69]
Wade, L.; Nadeem, N.; Young, I.S.; Woodside, J.V.; McGinty, A.; McMaster, C.; McEneny, J. α-Tocopherol induces proatherogenic changes to HDL2 & HDL3: An in vitro and ex vivo investigation. Atherosclerosis, 2013, 226(2), 392-397.
[http://dx.doi.org/10. 1016/j.atherosclerosis.2012.11.032] [PMID: 23287638]
[70]
Sánchez-Muniz, F.J.; Canales, A.; Nus, M.; Bastida, S.; Guillén, M.; Corella, D.; Olmedilla-Alonso, B.; Granado-Lorencio, F.; Benedí, J. The antioxidant status response to low-fat and walnut paste-enriched meat differs in volunteers at high cardiovascular Risk carrying different PON-1 polymorphisms. J. Am. Coll. Nutr., 2012, 31(3), 194-205.
[http://dx.doi.org/10.1080/07315724.2012. 10720027] [PMID: 23204156]
[71]
Jarvik, G.P.; Tsai, N.T.; McKinstry, L.A.; Wani, R.; Brophy, V.H.; Richter, R.J.; Schellenberg, G.D.; Heagerty, P.J.; Hatsukami, T.S.; Furlong, C.E. Vitamin C and E intake is associated with increased paraoxonase activity. Arterioscler. Thromb. Vasc. Biol., 2002, 22(8), 1329-1333.
[http://dx.doi.org/10.1161/01.ATV.0000027101. 40323.3A] [PMID: 12171796]
[72]
Boaventura, B.C.B.; Di Pietro, P.F.; Stefanuto, A.; Klein, G.A.; de Morais, E.C.; de Andrade, F.; Wazlawik, E.; da Silva, E.L. Association of mate tea (Ilex paraguariensis) intake and dietary intervention and effects on oxidative stress biomarkers of dyslipidemic subjects. Nutrition, 2012, 28(6), 657-664.
[http://dx.doi.org/10. 1016/j.nut.2011.10.017] [PMID: 22578980]
[73]
Cesar, T.B.; Aptekmann, N.P.; Araujo, M.P.; Vinagre, C.C.; Maranhão, R.C. Orange juice decreases low-density lipoprotein cholesterol in hypercholesterolemic subjects and improves lipid transfer to high-density lipoprotein in normal and hypercholesterolemic subjects. Nutr. Res., 2010, 30(10), 689-694.
[http://dx.doi.org/10. 1016/j.nutres.2010.09.006] [PMID: 21056284]
[74]
García-Conesa, M-T.; Chambers, K.; Combet, E.; Pinto, P.; Garcia-Aloy, M.; Andrés-Lacueva, C.; de Pascual-Teresa, S.; Mena, P.; Konic Ristic, A.; Hollands, W.; Kroon, P.; Rodríguez-Mateos, A.; Istas, G.; Kontogiorgis, C.; Rai, D.; Gibney, E.; Morand, C.; Espín, J.; González-Sarrías, A. Hollands, W.; Kroon, P.; Rodríguez- Mateos, A.; Istas, G.; Kontogiorgis, C.; Rai, D.; Gibney, E.; Morand, C.; Espín, J.; González-Sarrías, A. Meta-Analysis of the Effects of foods and drdiometabolic biomarkers: Analysis of factors influencing variability of the individual responses 2018, 19, 694.
[75]
Kardum, N.; Konić-Ristić, A.; Šavikin, K.; Spasić, S.; Stefanović, A.; Ivanišević, J.; Miljković, M. Effects of polyphenol-rich chokeberry juice on antioxidant/pro-oxidant status in healthy subjects. J. Med. Food, 2014, 17(8), 869-874.
[http://dx.doi.org/10.1089/jmf. 2013.0135] [PMID: 24650155]
[76]
Parsaeyan, N.; Mozaffari-Khosravi, H.; Mozayan, M.R. Effect of pomegranate juice on paraoxonase enzyme activity in patients with type 2 diabetes. J. Diabetes Metab. Disord., 2012, 11(1), 11.
[http://dx.doi.org/10.1186/2251-6581-11-11] [PMID: 23497651]
[77]
Loued, S.; Berrougui, H.; Componova, P.; Ikhlef, S.; Helal, O.; Khalil, A. Extra-virgin olive oil consumption reduces the age-related decrease in HDL and paraoxonase 1 anti-inflammatory activities. Br. J. Nutr., 2013, 110(7), 1272-1284.
[http://dx.doi.org/10. 1017/S0007114513000482] [PMID: 23510814]
[78]
Pallauf, K.; Duckstein, N.; Hasler, M.; Klotz, L.O.; Rimbach, G. Flavonoids as putative inducers of the transcription factors Nrf2, FoxO, and PPARγ. Oxid. Med. Cell. Longev., 2017, 20174397340
[http://dx.doi.org/10.1155/2017/4397340] [PMID: 28761622]
[79]
Khateeb, J.; Gantman, A.; Kreitenberg, A.J.; Aviram, M.; Fuhrman, B. Paraoxonase 1 (PON1) expression in hepatocytes is upregulated by pomegranate polyphenols: a role for PPAR-γ pathway. Atherosclerosis, 2010, 208(1), 119-125.
[http://dx.doi.org/10.1016/j. atherosclerosis.2009.08.051] [PMID: 19783251]
[80]
Deáková, Z.; Országhová, Z.; Andrezálová, L.; Slezák, P.; Lehotay, J.; Muchová, J.; Bürki, C.; Ďuračková, Z. Influence of oak wood polyphenols on cysteine, homocysteine and glutathione total levels and PON1 activities in human adult volunteers - a pilot study. Gen. Physiol. Biophys., 2015, 34(1), 73-80.
[http://dx.doi.org/10.4149/gpb_2014029] [PMID: 25367762]
[81]
Huebbe, P.; Giller, K.; de Pascual-Teresa, S.; Arkenau, A.; Adolphi, B.; Portius, S.; Arkenau, C.N.; Rimbach, G. Effects of blackcurrant-based juice on atherosclerosis-related biomarkers in cultured macrophages and in human subjects after consumption of a high-energy meal. Br. J. Nutr., 2012, 108(2), 234-244.
[http://dx.doi.org/10.1017/S0007114511005642] [PMID: 22011640]
[82]
Strunz, C.C.; Oliveira, T.V.; Vinagre, J.C.M.; Lima, A.; Cozzolino, S.; Maranhão, R.C. Brazil nut ingestion increased plasma selenium but had minimal effects on lipids, apolipoproteins, and high-density lipoprotein function in human subjects. Nutr. Res., 2008, 28(3), 151-155.
[http://dx.doi.org/10.1016/j.nutres.2008.01.004] [PMID: 19083402]
[83]
Rizzi, F.; Conti, C.; Dogliotti, E.; Terranegra, A.; Salvi, E.; Braga, D.; Ricca, F.; Lupoli, S.; Mingione, A.; Pivari, F.; Brasacchio, C.; Barcella, M.; Chittani, M.; D’Avila, F.; Turiel, M.; Lazzaroni, M.; Soldati, L.; Cusi, D.; Barlassina, C. Interaction between polyphenols intake and PON1 gene variants on markers of cardiovascular disease: a nutrigenetic observational study. J. Transl. Med., 2016, 14(1), 186.
[http://dx.doi.org/10.1186/s12967-016-0941-6] [PMID: 27338244]
[84]
Hernáez, Á.; Castañer, O.; Elosua, R.; Pintó, X.; Estruch, R.; Salas-Salvadó, J.; Corella, D.; Arós, F.; Serra-Majem, L.; Fiol, M.; Ortega-Calvo, M.; Ros, E.; Martínez-González, M.Á.; de la Torre, R.; López-Sabater, M.C.; Fitó, M. Mediterranean diet improves high-density lipoprotein function in high-cardiovascular-risk individuals clinical perspective. Circulation, 2017, 135, 633-643.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.023712] [PMID: 28193797]
[85]
Kim, D.S.; Maden, S.K.; Burt, A.A.; Ranchalis, J.E.; Furlong, C.E.; Jarvik, G.P. Dietary fatty acid intake is associated with paraoxonase 1 activity in a cohort-based analysis of 1,548 subjects. Lipids Health Dis., 2013, 12, 183.
[http://dx.doi.org/10.1186/1476-511X-12-183] [PMID: 24330840]
[86]
Ferretti, G.; Bacchetti, T. Effect of dietary lipids on paraoxonase-1 activity and gene expression. Nutr. Metab. Cardiovasc. Dis., 2012, 22(2), 88-94.
[http://dx.doi.org/10.1016/j.numecd.2011.08.011] [PMID: 22118836]
[87]
Stirban, A.; Nandrean, S.; Götting, C.; Stratmann, B.; Tschoepe, D. Effects of n-3 polyunsaturated fatty acids (PUFAs) on circulating adiponectin and leptin in subjects with type 2 diabetes mellitus. Horm. Metab. Res., 2014, 46(7), 490-492.
[PMID: 24356795]
[88]
Lambert, C.; Cubedo, J.; Padró, T.; Sánchez-Hernández, J.; Antonijoan, R.M.; Perez, A.; Badimon, L. Phytosterols and Omega 3 Supplementation Exert Novel Regulatory Effects on Metabolic and Inflammatory Pathways: A Proteomic Study. Nutrients, 2017, 9(6), 599.
[http://dx.doi.org/10.3390/nu9060599] [PMID: 28608804]
[89]
Manning, P.J.; Jong, S.A.; Ryalls, A.R.; Sutherland, W.H.F. Paraoxonase 1 activity in chylomicrons and VLDL: The effect of type 2 diabetes and meals rich in saturated fat and oleic acid. Lipids, 2012, 47(3), 259-267.
[http://dx.doi.org/10.1007/s11745-011-3640-3] [PMID: 22160450]
[90]
Tomás, M.; Sentí, M.; Elosua, R.; Vila, J.; Sala, J.; Masià, R.; Marrugat, J. Interaction between the Gln-Arg 192 variants of the paraoxonase gene and oleic acid intake as a determinant of high-density lipoprotein cholesterol and paraoxonase activity. Eur. J. Pharmacol., 2001, 432(2-3), 121-128.
[http://dx.doi.org/10.1016/S0014-2999(01)01482-0] [PMID: 11740946]
[91]
Nus, M.; Frances, F.; Librelotto, J.; Canales, A.; Corella, D.; Sánchez-Montero, J.M.; Sánchez-Muniz, F.J. Arylesterase activity and antioxidant status depend on PON1-Q192R and PON1-L55M polymorphisms in subjects with increased risk of cardiovascular disease consuming walnut-enriched meat. J. Nutr., 2007, 137(7), 1783-1788.
[http://dx.doi.org/10.1093/jn/137.7.1783] [PMID: 17585031]
[92]
Manolescu, B.N.; Berteanu, M.; Cintezã, D. Effect of the nutritional supplement ALAnerv® on the serum PON1 activity in post-acute stroke patients. Pharmacol. Rep., 2013, 65(3), 743-750.
[http://dx.doi.org/10.1016/S1734-1140(13)71054-5] [PMID: 23950599]
[93]
Ferré, N.; Camps, J.; Fernández-Ballart, J.; Arija, V.; Murphy, M.M.; Ceruelo, S.; Biarnés, E.; Vilella, E.; Tous, M.; Joven, J. Regulation of serum paraoxonase activity by genetic, nutritional, and lifestyle factors in the general population. Clin. Chem., 2003, 49(9), 1491-1497.
[http://dx.doi.org/10.1373/49.9.1491] [PMID: 12928230]
[94]
Aslan, R.; Kutlu, R.; Civi, S.; Tasyurek, E. The correlation of the total antioxidant status (TAS), total oxidant status (TOS) and paraoxonase activity (PON1) with smoking. Clin. Biochem., 2014, 47(6), 393-397.
[http://dx.doi.org/10.1016/j.clinbiochem.2013.10. 002] [PMID: 24440837]
[95]
Ramanathan, G.; Araujo, J.A.; Gornbein, J.; Yin, F.; Middlekauff, H.R. Cigarette smoking is associated with dose-dependent adverse effects on paraoxonase activity and fibrinogen in young women. Inhal. Toxicol., 2014, 26(14), 861-865.
[http://dx.doi.org/10.3109/08958378.2014.965559] [PMID: 25472476]
[96]
Milnerowicz, H.; Kowalska, K.; Socha, E. Paraoxonase activity as a marker of exposure to xenobiotics in tobacco smoke. Int. J. Toxicol., 2015, 34(3), 224-232.
[http://dx.doi.org/10.1177/109158181 5584624] [PMID: 25953737]
[97]
Rao, M.N.; Marmillot, P.; Gong, M.; Palmer, D.A.; Seeff, L.B.; Strader, D.B.; Lakshman, M.R. Light, but not heavy alcohol drinking, stimulates paraoxonase by upregulating liver mRNA in rats and humans. Metabolism, 2003, 52(10), 1287-1294.
[http://dx.doi.org/10.1016/S0026-0495(03)00191-4] [PMID: 14564680]
[98]
Roest, M.; van Himbergen, T.M.; Barendrecht, A.B.; Peeters, P.H.M.; van der Schouw, Y.T.; Voorbij, H.A.M. Genetic and environmental determinants of the PON-1 phenotype. Eur. J. Clin. Invest., 2007, 37(3), 187-196.
[http://dx.doi.org/10.1111/j.1365-2362. 2007.01769.x] [PMID: 17359486]
[99]
Osaki, F.; Ikeda, Y.; Suehiro, T.; Ota, K.; Tsuzura, S.; Arii, K.; Kumon, Y.; Hashimoto, K. Roles of Sp1 and protein kinase C in regulation of human serum paraoxonase 1 (PON1) gene transcription in HepG2 cells. Atherosclerosis, 2004, 176(2), 279-287.
[http://dx.doi.org/10.1016/j.atherosclerosis.2004.05.029] [PMID: 15380450]
[100]
Arii, K.; Suehiro, T.; Ikeda, Y.; Kumon, Y.; Inoue, M.; Inada, S.; Takata, H.; Ishibashi, A.; Hashimoto, K.; Terada, Y. Role of protein kinase C in pitavastatin-induced human paraoxonase I expression in Huh7 cells. Metabolism, 2010, 59(9), 1287-1293.
[http://dx.doi.org/10.1016/j.metabol.2009.12.003] [PMID: 20092859]
[101]
Schwedhelm, C.; Nimptsch, K.; Bub, A.; Pischon, T.; Linseisen, J. Association between alcohol consumption and serum paraoxonase and arylesterase activities: a cross-sectional study within the Bavarian population. Br. J. Nutr., 2016, 115(4), 730-736.
[http://dx.doi.org/10.1017/S0007114515004985] [PMID: 26769660]
[102]
Tsakiris, S.; Karikas, G.A.; Parthimos, T.; Tsakiris, T.; Bakogiannis, C.; Schulpis, K.H. Alpha-tocopherol supplementation prevents the exercise-induced reduction of serum paraoxonase 1/arylesterase activities in healthy individuals. Eur. J. Clin. Nutr., 2009, 63(2), 215-221.
[http://dx.doi.org/10.1038/sj.ejcn.1602918] [PMID: 17882129]
[103]
Sang, H.; Yao, S.; Zhang, L.; Li, X.; Yang, N.; Zhao, J.; Zhao, L.; Si, Y.; Zhang, Y.; Lv, X.; Xue, Y.; Qin, S. Walk-run training improves the anti-inflammation properties of high-density lipoprotein in patients with metabolic syndrome. J. Clin. Endocrinol. Metab., 2015, 100(3), 870-879.
[http://dx.doi.org/10.1210/jc.2014-2979] [PMID: 25514103]
[104]
Heymsfield, S.B.; Wadden, T.A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med., 2017, 376(3), 254-266.
[http://dx.doi.org/10.1056/NEJMra1514009] [PMID: 28099824]
[105]
Kota, S.K.; Meher, L.K.; Kota, S.K.; Jammula, S.; Krishna, S.V.; Modi, K.D. Implications of serum paraoxonase activity in obesity, diabetes mellitus, and dyslipidemia. Indian J. Endocrinol. Metab., 2013, 17(3), 402-412.
[http://dx.doi.org/10.4103/2230-8210.111618] [PMID: 23869295]
[106]
Mahdirejei, T.A.; Razi, M.; Barari, A.; Farzanegi, P.; Mahdirejei, H.A.; Shahrestani, Z.; Ahmadi, M. A Comparative study of the Effects of endurance and resistance exercise training on PON1 and lipid profile levels in obese men. Sport Sci. Health, 2015, 11, 263-270.
[http://dx.doi.org/10.1007/s11332-015-0232-2]
[107]
Aicher, B.O.; Haser, E.K.; Freeman, L.A.; Carnie, A.V.; Stonik, J.A.; Wang, X.; Remaley, A.T.; Kato, G.J.; Cannon, R.O., III Diet-induced weight loss in overweight or obese women and changes in high-density lipoprotein levels and function. Obesity (Silver Spring), 2012, 20(10), 2057-2062.
[http://dx.doi.org/10.1038/oby. 2012.56] [PMID: 22402736]
[108]
de Melo, L.G.P.; Nunes, S.O.V.; Anderson, G.; Vargas, H.O.; Barbosa, D.S.; Galecki, P.; Carvalho, A.F.; Maes, M. Shared metabolic and immune-inflammatory, oxidative and nitrosative stress pathways in the metabolic syndrome and mood disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 78, 34-50.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.027] [PMID: 28438472]
[109]
Schachter, M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam. Clin. Pharmacol., 2005, 19(1), 117-125.
[http://dx.doi.org/10.1111/j.1472-8206.2004.00299. x] [PMID: 15660968]
[110]
Sumi, A.; Nakamura, U.; Iwase, M.; Fujii, H.; Ohkuma, T.; Ide, H.; Jodai-Kitamura, T.; Komorita, Y.; Yoshinari, M.; Hirakawa, Y.; Hirano, A.; Kubo, M.; Kitazono, T. The gene-treatment interaction of paraoxonase-1 gene polymorphism and statin therapy on insulin secretion in Japanese patients with type 2 diabetes: Fukuoka diabetes registry. BMC Med. Genet., 2017, 18(1), 146.
[http://dx.doi.org/10.1186/s12881-017-0509-1] [PMID: 29233102]
[111]
Samy, W.; Hassanian, M.A. Paraoxonase-1 activity, malondialdehyde and glutathione peroxidase in non-alcoholic fatty liver disease and the effect of atorvastatin. Arab J. Gastroenterol., 2011, 12(2), 80-85.
[http://dx.doi.org/10.1016/j.ajg.2011.04.008] [PMID: 21684478]
[112]
Abdin, A.A.; Hassanien, M.A.; Ibrahim, E.A. El-Noeman, Sel-D. Modulating effect of atorvastatin on paraoxonase 1 activity in type 2 diabetic Egyptian patients with or without nephropathy. J. Diabetes Complications, 2010, 24(5), 325-333.
[http://dx.doi.org/10. 1016/j.jdiacomp.2009.04.001] [PMID: 19553142]
[113]
Rizos, C.V.; Liberopoulos, E.N.; Tellis, K.; DiNicolantonio, J.J.; Tselepis, A.D.; Elisaf, M.S. Combining rosuvastatin with angiotensin-receptor blockers of different PPARγ-activating capacity: effects on high-density lipoprotein subfractions and associated enzymes. Angiology, 2015, 66(1), 36-42.
[http://dx.doi.org/10. 1177/0003319713512556] [PMID: 24288364]
[114]
Ferretti, G.; Bacchetti, T.; Sahebkar, A. Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials. Prog. Lipid Res., 2015, 60, 50-73.
[http://dx.doi.org/10.1016/j.plipres.2015.08.003] [PMID: 26416579]
[115]
Gouédard, C.; Koum-Besson, N.; Barouki, R.; Morel, Y. Opposite regulation of the human paraoxonase-1 gene PON-1 by fenofibrate and statins. Mol. Pharmacol., 2003, 63(4), 945-956.
[http://dx.doi.org/10.1124/mol.63.4.945] [PMID: 12644596]
[116]
Paragh, G.; Seres, I.; Harangi, M.; Erdei, A.; Audikovszky, M.; Debreczeni, L.; Kovácsay, A.; Illyés, L.; Pados, G. Ciprofibrate increases paraoxonase activity in patients with metabolic syndrome. Br. J. Clin. Pharmacol., 2006, 61(6), 694-701.
[http://dx.doi.org/ 10.1111/j.1365-2125.2006.02565.x] [PMID: 16722831]
[117]
Dullaart, R.P.F.; de Vries, R.; Voorbij, H.A.M.; Sluiter, W.J.; van Tol, A. Serum paraoxonase-I activity is unaffected by short-term administration of simvastatin, bezafibrate, and their combination in type 2 diabetes mellitus. Eur. J. Clin. Invest., 2009, 39(3), 200-203.
[http://dx.doi.org/10.1111/j.1365-2362.2009.02090.x] [PMID: 19260949]
[118]
Atamer, Y.; Atamer, A.; Can, A.S.; Hekimoğlu, A.; Ilhan, N.; Yenice, N.; Koçyiğit, Y. Effects of rosiglitazone on serum paraoxonase activity and metabolic parameters in patients with type 2 diabetes mellitus. Braz. J. Med. Biol. Res., 2013, 46(6), 528-532.
[http://dx.doi.org/10.1590/1414-431X20132818] [PMID: 23802228]
[119]
Coll, B.; van Wijk, J.P.H.; Parra, S.; Castro Cabezas, M.; Hoepelman, I.M.; Alonso-Villaverde, C.; de Koning, E.J.P.; Camps, J.; Ferre, N.; Rabelink, T.J.; Tous, M.; Joven, J. Effects of rosiglitazone and metformin on postprandial paraoxonase-1 and monocyte chemoattractant protein-1 in human immunodeficiency virus-infected patients with lipodystrophy. Eur. J. Pharmacol., 2006, 544(1-3), 104-110.
[http://dx.doi.org/10.1016/j.ejphar.2006.06.014] [PMID: 16843455]
[120]
van Wijk, J.; Coll, B.; Cabezas, M.C.; Koning, E.; Camps, J.; Mackness, B.; Joven, J.; Joven, J. Rosiglitazone modulates fasting and post-prandial paraoxonase 1 activity in type 2 diabetic patients. Clin. Exp. Pharmacol. Physiol., 2006, 33(12), 1134-1137.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04505.x] [PMID: 17184491]
[121]
Meaney, E.; Sierra-Vargas, P.; Meaney, A.; Guzmán-Grenfell, M.; Ramírez-Sánchez, I.; Hicks, J.J.; Olivares-Corichi, I.; Ceballos, G. Does metformin increase paraoxonase activity in patients with the metabolic syndrome? Additional data from the MEFISTO study. Clin. Transl. Sci., 2012, 5(3), 265-268.
[http://dx.doi.org/10.1111/j.1752-8062.2012.00391.x] [PMID: 22686204]
[122]
Esteghamati, A.; Eskandari, D.; Mirmiranpour, H.; Noshad, S.; Mousavizadeh, M.; Hedayati, M.; Nakhjavani, M. Effects of metformin on markers of oxidative stress and antioxidant reserve in patients with newly diagnosed type 2 diabetes: a randomized clinical trial. Clin. Nutr., 2013, 32(2), 179-185.
[http://dx.doi.org/10.1016/j.clnu.2012.08.006] [PMID: 22963881]
[123]
Nakou, E.S.; Filippatos, T.D.; Kiortsis, D.N.; Derdemezis, C.S.; Tselepis, A.D.; Mikhailidis, D.P.; Elisaf, M.S. The effects of ezetimibe and orlistat, alone or in combination, on high-density lipoprotein (HDL) subclasses and HDL-associated enzyme activities in overweight and obese patients with hyperlipidaemia. Expert Opin. Pharmacother., 2008, 9(18), 3151-3158.
[http://dx.doi.org/ 10.1517/14656560802548430] [PMID: 19040336]
[124]
Jaichander, P.; Selvarajan, K.; Garelnabi, M.; Parthasarathy, S. Induction of paraoxonase 1 and apolipoprotein A-I gene expression by aspirin. J. Lipid Res., 2008, 49(10), 2142-2148.
[http://dx.doi.org/10.1194/jlr.M800082-JLR200] [PMID: 18519978]
[125]
Ames, P.R.J.; Batuca, J.R.; Muncy, I.J.; De La Torre, I.G.; Pascoe-Gonzales, S.; Guyer, K.; Matsuura, E.; Lopez, L.R. Aspirin insensitive thromboxane generation is associated with oxidative stress in type 2 diabetes mellitus. Thromb. Res., 2012, 130(3), 350-354.
[http://dx.doi.org/10.1016/j.thromres.2012.03.025] [PMID: 22521214]
[126]
Derosa, G.; Mugellini, A.; Pesce, R.M.; D’Angelo, A.; Maffioli, P. Olmesartan combined with amlodipine on oxidative stress Parameters in Type 2 Diabetics, compared with single therapies: A randomized, controlled, clinical trial. Medicine (Baltimore), 2016, 95(13)e3084
[http://dx.doi.org/10.1097/MD.000000000000 3084] [PMID: 27043671]
[127]
Derosa, G.; Mugellini, A.; Pesce, R.M.; D’Angelo, A.; Maffioli, P. Barnidipine compared to lercanidipine in addition to losartan on endothelial damage and oxidative stress parameters in patients with hypertension and type 2 diabetes mellitus. BMC Cardiovasc. Disord., 2016, 16, 66.
[http://dx.doi.org/10.1186/s12872-016-0237-z] [PMID: 27068332]
[128]
Ayashi, S.; Assareh, A.R.; Jalali, M.T.; Olapour, S.; Yaghooti, H. Role of antioxidant property of carvedilol in mild to moderate hypertensive patients: A prospective open-label study. Indian J. Pharmacol., 2016, 48(4), 372-376.
[http://dx.doi.org/10.4103/0253-7613.186206] [PMID: 27756946]
[129]
Noto, C.; Maes, M.; Ota, V.K.; Teixeira, A.L.; Bressan, R.A.; Gadelha, A.; Brietzke, E. High predictive value of immune-inflammatory biomarkers for schizophrenia diagnosis and association with treatment resistance. World J. Biol. Psychiatry, 2015, 16(6), 422-429.
[http://dx.doi.org/10.3109/15622975.2015.1062552] [PMID: 26212792]
[130]
Noto, C.; Ota, V.K.; Santoro, M.L.; Gouvea, E.S.; Silva, P.N.; Spindola, L.M.; Cordeiro, Q.; Bressan, R.A.; Gadelha, A.; Brietzke, E.; Belangero, S.I.; Maes, M. Depression, cytokine, and cytokine by treatment interactions modulate gene expression in antipsychotic naïve first episode psychosis. Mol. Neurobiol., 2016, 53(8), 5701-5709.
[http://dx.doi.org/10.1007/s12035-015-9489-3] [PMID: 26491028]
[131]
Maes, M.; Ruckoanich, P.; Chang, Y.S.; Mahanonda, N.; Berk, M. Multiple aberrations in shared inflammatory and oxidative & nitrosative stress (IO&NS) pathways explain the co-association of depression and cardiovascular disorder (CVD), and the increased risk for CVD and due mortality in depressed patients. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(3), 769-783.
[http://dx.doi.org/10.1016/j.pnpbp.2010.06.008] [PMID: 20561554]
[132]
Vaccarino, V.; McClure, C.; Johnson, B.D.; Sheps, D.S.; Bittner, V.; Rutledge, T.; Shaw, L.J.; Sopko, G.; Olson, M.B.; Krantz, D.S.; Parashar, S.; Marroquin, O.C.; Merz, C.N. Depression, the metabolic syndrome and cardiovascular risk. Psychosom. Med., 2008, 70(1), 40-48.
[http://dx.doi.org/10.1097/PSY.0b013e31815c1b85] [PMID: 18158378]
[133]
Roomruangwong, C.; Simeonova, D.S.; Stoyanov, D.S.; Anderson, G.; Carvalho, A.; Maes, M. Common Environmental Factors May Underpin the Comorbidity between Generalized Anxiety Disorder and Mood Disorders via Activated Nitro-Oxidative Pathways Top. Med. Chem,, 2018.epub ahead.
[http://dx.doi.org/10.2174/ 1568026618666181115101625]
[134]
Azad, M.C.; Shoesmith, W.D.; Al Mamun, M.; Abdullah, A.F.; Naing, D.K.S.; Phanindranath, M.; Turin, T.C. Cardiovascular diseases among patients with schizophrenia. Asian J. Psychiatr., 2016, 19, 28-36.
[http://dx.doi.org/10.1016/j.ajp.2015.11.012] [PMID: 26957335]
[135]
Koola, M.M.; Raines, J.K.; Hamilton, R.G.; McMahon, R.P. Can anti-inflammatory medications improve symptoms and reduce mortality in schizophrenia? Curr. Psychiatr., 2016, 15(5), 52-57.
[PMID: 27274712]
[136]
Huang, Y.; Wu, Z.; Riwanto, M.; Gao, S.; Levison, B.S.; Gu, X.; Fu, X.; Wagner, M.A.; Besler, C.; Gerstenecker, G.; Zhang, R.; Li, X-M.; DiDonato, A.J.; Gogonea, V.; Tang, W.H.W.; Smith, J.D.; Plow, E.F.; Fox, P.L.; Shih, D.M.; Lusis, A.J.; Fisher, E.A.; DiDonato, J.A.; Landmesser, U.; Hazen, S.L. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex. J. Clin. Invest., 2013, 123(9), 3815-3828.
[http://dx.doi.org/10.1172/JCI67478] [PMID: 23908111]
[137]
Efrat, M.; Aviram, M. Paraoxonase 1 interactions with HDL, antioxidants and macrophages regulate atherogenesis - a protective role for HDL phospholipids. Adv. Exp. Med. Biol., 2010, 660, 153-166.
[http://dx.doi.org/10.1007/978-1-60761-350-3_14] [PMID: 20221878]
[138]
Mackness, M.I.; Mackness, B.; Durrington, P.N. Paraoxonase and coronary heart disease. Atheroscler. Suppl., 2002, 3(4), 49-55.
[http://dx.doi.org/10.1016/S1567-5688(02)00046-6] [PMID: 12573363]
[139]
Aviram, M.; Rosenblat, M. Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic. Biol. Med., 2004, 37(9), 1304-1316.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.06.030] [PMID: 15454271]
[140]
Chistiakov, D.A.; Melnichenko, A.A.; Orekhov, A.N.; Bobryshev, Y.V. Paraoxonase and atherosclerosis-related cardiovascular diseases. Biochimie, 2017, 132, 19-27.
[http://dx.doi.org/10.1016/j. biochi.2016.10.010] [PMID: 27771368]
[141]
Kunutsor, S.K.; Bakker, S.J.L.; James, R.W.; Dullaart, R.P.F. Serum paraoxonase-1 activity and risk of incident cardiovascular disease: The PREVEND study and meta-analysis of prospective population studies. Atherosclerosis, 2016, 245, 143-154.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.12.021] [PMID: 26724525]
[142]
Kowalska, K.; Socha, E.; Milnerowicz, H. Review: The role of paraoxonase in cardiovascular diseases. Ann. Clin. Lab. Sci., 2015, 45(2), 226-233.
[PMID: 25887882]
[143]
Billecke, S.; Draganov, D.; Counsell, R.; Stetson, P.; Watson, C.; Hsu, C.; La Du, B.N. Human serum paraoxonase (PON1) isozymes Q and R hydrolyze lactones and cyclic carbonate esters. Drug Metab. Dispos., 2000, 28(11), 1335-1342.
[PMID: 11038162]
[144]
Petras, M.; Tatarkova, Z.; Kovalska, M.; Mokra, D.; Dobrota, D.; Lehotsky, J.; Drgova, A. Hyperhomocysteinemia as a risk factor for the neuronal system disorders. J. Physiol. Pharmacol., 2014, 65(1), 15-23.
[PMID: 24622826]
[145]
Maes, M.; Mihaylova, I.; Kubera, M.; Uytterhoeven, M.; Vrydags, N.; Bosmans, E. Increased plasma peroxides and serum oxidized low density lipoprotein antibodies in major depression: markers that further explain the higher incidence of neurodegeneration and coronary artery disease. J. Affect. Disord., 2010, 125(1-3), 287-294.
[http://dx.doi.org/10.1016/j.jad.2009.12.014] [PMID: 20083310]
[146]
Maes, M.; Kubera, M.; Mihaylova, I.; Geffard, M.; Galecki, P.; Leunis, J.C.; Berk, M. Increased autoimmune responses against auto-epitopes modified by oxidative and nitrosative damage in depression: implications for the pathways to chronic depression and neuroprogression. J. Affect. Disord., 2013, 149(1-3), 23-29.
[http://dx.doi.org/10.1016/j.jad.2012.06.039] [PMID: 22898471]
[147]
Maes, M.; Mihaylova, I.; Kubera, M.; Leunis, J-C.; Geffard, M. IgM-mediated autoimmune responses directed against multiple neoepitopes in depression: New pathways that underpin the inflammatory and neuroprogressive pathophysiology. J. Affect. Disord., 2011, 135(1-3), 414-418.
[http://dx.doi.org/10.1016/j.jad. 2011.08.023] [PMID: 21930301]
[148]
Kumon, Y.; Suehiro, T.; Ikeda, Y.; Hashimoto, K. Human paraoxonase-1 gene expression by HepG2 cells is downregulated by interleukin-1beta and tumor necrosis factor-alpha, but is upregulated by interleukin-6. Life Sci., 2003, 73(22), 2807-2815.
[http://dx.doi.org/10.1016/S0024-3205(03)00704-5] [PMID: 14511766]
[149]
Rainwater, D.L.; Rutherford, S.; Dyer, T.D.; Rainwater, E.D.; Cole, S.A.; Vandeberg, J.L.; Almasy, L.; Blangero, J.; Maccluer, J.W.; Mahaney, M.C. Determinants of variation in human serum paraoxonase activity. Heredity, 2009, 102(2), 147-154.
[http://dx.doi.org/10.1038/hdy.2008.110] [PMID: 18971955]
[150]
Ponce-Ruiz, N.; Murillo-González, F.E.; Rojas-García, A.E.; Mackness, M.; Bernal-Hernández, Y.Y.; Barrón-Vivanco, B.S.; González-Arias, C.A.; Medina-Díaz, I.M. Transcriptional regulation of human Paraoxonase 1 by nuclear receptors. Chem. Biol. Interact., 2017, 268, 77-84.
[http://dx.doi.org/10.1016/j.cbi.2017.02. 005] [PMID: 28223025]
[151]
Fracassi, A.; Marangoni, M.; Rosso, P.; Pallottini, V.; Fioramonti, M.; Siteni, S.; Segatto, M. Statins and the brain: More than lipid lowering agents? Curr. Neuropharmacol., 2019, 17(1), 59-83.
[152]
Köhler-Forsberg, O.; Gasse, C.; Berk, M.; Østergaard, S.D. Do Statins Have Antidepressant Effects? CNS Drugs, 2017, 31(5), 335-343.
[http://dx.doi.org/10.1007/s40263-017-0422-3] [PMID: 28303466]
[153]
Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.; Sánchez-Villegas, A.; Kivimäki, M.; Akbaraly, T. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis of observational studies. Mol. Psychiatry, 2018. Epub ahead.
[154]
Godos, J.; Castellano, S.; Ray, S.; Grosso, G.; Galvano, F. Dietary polyphenol intake and depression: Results from the mediterranean healthy eating, lifestyle and aging (MEAL) study. Molecules, 2018, 23(5), 1-15.
[http://dx.doi.org/10.3390/molecules23050999] [PMID: 29695122]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 11
Year: 2019
Page: [1004 - 1020]
Pages: 17
DOI: 10.2174/1570159X17666181227164947

Article Metrics

PDF: 26
HTML: 6

Special-new-year-discount