Core-Magnetic Composites Catalysts for the Valorization and Up-grading of the Renewable Feedstocks: A Minireview

Author(s): Vasile I. Parvulescu, Simona M. Coman*.

Journal Name: Current Catalysis

Volume 8 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Core-magnetic composites offer unique possibilities to accommodate adequate amounts of acid-base and redox functional sites and hence to catalyze the biomass conversion reactions in a one-pot way. Moreover, due to the dual functionality, the core-magnetic composites provide a bridge between homogeneous and heterogeneous catalysis. Hence, this minireview aims to offer a comprehensive account of remarkable recent applications of core-magnetic composites in the catalytic processes for biomass valorization.

Methods: A critical evaluation of synthetic methodologies utilized for the production of the magnetic nanoparticles, characterization techniques and catalytic applications is provided.

Results: The benefits of their utilization are exemplified by most representative examples of one-pot transformation of cellulose and upgrading processes. Other recent examples constitute the lignin fragmentation on magnetic iron oxide-based catalysts and the renewable crude glycerol up-grading using core-shell magnetic iron oxide bio-based materials.

Conclusion: The review provides important information on the distinctive properties of the functionalized core-magnetic composites. Moreover, this review offers useful information affording a largescale production development, in terms of catalyst and reaction conditions, tailoring selectivity, and the potential to regenerate the catalysts.

Keywords: Core-magnetic composites, cellulose depolymerisation, hydrolytic hydrogenation, catalytic wet oxidation, lignin fragmentation, bio-catalysts, crude glycerol.

[1]
Majewski, P.; Thierry, B. Functionalized magnetite nanoparticles – synthesis, properties, and bio-application. Crit. Rev. Solid State Mater. Sci., 2007, 32, 203-215.
[2]
Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2010, 49, 3428-3459.
[3]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3, 397-415.
[4]
Figuerola, A.; Di Corato, R.; Manna, L.; Pellegrino, T. From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol. Res., 2010, 62, 126-143.
[5]
Goesmann, H.; Feldmann, C. Nanoparticulate functional materials. Angew. Chem. Int. Ed., 2010, 49, 1362-1395.
[6]
Lu, A-H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007, 46, 1222-1244.
[7]
Perrier, T.; Saulnier, P.; Benoît, J-P. Methods for the functionalization of nanoparticles: New insights and perspectives. Chemistry Eur. J.,, 2010, 16, 11516-11529.
[8]
Sperling, R.A.; Parak, W.J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Phil. Trans. R. Soc. A, 2010, 368, 1333-1383.
[9]
Teja, A.S.; Koh, P-Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater., 2009, 55, 22-45.
[10]
Thanh, N.T.K.; Green, L.A.W. Functionalisation of nanoparticles for biomedical applications. Nano Today, 2010, 5, 213-230.
[11]
Schladt, T.D.; Schneider, K.; Schild, H.; Tremel, W. Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans., 2011, 40, 6315-6343.
[12]
Patel, D.; Moon, J.Y.; Chang, Y.; Kim, T.J.; Lee, G.H. Poly(D, L-lactide-co-glycolide) coated superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vivo study as MRI contrast agent. Colloids Surf.A , 2008, 313-314, 91-94.
[13]
Zhao, M.; Josephson, L.; Tang, Y.; Weissleder, R. Magnetic sensors for protease assays. Angew. Chem. Int. Ed., 2003, 42, 1375-1378.
[14]
Narayanan, R.; El-Sayed, M.A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B, 2005, 109, 12663-12676.
[15]
White, R.J.; Luque, R.; Budarin, V.; Clark, J.H.; Macquarrie, D.J. Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev., 2009, 38, 481-494.
[16]
Budroni, G.; Corma, A. Gold-organic-inorganic high-surface-area materials as precursors of highly active catalysts. Angew. Chem. Int. Ed., 2006, 45, 3328-3331.
[17]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39, 301-312.
[18]
Cabanas, A.; Poliakoff, M. The continuous hydrothermal synthesis of nano-particulate ferrites in near critical and supercritical water. J. Mater. Chem., 2001, 11, 1408-1416.
[19]
Lee, J.G.; Park, J.Y.; Kim, C.S. Growth of ultra-fine cobalt ferrite particles by a sol-gel method and their magnetic properties. J. Mater. Sci., 1998, 33, 3965-3968.
[20]
Margeat, O.; Dumestre, F.; Amiens, C.; Chaudret, B.; Lecante, P.; Respaud, M. Synthesis of iron nanoparticles: Size effects, shape control and organisation. Prog. Solid State Chem., 2005, 33, 71-79.
[21]
Lopez, P.J.A.; Lopez, Q.M.A.; Mira, J.; Rivas, J.; Charles, S.W. Advances in the preparation of magnetic nanoparticles by the microemulsion method. J. Phys. Chem. B, 1997, 101, 8045-8047.
[22]
Jun, Y-W.; Choi, J-S.; Cheon, J. Heterostructured magnetic nanoparticles: their versatility and high performances capabilities. Chem. Commun. , 2007, 12, 1203-1214.
[23]
Ren, Z.F.; Huang, Z.P.; Wang, D.Z.; Wen, J.G.; Xu, J.W.; Wang, J.H.; Calvet, L.E.; Chen, J.; Klemic, J.F.; Reed, M.A. Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett., 1999, 75, 1086-1088.
[24]
Veith, M.; Altherr, A.; Lecerf, N.; Mathur, S.; Valtchev, K.; Fritscher, E. Molecular precursor approach to nano-scaled ceramics and metal/metal oxide composites. Nanostruct. Mater., 1999, 12, 191-194.
[25]
Ning, B.; Stevenson, M.E.; Weaver, M.L.; Bradt, R.C. Apparent indentation size effect in a CVD aluminide coated Ni-base superalloy. Surf. Coat. Tech., 2003, 163-164, 112-117.
[26]
Lenggoro, W.; Itoh, Y.; Iida, N.; Okuyama, K. Control of size and morphology in NiO particles prepared by a low-pressure spray pyrolysis. Mater. Res. Bull., 2003, 38, 1819-1827.
[27]
Janzen, C.; Roth, P. Formation and characteristics of Fe2O3 nano-particles in doped low pressure H2/O2/Ar flames. Combust. Flame, 2001, 125, 1150-1161.
[28]
Sun, S.; Murray, C.B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287, 1989-1992.
[29]
Shevchenko, E.V.; Talapin, D.V.; Rogach, A.L.; Kornowski, A.; Haase, M.; Weller, H. Colloidal synthesis and self-assembly of CoPt3 Nanocrystals. J. Am. Chem. Soc., 2002, 124, 11480-11485.
[30]
Park, J-I.; Kim, M.G.; Jun, Y-W.; Lee, J.S.; Lee, W-R.; Cheon, J. Characterisation of superparamagnetic “core-shell” nanoparticles and monitoring their anisotropic phase transition to ferromagnetic “solid solution” nanoalloys. J. Am. Chem. Soc., 2004, 126, 9072-9078.
[31]
Son, S.U.; Jang, Y.; Park, J.; Na, H.B.; Park, H.M.; Yun, H.J.; Lee, J.; Hyeon, T. Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for Sonogashira coupling reactions. J. Am. Chem. Soc., 2004, 126, 5026-5027.
[32]
Lee, W-R.; Kim, M.G.; Choi, J-R.; Park, J-I.; Ko, S.J.; Oh, S.J.; Cheon, J. Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles. J. Am. Chem. Soc., 2005, 127, 16090-16097.
[33]
Shi, W.; Zeng, H.; Sahoo, Y.; Ohulchansky, T.Y.; Ding, Y.; Wang, Z.L.; Swihart, M.; Prasad, P.N. A general approach to binary and ternary hybrid nanocrystals. Nano Lett., 2006, 6, 875-881.
[34]
Schmid, G. Large clusters and colloids. Metals in the embryonic state. Chem. Rev., 1992, 92, 1709-1727.
[35]
Lewis, L.N. Chemical catalysis by colloids and clusters. Chem. Rev., 1993, 93, 2693-2730.
[36]
Kobayashi, Y.; Horie, M.; Konno, M.; Rodriguez-Gonzalez, B.; Liz-Marzan, L.M. Preparation and properties of silica-coated cobalt nanoparticles. J. Phys. Chem. B, 2003, 107, 7420-7425.
[37]
Lu, A-H.; Li, W.; Matoussevitch, N.; Spliethoff, B.; Bonnemann, H.; Schuth, F. Highly stable carbon-protected cobalt nanoparticles and graphite shells. Chem. Commun. , 2005, 1, 98-100.
[38]
Sobal, N.S.; Hilgendorff, M.; Moehwald, H.; Giersig, M.; Spasova, M.; Radetic, T.; Farle, M. Synthesis and structure of colloidal bimetallic nanocrystals: the non-alloying system Ag/Co. Nano Lett., 2002, 2, 621-624.
[39]
Nunez, N.O.; Tartaj, P.; Morales, M.P.; Bonville, P.; Serna, C.J. Yttria-coated FeCo magnetic nanoneedles. Chem. Mater., 2004, 16, 3119-3124.
[40]
Euliss, L.E.; Grancharov, S.G.; O’Brien, S.; Deming, T.J.; Stucky, G.D.; Murray, C.B.; Held, G.A. Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media. Nano Lett., 2003, 3, 1489-1493.
[41]
Bonnemann, H.; Brijoux, W.; Brinkmann, R.; Matoussevitch, N.; Waldoefner, N.; Palina, N.; Modrow, H. A size-selective synthesis of air stable colloidal magnetic cobalt nanoparticles. Inorg. Chim. Acta, 2003, 350, 617-624.
[42]
Nogues, J.; Sort, J.; Langlais, V.; Skumryev, V.; Surinach, S.; Munoz, J.S.; Baro, M.D. Exchange bias in nanostructures. Phys. Rep., 2005, 422, 65-117.
[43]
Davies, R.; Schurr, G.A.; Meenan, P.; Nelson, R.D.; Bergna, H.E.; Brevett, C.A.S.; Goldbaum, R.H. Engineered particle surfaces. Adv. Mater., 1998, 10, 1264-1270.
[44]
Coman, S.M.; Parvulescu, V.I. In: Nanotechnology in Catalysis. Applications in the Chemical Industry, Energy Research, and Environmental Protection, Sels, B. F.; Van de Voorde M. (Eds.), Wiley-VCH Verlag GmbH & Co. KGaA., , 2017; Vol. 2, , pp. 145-178.
[45]
Dorman, J.; Fiorani, D. Magnetic Properties of Fine Particles; North-Holland: Amsterdam, The Netherlands, 1991.
[46]
Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J-M. Magnetically recoverable nanocatalysts. Chem. Rev., 2011, 111, 3036-3075.
[47]
Polshettiwar, V.; Varma, R.S. Green chemistry by nano-catalysis. Green Chem., 2010, 12, 743-754.
[48]
Candu, N.; Rizescu, C.; Podolean, I.; Tudorache, M.; Parvulescu, V.I.; Coman, S.M. Efficient magnetic and recyclable SBILC (supported basic ionic liquid catalyst) - based heterogeneous organocatalysts for the asymmetric epoxidation of trans-methylcinnamate. Catal. Sci. Technol., 2015, 5, 729-737.
[49]
Lee, J.; Lee, Y.; Youn, J.K.; Na, H.B.; Yu, T.; Kim, H.; Lee, S.; Koo, Y.; Kwak, J.H.; Park, H.G.; Chang, H.N.; Hwang, M.; Park, J.; Kim, J.; Hyeon, T. Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small, 2008, 4, 143-152.
[50]
Jorgensen, H.; Kristensen, J.B.; Felby, C. Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels Bioprod. Biorefin., 2007, 1, 119-134.
[51]
Wang, J.; Xi, J.; Wang, Y. Recent advances in the catalytic production of glucose from lignocellulosic biomass. Green Chem., 2015, 17, 737-751.
[52]
Martin, A.D.; Bond, J.Q.; Dumesic, J.A. Catalytic conversion of biomass to biofuels. Green Chem., 2010, 12, 1493-1513.
[53]
Luterbacher, J.S.; Martin, A.D.; Dumesic, J.A. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem., 2014, 16, 4816-4838.
[54]
Zhou, C-H.; Xia, X.; Lin, C-X.; Tong, D-S.; Beltramini, J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev., 2011, 40, 5588-5617.
[55]
Zhang, X.; Wilson, K.; Lee, A.F. Heterogeneously catalyse hydrothermal processing of C5-C6 sugars. Chem. Rev., 2016, 116, 12328-12368.
[56]
Mika, L.T.; Csefalvay, E.; Nemeth, A. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem. Rev., 2018, 118, 505-613.
[57]
Brodeur, G.; Yau, E.; Badal, K.; Collier, J.; Ramachandran, K.B.; Ramakrishnan, S. Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Res., 2011, 2011
[http://dx.doi.org/10.4061/2011/787532]
[58]
Tadesse, H.; Luque, R. Advances on biomass pretreatment using ionic liquids: An overview. Energy Environ. Sci., 2011, 4, 3913-3929.
[59]
Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladisch, M.R.; Lee, Y.Y.; Mitchinson, C.; Saddler, J.N. Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnol. Prog., 2009, 25, 333-339.
[60]
Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladisch, M.R.; Lee, Y.Y. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour. Technol., 2005, 96, 2026-2032.
[61]
Alvira, P.; Tomas-Pejo, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process base don enzymatic hydrolysis: A review. Bioresour. Technol., 2010, 101, 4851-4861.
[62]
Girio, F.M.; Fonseca, C.; Carvalheiro, F.; Duarte, L.C.; Marques, S.; Bogel-Łukasik, R. Hemicellulose for fuel ethanol: A review. Bioresour. Technol., 2010, 101, 4775-4800.
[63]
Modenbach, A.A.; Nokes, S.E. Enzymatic hydrolysis of biomass at high-solids loadings – A review. Biomass Bioenergy, 2013, 56, 526-544.
[64]
Galbe, M.; Zacchi, G. Pretreatment: The key to efficient utilization of lignocellulosic materials. Biomass Bioenergy, 2012, 46, 70-78.
[65]
Brandt, A.; Grasvik, J.; Hallett, J.P.; Welton, T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem., 2013, 15, 550-583.
[66]
Zacher, A.H.; Olarte, M.V.; Santosa, D.M.; Elliott, D.C.; Jones, S.B. A review and perspective of recent bio-oil hydrotreating research. Green Chem., 2014, 16, 491-515.
[67]
de Lasa, H.; Salaices, E.; Mazumder, J.; Lucky, R. Catalytic steam gasification of biomass: Catalysts, thermodynamics and kinetics. Chem. Rev., 2011, 111, 5404-5433.
[68]
Lede, J. Biomass fast pyropysis reactors: A review of a few scientific challenges and of related recommended research topics. Oil Gas Sci. Technol. – Rev. D’IFP Energ. Nouv., 2013, 68, 801-814.
[69]
Corma, A.; Iborra, S.; Velty, A. Chemical routes fo the transformation of biomass into chemicals. Chem. Rev., 2007, 107, 2411-2502.
[70]
Climent, M.J.; Corma, A.; Iborra, S. Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chem., 2011, 13, 520-540.
[71]
Lichtenthaler, F.W.; Peters, S. Carbohydrates as green raw materials for the chemical industry. C. R. Chim., 2004, 7, 65-90.
[72]
Swift, K.A.D. Catalytic transformations of the major terpene feedstocks. Top. Catal., 2004, 27143155
[73]
Behr, A.; Johnen, L. Myrcene as a natural base chemical in sustainable chemistry: A critical review. ChemSusChem, 2009, 2, 1072-1095.
[74]
Murzin, D.Yu.; Simakova, I.L. Catalysis in biomass processing. Catal. Ind., 2011, 3, 218-249.
[75]
Liu, W.J.; Tian, K.; Jiang, H.; Yu, H.Q. Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste. Sci. Rep., 2013, 3, 2419.
[76]
Lai, D.M.; Deng, L.; Li, J.; Liao, B.; Guo, Q.X.; Fu, Y. Hydrolysis of cellulose into glucose by magnetic solid acid. ChemSusChem, 2011, 4, 55-58.
[77]
Negoi, A.; Trotus, I.T.; Mamula Steiner, O.; Tudorache, M.; Kuncser, V.; Macovei, D.; Parvulescu, V.I.; Coman, S.M. Direct synthesis of sorbitol and glycerol from cellulose over ionic Ru/magnetite nanoparticles in the absence of external hydrogen. ChemSusChem, 2013, 6, 2090-2094.
[78]
Podolean, I.; Kuncser, V.; Gheorghe, N.; Macovei, D.; Parvulescu, V.I.; Coman, S.M. Ru-based magnetic nanoparticles (MNP) for succinic acid synthesis from levulinic acid. Green Chem., 2013, 15, 3077-3082.
[79]
Negoi, A.; Triantafyllidis, K.; Parvulescu, V.I.; Coman, S.M. The hydrolytic hydrogenation of cellulose to sorbitol over M (Ru, Ir, Pd, Rh)-BEA-zeolite catalysts. Catal. Today, 2014, 223, 122-128.
[80]
Podolean, I.; Negoi, A.; Candu, N.; Tudorache, M.; Parvulescu, V.I.; Coman, S.M. Cellulose capitalisation to bio-chemicals in the presence of magnetic nanoparticle catalysts. Top. Catal., 2014, 57, 1463-1469.
[81]
Kuncser, V.; Coman, S. M.; Kemnitz, E.; Parvulescu, V. I. Magnetic nanocomposites for an efficient valorization of biomass., J. Appl. Phys.. 2015. 117, 17D724.
[82]
Podolean, I.; Rizescu, C.; Bala, C.; Rotariu, L.; Parvulescu, V.I.; Coman, S.M.; Garcia, H. Unprecedented catalytic wet oxidation of glucose to succinic acid induced by the addition of n-butylamine to a Ru(III) catalyst. ChemSusChem, 2016, 9, 2307-2311.
[83]
Opris, C.; Cojocaru, B.; Gheorghe, N.; Tudorache, M.; Coman, S.M.; Parvulescu, V.I.; Duraki, B.; Krumeich, F.; van Bokhoven, J.A. Lignin fragmentation over magnetically recyclable composite Co@Nb2O5@Fe3O4 catalysts. J. Catal., 2016, 339, 209-227.
[84]
Opris, C.; Cojocaru, B.; Apostol, N.; Tudorache, M.; Coman, S.M.; Parvulescu, V.I.; Duraki, B.; Krumeich, F.; van Bokhoven, J. Lignin fragmentation onto multifunctional Fe3O4@Nb2O5@Co@Re catalysts: The role of the composition and deposition route of rhenium. ACS Catal., 2017, 7, 3257-3267.
[85]
Tudorache, M.; Opris, C.; Cojocaru, B.; Apostol, N.; Tirsoaga, A.; Coman, S.; Parvulescu, V.; Duraki, B.; Krumeich, F.; van Bokhoven, J. Highly efficient, easily recoverable, and recyclable Re-SiO2-Fe3O4 catalyst for the fragmentation of lignin. ACS Sustain. Chem.& Eng., 2018, 6, 9606-9618.
[86]
Tudorache, M.; Ghemes, G.; Nae, A.; Matei, E.; Mercioniu, I.; Kemnitz, E.; Ritter, B.; Coman, S.; Parvulescu, V.I. Biocatalytic designs for the conversion of renewable glycerol into glycerol carbonate as a value-added product. Cent. Eur. J. Chem., 2014, 12, 1262-1270.
[87]
Tudorache, M.; Negoi, A.; Protesescu, L.; Parvulescu, V.I. Biocatalytic alternative for bio-glycerol conversion with alkyl carbonates via a lipase-linked magnetic nano-particles assisted process. Appl. Catal. B: Environ., 2014, 145, 120-125.
[88]
Tudorache, M.; Negoi, A.; Tudora, B.; Parvulescu, V.I. Environmental-friendly strategy for biocatalytic conversion of waste glycerol to glycerol carbonate. Appl. Catal. B: Environ., 2014, 146, 274-278.
[89]
Tudorache, M.; Protesescu, L.; Coman, S.; Parvulescu, V.I. Efficient bio-conversion of glycerol to glycerol carbonate catalysed by lipase extracted from Aspergillus niger. Green Chem., 2012, 14, 478-482.
[90]
Tudorache, M.; Protesescu, L.; Negoi, A.; Parvulescu, V.I. Recyclable biocatalytic composites of lipase-linked magnetic macro-/nano-particles for glycerol carbonate synthesis. Appl. Catal. A: Gen., 2012, 437-438, 90-95.
[91]
Tudorache, M.; Nae, A.; Coman, S.; Parvulescu, V.I. Strategy of cross-linked enzyme aggregates onto magnetic particles adapted to the green design of biocatalytic synthesis of glycerol. RSC Advances, 2013, 3, 4052-4058.
[92]
Sasaki, M.; Adschiri, T.; Arai, K. Production of cellulose II from native cellulose by near- and supercritical water solubilisation. J. Agric. Food Chem., 2003, 51, 5376-5381.
[93]
Chheda, J.N.; Huber, G.W.; Dumesic, J.A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed., 2007, 46, 7164-7183.
[94]
Guha, S.K.; Kobayashi, H.; Fukuoka, A. In: Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals; M. Crocker (Ed.), RSC Publishing, Cambridge, . , 2010, p. 344.
[95]
Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates - the US Department of Energy’s “Top 10” revisited. Green Chem., 2010, 12, 539-554.
[96]
Komanoya, T.; Kobayashi, H.; Hara, K.; Chun, W-J.; Fukuoka, A. Catalysis and characterization of carbon-supported ruthenium for cellulose hydrolysis. Appl. Catal. A Gen., 2011, 407, 188-194.
[97]
Rinaldi, R.; Schüth, F. Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem, 2009, 2, 1096-1107.
[98]
Zheng, M.; Pang, J.; Sun, R.; Wang, A.; Zhang, T. Selectivity control for cellulose to diols: dancing on eggs. ACS Catal., 2017, 7, 1939-1954.
[99]
Fukuoka, A.; Dhepe, P.L. Catalytic conversion of cellulose into sugar alcohols. Angew. Chem. Int. Ed., 2006, 45, 5161-5163.
[100]
Dhepe, P.L.; Fukuoka, A. Cellulose conversion under heterogeneous catalysis. ChemSusChem, 2008, 1, 969-975.
[101]
Van de Vyver, S.; Geboers, J.; Dusselier, M.; Schepers, H.; Vosch, T.; Zhang, L.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F. Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers. ChemSusChem, 2010, 3, 698-701.
[102]
Geboers, J.; Van de Vyver, S.; Carpentier, K.; de Blochouse, K.; Jacobs, P.; Sels, B. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chem. Commun. , 2010, 46, 3577-3579.
[103]
Van de Vyver, S.; Geboers, J.; Schutyser, W.; Dusselier, M.; Eloy, P.; Dornez, E.; Seo, J.W.; Courtin, C.M.; Gaigneaux, E.M.; Jacobs, P.A.; Sels, B.F. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose. ChemSusChem, 2012, 5, 1549-1558.
[104]
Besson, M.; Gallezot, P.; Pinel, C. Conversion of biomass into chemicals over metal catalysts. Chem. Rev., 2014, 114, 1827-1870.
[105]
Lazaridis, P.A.; Karakouli, S.A.; Teodorescu, C.; Apostol, N.; Macovei, D.; Panteli, A.; Delimitis, A.; Coman, S.M.; Parvulescu, V.I.; Triantafyllidis, K.S. High hexitols selectivity in cellulose hydrolytic hydrogenation over platinum (Pt) vs. ruthenium (Ru) catalysts supported on micro/mesoporous carbon. Appl. Catal. B: Environ, 2017, 214, 1-14.
[106]
Jollet, V.; Chambon, F.; Rataboul, F.; Cabiac, A.; Pinel, C.; Guillon, E.; Essayem, N. Non-catalyzed and Pt/gamma-Al2O3-catalyzed hydrothermal cellulose dissolution-conversion: influence of the reaction parameters and analysis of the unreacted cellulose. Green Chem., 2009, 11, 2052-2060.
[107]
Kobayashi, H.; Ito, Y.; Komanoya, T.; Hosaka, Y.; Dhepe, P.L.; Kasai, K.; Hara, K.; Fukuoka, A. Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chem., 2011, 13, 326-333.
[108]
Luo, C.; Wang, S.; Liu, H. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angew. Chem. Int. Ed., 2007, 46, 7636-7639.
[109]
Kobayashi, H.; Komanoya, T.; Hara, K.; Fukuoka, A. Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose. ChemSusChem, 2010, 3, 440-443.
[110]
Deng, W.; Liu, M.; Tan, X.; Zhang, Q.; Wang, Y. Conversion of cellobiose into sorbitol in neutral water medium over carbon nanotube-supported ruthenium catalysts. J. Catal., 2010, 271, 22-32.
[111]
Nowak, I.; Ziolek, M. Niobium compounds: Preparation, characterization, and application in heterogeneous catalysis. Chem. Rev., 1999, 99, 3603-3624.
[112]
Ding, D.; Wang, J.; Xi, J.; Liu, X.; Lu, G.; Wang, Y. High-yield production of levulinic acid from cellulose and its upgrading to gamma-valerolactone. Green Chem., 2014, 16, 3846-3853.
[113]
Carniti, P.; Gervasini, A.; Marzo, M. Absence of expected side-reactions in the dehydration reaction of fructose to HMF in water over niobic acid catalyst. Catal. Commun., 2011, 12, 1122-1126.
[114]
García-Sancho, C.; Sádaba, I.; Moreno-Tost, R.; Mérida-Robles, J.; Santamaría-González, J.; López-Granados, M.; Maireles-Torres, P. Dehydration of xylose to furfural over MCM-41-supported niobium-oxide catalysts. ChemSusChem, 2013, 6, 635-642.
[115]
Coman, S.M.; Verziu, M.; Tirsoaga, A.; Jurca, B.; Teodorescu, C.; Kuncser, V.; Parvulescu, V.I.; Scholz, G.; Kemnitz, E. NbF5-AlF3 Catalysts: Design, synthesis, and application in lactic acid synthesis from cellulose. ACS Catal., 2015, 5, 3013-3026.
[116]
Pagán-Torres, Y.J.; Gallo, J.M.R.; Wang, D.; Pham, H.N.; Libera, J.A.; Marshall, C.L.; Elam, J.W.; Datye, A.K.; Dumesic, J.A. Synthesis of highly ordered hydrothermally stable mesoporous niobia catalysts by atomic layer deposition. ACS Catal., 2011, 1, 1234-1245.
[117]
Ziolek, M. Niobium-containing catalysts-the state of the art. Catal. Today, 2003, 78, 47-64.
[118]
Candu, N.; Anita, F.; Podolean, I.; Cojocaru, B.; Parvulescu, V.I.; Coman, S.M. Direct conversion of cellulose to alpha-hydroxy acids (AHAs) over Nb2O5-SiO2-coated magnetic nanoparticles. Green Proces. Synth., 2017, 6, 255-265.
[119]
Suganuma, S.; Nakajima, K.; Kitano, M.; Yamaguchi, D.; Kato, H.; Hayashi, S.; Hara, M. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J. Am. Chem. Soc., 2008, 130, 12787-12793.
[120]
Ji, N.; Zhang, T.; Zheng, M.; Wang, A.; Wang, H.; Wang, X.; Chen, J.G. Direct catalytic conversion of cellulose into ethylane glycol using nickel-promoted tungsten carbide catalysts. Angew. Chem. Int. Ed., 2008, 47, 8510-8513.
[121]
Liu, Y.; Luo, C.; Liu, H. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Chem. Int. Ed, 2012, 51, 3249-3253.
[122]
Tai, Z.; Zhang, J.; Wang, A.; Zheng, M.; Zhang, T. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose. Chem. Commun. , 2012, 48, 7052-7054.
[123]
Deng, T.; Liu, H. Promoting effect of SnOx on selective conversion of cellulose to polyols over bimetallic Pt-SnOx/Al2O3 catalysts. Green Chem., 2013, 15, 116-124.
[124]
Binder, J.B.; Raines, R.T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc., 2009, 131, 1979-1985.
[125]
Zhang, J.; Liu, X.; Sun, M.; Ma, X.; Han, Y. Direct conversion of cellulose to glycolic acid with a phosphomolybdic acid catalyst in a water medium. ACS Catal., 2012, 2, 1698-1702.
[126]
Tan, X.; Deng, W.; Liu, M.; Zhang, Q.; Wang, Y. Carbon nanotube-supported gold nanoparticles as efficient catalysts for selective oxidation of cellobiose into gluconic acid in aqueous medium. Chem. Commun. , 2009, 46, 7179-7181.
[127]
Abbadi, A.; van Bekkum, H. Effect of pH in the Pt-catalyzed oxidation of D-glucose to D-gluconic acid. J. Mol. Catal.A: Chem., 1995, 97, 111-118.
[128]
Comotti, M.; Della Pina, C.; Falletta, E.; Rossi, M. Is the biochemical route always advantageous? The case of glucose oxidation. J. Catal., 2006, 244, 122-125.
[129]
Arends, I.W.C.E.; Kodama, T.; Sheldon, R.A. Oxidation using ruthenium catalysts. Top. Organomet. Chem., 2004, 11, 277-320.
[130]
Pagliaro, M.; Campestrini, S.; Ciriminna, R. Ru-based oxidation catalysis. Chem. Soc. Rev., 2005, 34, 837-845.
[131]
Kirk, O. In: Encyclopedia of Chemical Technology, 4th ed; , 1997.
[132]
van Putten, R-J.; van der Waal, J.C.; de Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev., 2013, 113, 1499-1597.
[133]
Miura, T.; Kakinuma, H.; Kawano, T.; Matsuhisa, H. Method for Producing Furan-2,5-Dicarboxylic Acid, U.S. Patent US20070232815A1, October 4 2007.
[134]
Merat, N.; Verdeguer, P.; Rigal, L.; Gaset, L.; Delmas, M. . Process for the Manufacture of Furan-2,5-Dicarboxylic Acid, FR 2669634, June 10 1994.
[135]
Verdeguer, P.; Merat, N.; Gaset, A. Oxydation catalytique du HMF en acide 2,5-furane dicarboxylique. J. Mol. Catal., 1993, 85, 327-344.
[136]
Partenheimer, W.; Grushin, V.V. Synthesis of 2, 5-diformylfuran and furan-2, 5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. Onexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal=bromide catalysts. Adv. Synth. Catal., 2001, 343, 102-111.
[137]
Ribeiro, M.L.; Schuchardt, U. Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2, 5-furandicarboxylic acid. Catal. Commun., 2003, 4, 83-86.
[138]
Rass, H.A.; Essayem, N.; Besson, M. Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion. Green Chem., 2013, 15, 2240-2251.
[139]
Pasini, T.; Piccinini, M.; Blosi, M.; Bonelli, R.; Albonetti, S.; Dimitratos, N.; Lopez-Sanchez, J.A.; Sankar, M.; He, Q.; Kiely, C.J.; Hutchings, G.J.; Cavani, F. Selective oxidation of 5-hydroxymethyl-2-furfural using supported gold-copper nanoparticles. Green Chem., 2011, 13, 2091-2099.
[140]
Gorbanev, Y.Y.; Kegnaes, S.; Riisager, A. Effect of support in heterogeneous ruthenium catalysts used for the selective aerobic oxidation of HMF in water. Top. Catal., 2011, 54, 1318-1324.
[141]
Gorbanev, Y.Y.; Kegnaes, S.; Riisager, A. Selective aerobic oxidation of 5-hydroxymethylfurfural in water over solid ruthenium hydroxide catalysts with magnesium-based supports. Catal. Lett., 2011, 141, 1752-1760.
[142]
Stahlberg, T.; Eyjóflsdóttir, E.; Gorbanev, Y.Y.; Sádaba, I.; Riisager, A. Aerobic oxidation of 5-(hydroxymhetyl)furfural in ionic liquids with solid ruthenium hydroxide catalysts. Catal. Lett., 2012, 142, 1089-1097.
[143]
Rosatella, A.A.; Simeonov, S.P.; Frade, R.F.M.; Afonso, A.M. 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem., 2011, 13, 754-793.
[144]
Delidovich, I.; Hausoul, P.J.C.; Deng, L.; Pfützenreuter, R.; Rose, M.; Palkovits, R. Alternative monomers based on lignocellulose and their use for polymer production. Chem. Rev., 2016, 116, 1540-1599.
[145]
Li, H.; Yang, S.; Riisager, A.; Pandey, A.; Sangwan, R.S.; Saravanamurugan, S.; Luque, R. Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chem., 2016, 18, 5701-5735.
[146]
Tirsoaga, A.; El Fergani, M.; Parvulescu, V.I.; Coman, S.M. Upgrade of 5-hydroxymethylfurfural to dicarboxylic acids onto multifunctional-based Fe3O4@SiO2 magnetic catalysts. ACS Sustain. Chem.& Eng., 2018, 11, 14292-14301.
[147]
Wang, S.; Zhang, Z.; Liu, B. Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid over a recyclable Fe3)4-CoOx magnetite nanocatalyst. ACS Sustain. Chem.& Eng., 2015, 3, 406-412.
[148]
Hayashi, E.; Komanoya, T.; Kamata, K.; Hara, M. Heterogeneously-catalyzed aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid with MnO2. ChemSusChem, 2017, 10, 654-658.
[149]
Cortright, R.D.; Davda, R.R.; Dumesic, J.A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 2002, 418, 964-967.
[150]
Geng, J.; Jefferson, D.A.; Johnson, B.F.G. Direct conversion of iron stearate into magnetic Fe and Fe3C nanocrystals encapsulated in polyhedral graphite cages. Chem. Commun. , 2004, 21, 2442-2443.
[151]
Podolean, I.; Cojocaru, B.; Garcia, H.; Teodorescu, C.; Coman, S.M.; Parvulescu, V.I. From glucose direct to succinic acid: An optimized recyclable bi-functional Ru@MNP-MWCNT catalyst. Top. Catal., 2018, 61, 1866-1876.
[152]
Li, J-H.; Hong, R-Y.; Luo, G-H.; Zheng, G.Y.; Li, H-Z.; Wei, D-G. An easy approach to encapsulating Fe3O4 nanoparticles in multiwalled carbon nanotubes. N. Carbon Mater., 2010, 25, 192-198.
[153]
Sudarsanam, P.; Zhong, R.; Van den Bosch, S.; Coman, S.M.; Parvulescu, V.I.; Sels, B.F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem. Soc. Rev., 2018, 47, 8349-8402.
[154]
Evtuguin, D.V.; Pascoal Neto, C.; Rocha, J.; Pedrosa de Jesus, J.D. Oxidative delignification in the presence of molybdovanado- phosphate heteropolyanions: mechanism and kinetic studies. Appl. Catal. A Gen., 1998, 167, 123-139.
[155]
Ghaffar, S.H.; Fan, M. Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy, 2013, 57, 264-279.
[156]
Fan, M.; Jiang, P.; Bi, P.; Den, S.; Yan, L.; Zhai, Q.; Wang, T.; Li, Q. Directional synthesis of ethylbenzene through catalytic transformation of lignin. Bioresour. Technol., 2013, 143, 59-67.
[157]
Chakar, F.S.; Ragauskas, A.J. Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod., 2004, 20, 131-141.
[158]
Roberts, V.M.; Stein, V.; Reiner, T.; Lemonidou, A.; Li, X.; Lercher, J.A. Towards quantitative catalytic lignine depolymerization. Chemistry Eur. J.,, 2011, 17, 5939-5948.
[159]
Harris, E.E.; D’Ianni, J.; Adkins, H. Reaction of hardwood lignin with hydrogen. J. Am. Chem. Soc., 1938, 60, 1467-1470.
[160]
McDermott, J.B.; Klein, M.T. Chemical and probabilistic modelling of complex reactions: A lignin depolymerization example. Chem. Eng. Sci., 1986, 41, 1053-1060.
[161]
Yoshida, T.; Oshima, T. Partial oxidative and catalytic biomass gasification in supercritical water: A promising flow reactor system. Ind. Eng. Chem. Res., 2004, 43, 4097-4104.
[162]
Osada, M.; Sato, O.; Watanabe, M.; Arai, K.; Shirai, M. Water density effect on lignin gasification over supported noble metal catalysts in supercritical water. Energy Fuels, 2006, 20, 930-935.
[163]
Zhang, W.; Chen, J.; Liu, R.; Wang, S.; Chen, L.; Li, K. Hydrodeoxygenation of lignin-derived phenolic monomers and dimers to alkane fuels over bifunctional zeolite-supported metal catalysts. ACS Sustain. Chem.& Eng., 2014, 2, 683-691.
[164]
Westermark, U.; Samuelsson, B.; Lundquist, K. Homolytic cleavage of the beta-ether bond in phenolic beta-O-4 structures in wood lignin and in guaiacylglycerol-beta-guaiacyl ether. Res. Chem. Intermed., 1995, 21, 343-352.
[165]
Lundquist, K.; Ericsson, L. Acid degradation of lignin. VI. Formation of methanol. Acta Chem. Scand., 1971, 25, 756-758.
[166]
Ito, H.; Imai, T.; Lundquist, K.; Yokoyama, T.; Matsumoto, Y. Revisiting the mechanism of beta-O-4 bond cleavage during acidolysis of lignin. Part 3: search for the rate-determining step of a non-phenolic C6-C3 type model compound. J. Wood Chem. Technol., 2011, 31, 172-182.
[167]
Kobayashi, T.; Kohn, B.; Holmes, L.; Faulkner, R.; Davis, M.; Maciel, G.E. Molecular-level consequences of biomass pretreatment by dilute sulfuric acid at various temperatures. Energy Fuels, 2011, 25, 1790-1797.
[168]
Galkin, M.V.; Samec, J.S.M. Selective route to 2-propenyl aryls directly from wood by a tandem organosolv and palladium-catalysed transfer hydrogenolysis. ChemSusChem, 2014, 7, 2154-2158.
[169]
Chen, K.; Mori, K.; Watanabe, H.; Nakagawa, Y.; Tomishige, K. C-O bond hydrogenolysis of cyclic ethers with OH groups over ruthenium-modified supported iridium catalysts. J. Catal., 2012, 294, 171-183.
[170]
Nakagawa, Y.; Mori, K.; Chen, K.; Amada, Y.; Tamura, M.; Tomishige, K. Hydrogenolysis of C-O bond over Re-modified Ir catalyst in alkane solvent. Appl. Catal. A Gen., 2013, 468, 418-425.
[171]
Ma, L.; Wang, T.; Liu, Q.; Zhang, X.; Ma, W.; Zhang, Q. A review of thermal-chemical conversion of lignocellulosic biomass in China. Biotechnol. Adv., 2012, 30, 859-873.
[172]
Morales-Delarosa, S.; Campos-Martin, J.M. In: Advances in Biorefineries; Woodhead Publishing, 2014, Vol. 6, pp. 152-198.
[173]
Bose, S.K.; Francis, R.C.; Govender, M.; Bush, T.; Spark, A. Lignin content versus syringil to guaiacyl ratio amongst poplars. Bioresour. Technol., 2009, 100, 1628-1633.
[174]
Long, J.; Zhang, Q.; Wang, T.; Zhang, X.; Xu, Y.; Ma, L. An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresour. Technol., 2014, 154, 10-17.
[175]
Huang, X.; Korányi, T.I.; Boot, M.D.; Hensen, E.J.M. Catalytic depolymerisation of lignin in supercritical ethanol. ChemSusChem, 2014, 7, 2276-2288.
[176]
Mostashari, S.M.; Shariati, S.; Manoochehri, M. Lignin removal from aqueous solutions using Fe3O4 magnetic nanoparticles as recoverable adsorbent. Cellul. Chem. Technol., 2013, 47, 727-734.
[177]
Deng, C.; Duan, X.; Zhou, J.; Chen, D.; Zhou, X.; Yuan, W. Size effect of Pt-Re bimetallic catalysts for glycerol hydrogenolysis. Catal. Today, 2014, 234, 208-214.
[178]
Nakagawa, Y.; Ning, X.; Amada, Y.; Tomishige, K. Solid acid co-catalyst for the hydrogenolysis of glycerol to 1, 3-propanediol over Ir-ReOx/SiO2. Appl. Catal. A Gen., 2012, 433-434, 128-134.
[179]
Mitra, B.; Gao, X.; Wachs, I.E.; Hirt, A.M.; Deo, G. Characterization of supported rhenium oxide catalysts: effect of loading, support and additives. Phys. Chem. Chem. Phys., 2001, 3, 1144-1152.
[180]
Horino, Y. Rhenium-catalyzed C-H and C-C bond activation. Angew. Chem. Int. Ed., 2007, 46, 2144-2146.
[181]
OECD-FAO , Agricultural Outlook 2016–2025; OECD Publishing: Paris 2016.http://www.fao.org/3/a-i5778e.pdf (Accessed October 13, 2018)
[182]
Fraile, J.M.; García, J.I.; Herrerías, C.I.; Pires, E. Synthetic transformations for the valorization of fatty acid derivatives. Synthesis, 2017, 49, 1444-1460.
[183]
Adlercreutz, P. Immobilisation and application of lipases in organic media. Chem. Soc. Rev., 2013, 42, 6406-6436.
[184]
Hwang, E.T.; Lee, B.; Zhang, M.; Jun, S-H.; Shim, J.; Lee, J.; Kim, J.; Gu, M.B. Immobilization and stabilization of subtilisin Carlsberg in magnetically-separable mesoporous silica for transesterification in an organic solvent. Green Chem., 2012, 14, 1884-1887.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 8
ISSUE: 1
Year: 2019
Page: [2 - 19]
Pages: 18
DOI: 10.2174/2211544708666181227152000
Price: $58

Article Metrics

PDF: 27
HTML: 4
EPUB: 1
PRC: 1