Design of Experiments (DoE) Approach to Optimize the Sustained Release Microparticles of Gefitinib

Author(s): Govind Soni, Khushwant S. Yadav*, Mahesh K. Gupta.

Journal Name: Current Drug Delivery

Volume 16 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Gefitinib (GEF), the kinase inhibitor, is presently available as tablets to be taken orally in high doses of 250-500 mg per day due to its poor solubility. The solubility issues affect not only its onset of action but also the bioavailability. These drawbacks foresight the need to have an alternate dosage form, preferably a sustained release formulation.

Methods: In the present study, microparticles were prepared by emulsion solvent evaporation using PLGA 50:50 (GEF-PLGA MP). A 32 factorial design was used to optimize the critical quality parameters to the set mean particle size in the range of 7.4±2.5 µm and entrapment efficiency of 80%. SEM microscopy of the prepared microparticles confirmed to have a spherical smooth shape. The GEFPLGA- MPs sustained the release of GEF for 72 hours. The first-order kinetics ruled the mechanism of drug release and was predicted to follow Fickian diffusion.

Result: Anticancer efficacy was judged by the cytotoxicity studies using the L132 lung cancer cells. MTT assay showed 3-fold enhanced cytotoxicity of GEF loaded microparticles against L132 cells as compared to plain GEF.

Conclusion: It was concluded that gefitinib can be efficiently loaded into the biodegradable polymer PLGA to provide sustained release of the drug.

Keywords: Microparticles, gefitinib, sustained release, factorial design, cytotoxicity, PLGA.

[1]
Thomas, S.M.; Grandis, J.R. Pharmacokinetic and pharmacodynamic properties of EGFR inhibitors under clinical investigation. Cancer Treat. Rev., 2004, 30(3), 255-268.
[2]
Kaur, J.; Tikoo, K. p300/CBP dependent hyperacetylation of histone potentiates anticancer activity of gefitinib nanoparticles. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(5), 1028-1040.
[3]
Brannon-Peppas, L. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int. J. Pharm., 1995, 116(1), 1-9.
[4]
Choonara, B.F.; Choonara, Y.E.; Kumar, P.; Bijukumar, D.; du Toit, L.C.; Pillay, V. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol. Adv., 2014, 32(7), 1269-1282.
[5]
Yadav, K.S.; Sawant, K.K. Formulation optimization of etoposide loaded PLGA nanoparticles by double factorial design and their evaluation. Curr. Drug Deliv., 2010, 7(1), 51-64.
[6]
Mehta, A.K.; Yadav, K.S.; Sawant, K.K. Nimodipine loaded PLGA nanoparticles: Formulation optimization using factorial design, characterization and in vitro evaluation. Curr. Drug Deliv., 2007, 4(3), 185-193.
[7]
Prajapati, V.D.; Jani, G.K.; Kapadia, J.R. Current knowledge on biodegradable microspheres in drug delivery. Expert Opin. Drug Deliv., 2015, 12(8), 1283-1299.
[8]
Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P.V. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci., 2014, 15(3), 3640-3659.
[9]
Zimmer, A.; Kreuter, J. Microspheres and nanoparticles used in ocular delivery systems. Adv. Drug Deliv. Rev., 1995, 16, 61-73.
[10]
Gajra, B.; Dalwadi, C.; Patel, R. Formulation and optimization of itraconazole polymeric lipid hybrid nanoparticles (Lipomer) using box behnken design. DARU J. Pharm. Sci., 2015, 23(1), 3.
[11]
Soni, G.; Yadav, K.S. High encapsulation efficiency of poloxamer-based injectable thermoresponsive hydrogels of etoposide. Pharm. Dev. Technol., 2014, 19(6), 651-661.
[12]
Saini, R.; Singh, S.K.; Verma, P.R.P. Evaluation of carvedilol-loaded microsponges with nanometric pores using response surface methodology. J. Exp. Nanosci., 2014, 9(8), 831-850.
[13]
Bragagni, M.; Gil-Alegre, M.E.; Mura, P.; Cirri, M.; Ghelardini, C.; Mannelli, L.D.C. Improving the therapeutic efficacy of prilocaine by PLGA microparticles: Preparation, characterization and in vivo evaluation. Int. J. Pharm., 2018, 547(1), 24-30.
[14]
Patil, S.B.; Sawant, K.K. Development, optimization and in vitro evaluation of alginate mucoadhesive microspheres of carvedilol for nasal delivery. J. Microencapsul., 2009, 26(5), 432-443.
[15]
Gurunathan, S.; Jeong, J.K.; Han, J.W.; Zhang, X.F.; Park, J.H.; Kim, J.H. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Lett., 2015, 10(1), 35.
[16]
Yadav, K.S.; Jacob, S.; Sachdeva, G.; Sawant, K.K. Intracellular delivery of etoposide loaded biodegradable nanoparticles: Cytotoxicity and cellular uptake studies. J. Nanosci. Nanotechnol., 2011, 11(8), 6657-6667.
[17]
Srinivas, N.S.K.; Verma, R.; Kulyadi, G.P.; Kumar, L. A quality by design approach on polymeric nanocarrier delivery of gefitinib: Formulation, in vitro, and in vivo characterization. Int. J. Nanomedicine, 2017, 12, 15.
[18]
Liang, Y.C.; Wu, G.; Cheng, J.; Yu, D.D.; Wu, H.G. Gefitinib-induced intestinal obstruction in advanced non-small cell lung carcinoma: A case report. Oncol. Lett., 2015, 10(3), 1277-1280.
[19]
Leech, D.P.; Scott, J.T. Nanotechnology documentary standards. J. Technol. Transf., 2017, 42(1), 78-97.
[20]
Jyothi, N.V.N.; Prasanna, P.M.; Sakarkar, S.N.; Prabha, K.S.; Ramaiah, P.S.; Srawan, G.Y. Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencap., 2010, 27(3), 187-197.
[21]
Soni, G.; Yadav, K.S. Fast-dissolving films of sumatriptan succinate: factorial design to optimize in vitro dispersion time. J. Pharm. Innov., 2015, 10(2), 166-174.
[22]
Kaur, G.; Rath, G.; Heer, H.; Goyal, A.K. Optimization of protocell of silica nanoparticles using 3 2 factorial designs. AAPS PharmSciTech, 2012, 13(1), 167-173.
[23]
Chen, W.; Palazzo, A.; Hennink, W.E.; Kok, R.J. Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Mol. Pharm., 2016, 14(2), 459-467.
[24]
Özkan, Y.; Dıkmen, N.; Işimer, A.; Günhan, Ö.; Aboul-Enein, H.Y. Clarithromycin targeting to lung: Characterization, size distribution and in vivo evaluation of the human serum albumin microspheres. Farmaco, 2000, 55(4), 303-307.
[25]
Ramaiah, B.; Nagaraja, S.H.; Kapanigowda, U.G.; Boggarapu, P.R.; Subramanian, R. High azithromycin concentration in lungs by way of bovine serum albumin microspheres as targeted drug delivery: Lung targeting efficiency in albino mice. DARU J. Pharm. Sci., 2016, 24(1), 14.
[26]
Ghasemian, E.; Vatanara, A.; Najafabadi, A.R.; Rouini, M.R.; Gilani, K.; Darabi, M. Preparation, characterization and optimization of sildenafil citrate loaded PLGA nanoparticles by statistical factorial design. DARU J. Pharm. Sci., 2013, 21(1), 68.
[27]
Kohane, D.S.; Langer, R. Biocompatibility and drug delivery systems. Chem. Sci., 2010, 1(4), 441-446.
[28]
Kohane, D.S.; Smith, S.E.; Louis, D.N.; Colombo, G.; Ghoroghchian, P.; Hunfeld, N.G.; Berde, C.B.; Langer, R. Prolonged duration local anesthesia from tetrodotoxin-enhanced local anesthetic microspheres. Pain, 2003, 104(1-2), 415-421.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 16
ISSUE: 4
Year: 2019
Page: [364 - 374]
Pages: 11
DOI: 10.2174/1567201816666181227114109
Price: $58

Article Metrics

PDF: 22
HTML: 3
EPUB: 1
PRC: 1