Synthetic Approaches to Organoselenium Derivatives with Antimicrobial and Anti-Biofilm Activity

Author(s): Iris Di Leo, Federica Messina, Vanessa Nascimento, Francesca G. Nacca, Donatella Pietrella, Eder J. Lenardão, Gelson Perin, Luca Sancineto*.

Journal Name: Mini-Reviews in Organic Chemistry

Volume 16 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

In the recent years, an increasing attention has been given to the biological activities exerted by organoselenium compounds. In 1984, Sies reported for the first time the ability of ebselen to mimic the activity of glutathione peroxidase. From this milestone, several studies reported the pharmacological properties of selenium-containing compounds including their exploitation as antimicrobials. In this context, this minireview presents the most recent examples of seleno derivatives endowed with antimicrobial activities while discussing the most interesting and recent synthetic procedures used to obtain these compounds.

Keywords: Biofilm, diselenides, gram-negative bacteria, gram-positive bacteria, selenium, benzoisoselenazolones.

[1]
(a) Nogueira, C.W.; Rocha, J.B.T. Toxicology and pharmacology of selenium: Emphasis on synthetic compounds. Arch. Toxicol., 2011, 85, 1313-1359.
(b) Rayman, M.P. Selenium and human health. Lancet, 2012, 379(9822), 1256-1268.
(c) Tan, L.C.; Nancharaiah, Y.V.; Van Hullebusch, E.D.; Lens, P.N.L. Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnol. Adv., 2016, 34(5), 886-907.
(d) Santoro, S.; Azeredo, J.B.; Nascimento, V.; Sancineto, L.; Braga, A.L.; Santi, C. The green side of the moon: Ecofriendly aspects of organoselenium chemistry. RSC Advances, 2014, 4, 31521-31535.
(e) Pacuła, A.J.; Mangiavacchi, F.; Sancineto, L.; Lenardão, E.J.; Scianowski, J.; Santi, C. An update on selenium containing compounds from poison to drug candidates: A review on the GPx-like activity. Curr. Chem. Biol., 2015, 9, 97-112.
(f) Lenardão, E.J.; Santi, C.; Sancineto, L. Bioactive Organoselenium Compounds and Therapeutic Perspectives.In: New frontiers in Organoselenium Compounds; Springer Nature: Cham, 2018, pp. 99-143.
[2]
Pietrella, D.In Organoselenium Chemistry: Between Synthesis and Biochemistry; Santi C., Ed.; eISBN:978-1-60805-838-9, Bentham Science: The Netherland. , 2014, p. pp. 328-344 (17).
[3]
Pesarico, A.P.; Sartori, G.; dos Santos, C.F.A.; Neto, J.S.S.; Bortolotto, V.; Santos, R.C.V.; Nogueira, C.W.; Prigol, M. 2,2′-Dithienyl diselenide pro-oxidant activity accounts for antibacterial and antifungal activities. Microbiol. Res., 2013, 168, 563-568.
[4]
Loreto, E.S.; Mario, D.A.N.; Santurio, J.M.; Alves, S.H.; Nogueira, C.W.; Zeni, G. In vitro antifungal evaluation and structure-activity relationship of diphenyl diselenide and synthetic analogues. Mycoses, 2011, 54, 572-576.
[5]
Denardi, L.B.; Mario, D.A.N.; de Loreto, E.S.; Nogueira, C.W.; Santurio, J.M.; Alves, S.H. Antifungal activities of diphenyl diselenide alone and in combination with fluconazole or amphotericin B against Candida glabrata. Mycopathologia, 2013, 176, 165-169.
[6]
Plano, D.; Baquedano, Y.; Moreno-Mateos, D.; Font, M.; Jiménez-Ruiz, A.; Palop, J.A.; Sanmartín, C. Selenocyanates and diselenides: A new class of potent antileishmanial agents. Eur. J. Med. Chem., 2011, 46, 3315-3323.
[7]
Font, M.; Baquedano, Y.; Plano, D.; Moreno, E.; Espuelas, S.; Sanmartín, C.; Palop, J.A. Molecular descriptors calculation as a tool in the analysis of the antileishmanial activity achieved by two series of diselenide derivatives. An insight into its potential action mechanism. J. Mol. Graph. Model., 2015, 60, 63-78.
[8]
Shaaban, S.; Negm, A.; Sobh, M.A.; Wessjohann, L.A. Organoselenocyanates and symmetrical diselenides redox modulators: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2015, 97, 190-201.
[9]
(a) Kloc, K.; Młochowski, J.; Osajda, K.; Syper, L.; Wojtowicz, H. New heterocyclic selenenamides: 1,2,4-benzoselenadiazin-3(4H)-ones and 1,3,2- benzodiselenazoles. Tetrahedron Lett., 2002, 43, 4071-4074.
(b) Barcellos, A.M.; Abenante, L.; Sarro, M.T.; Di Leo, I.; Lenardão, E.J.; Perin, G.; Santi, C. New prospective for redox modulation mediated by organoselenium and organotellurium compounds. Curr. Org. Chem., 2017, 21(20), 2044-2061.
[10]
(a) Jin, B.S.; Han, S.G.; Lee, W.K.; Ryoo, S.W.; Lee, S.J.; Suh, S.W.; Yu, Y.G. Inhibitory mechanism of novel inhibitors of UDP-N-Acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae. J. Microbiol. Biotechnol., 2009, 19(12), 1582-1589.
(b) Gustafsson, T.N.; Osman, H.; Werngren, J.; Hoffner, S.; Engman, L.; Holmgren, A. Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis. Biochim. Biophys. Acta, 2016, 1860(6), 1265-1271.
(c) Lu, J.; Vlamis-Gardikas, A.; Kandasamy, K.; Zhao, R.; Gustafsson, T.N.; Engstrand, L.; Hoffner, S.; Engman, L.; Holmgren, A. Inhibition of bacterial thioredoxin reductase: An antibiotic mechanism targeting bacteria lacking glutathione. FASEB J., 2013, 27, 1394-1403.
(d) Favrot, L.; Grzegorzewicz, A.E.; Lajiness, D.H.; Marvin, R.K.; Boucau, J.; Isailovic, D.; Jackson, M.; Ronning, D.R. Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen. Nat. Commun., 2013, 4, 2748.
(e) Chiou, J.; Wan, S.; Chan, K.; So, P.; He, D.; Wai-chi, Chan W. E.; Chan, T.; Wong, K.; Tao, J.; Chen, S. Ebselen as a potent covalent inhibitor of New Delhi metallo-β-lactamase (NDM-1). Chem. Commun., 2015, 51, 9543.
(f) Zou, L.; Lu, J.; Wang, J.; Ren, X.; Zhang, L.; Gao, Y.; Rottenberg, M.E.; Holmgren, A. Synergistic antibacterial effect of silver and ebselen against multidrug‐resistant Gram-negative bacterial infections. EMBO Mol. Med., 2017, 9(8), 1165-1178.
(g) Mukherjee, S.; Weiner, W.S.; Schroeder, C.E.; Simpson, D.S.; Hanson, A.M.; Sweeney, N.L.; Marvin, R.K.; Ndjomou, J.; Kolli, R.; Isailovic, D.; Schoenen, F.J.; Frick, D.N. Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication. ACS Chem. Biol., 2014, 9(10), 2393-2403.
(h) Xu, K.; Zhang, Y.; Tang, B.; Laskin, J.; Roach, P.J.; Chen, H. Study of highly selective and efficient thiol derivatization using selenium reagents by mass spectrometry. Anal. Chem., 2010, 82(16), 6926-6932.
[11]
Macegoniuk, K.; Grela, E.; Palus, J.; Rudzinska-Szostak, E.; Grabowiecka, A.; Biernat, M.; Berlicki, Ł. 1,2-Benzisoselenazol-3(2H)-one derivatives as a new class of bacterial urease inhibitors. J. Med. Chem., 2016, 59, 8125-8133.
[12]
Wójtowicz, H.; Kloc, K.; Maliszewska, I.; Młochowski, J.; Pietka, M.; Piasecki, E. Azaanalogues of ebselen as antimicrobial and antiviral agents: Synthesis and properties. IL Farmaco, 2004, 59, 863-868.
[13]
Al-Rubaie, A.Z.; Al-Jadaan, S.A.S.; Muslim, S.K.; Saeed, E.A.; Ali, E.T.; Al-Hasani, A.K.J.; Al-Salman, H.N.K.; Al-Fadal, S.A.M. Synthesis, characterization and antibacterial activity of some new ferrocenyl selenazoles and 3,5-diferrocenyl-1,2,4-selenadiazole. J. Organomet. Chem., 2014, 774, 43-47.
[14]
(a) Wang, Y.; Venter, H.; Ma, S. Efflux pump inhibitors: A novel approach to combat efflux-mediated drug resistance in bacteria. Curr. Drug Targets, 2016, 17(6), 702-719.
(b) Sabatini, S.; Gosetto, F.; Iraci, N.; Barreca, M.L.; Massari, S.; Sancineto, L.; Manfroni, G.; Tabarrini, O.; Dimovska, M.; Kaatz, G.W.; Cecchetti, V. Re-evolution of the 2-phenylquinolines: Ligand-based design, synthesis, and biological evaluation of a potent new class of Staphylococcus aureus NorA efflux pump inhibitors to combat antimicrobial resistance. J. Med. Chem., 2013, 56(12), 4975-4989.
[15]
Mbaveng, A.T.; Ignat, A.G.; Ngameni, B.; Zaharia, V.; Ngadjui, B.T.; Kuete, V. In vitro antibacterial activities of p-toluenesulfonyl-hydrazinothiazoles and hydrazinoselenazoles against multi-drug resistant Gram-negative phenotypes. BMC Pharmacol. Toxicol., 2016, 17, 3.
[16]
(a) Singh, S.K.; Singh, S. A brief history of quinoline as antimalarial agents. Int. J. Pharm. Sci. Rev. Res., 2014, 25(1), 295-302.
(b) Desai, N.; Trivedi, A.; Pandit, U.; Dodiya, A.; Rao, V.K.; Desai, P. Hybrid bioactive heterocycles as potential antimicrobial agents: A review. Mini Rev. Med. Chem., 2016, 16(18), 1500-1526.
(c) Tabarrini, O.; Massari, S.; Sancineto, L.; Daelemans, D.; Sabatini, S.; Manfroni, G.; Cecchetti, V.; Pannecouque, C. Structural investigation of the naphthyridone scaffold: Identification of a 1,6-Naphthyridone derivative with potent and selective anti-HIV activity. ChemMedChem, 2011, 6, 1249-1257.
(d) Massari, S.; Mercorelli, B.; Sancineto, L.; Sabatini, S.; Cecchetti, V.; Gribaudo, G.; Palù, G.; Pannecouque, C.; Loregian, A.; Tabarrini, O. Design, synthesis, and evaluation of WC5 analogues as inhibitors of human cytomegalovirus immediate-early 2 protein, a promising target for anti-HCMV treatment. ChemMedChem, 2013, 8, 1403-1414.
[17]
Zhang, X.; Campo, M.A.; Yao, T.; Larock, R.C. Synthesis of substituted quinolines by electrophilic cyclization of N-(2-alkynyl)anilines. Org. Lett., 2005, 7(5), 763-766.
[18]
(a) Abdel-Hafez, S.H.; Hussein, M.A. Selenium-containing heterocycles: Synthesis and pharmacological activities of some new 4-Methylquinoline- 2(1H) Selenone derivatives. Arch. Pharm. Chem. Life Sci, 2008, 341, 240-246.
(b) Abdel Hafez, S.H. Synthesis of novel selenium containing sulfa drugs and their antibacterial activities. Russ. J. Bioorganic Chem., 2010, 36(3), 370-376.
[19]
Naik, H.R.P.; Naik, H.S.B.; Naik, T.R.R.; Naika, H.R.; Gouthamchandra, K.; Mahmood, R.; Ahamed, B.M.K. Synthesis of novel benzo[h]quinolines: Wound healing, antibacterial, DNA binding and in vitro antioxidant activity. Eur. J. Med. Chem., 2009, 44(3), 981-989.
[20]
Hayat, F.; Salahuddin, A.; Zargan, J.; Azam, A. Synthesis, characterization, antiamoebic activity and cytotoxicity of novel 2-(quinolin-8-yloxy) acetohydrazones and their cyclized products (1,2,3-thiadiazole and 1,2,3-selenadiazole derivatives). Eur. J. Med. Chem., 2010, 45, 6127-6134.
[21]
Savegnago, L.; Vieira, A.I.; Seus, N.; Goldani, B.S.; Castro, M.R.; Lenardão, E.J.; Alves, D. Synthesis and antioxidant properties of novel quinoline-chalcogenium compounds. Tetrahedron Lett., 2013, 54, 40-44.
[22]
Pinz, M.; Reis, A.S.; Duarte, V.; Da Rocha, M.J.; Goldani, B.S.; Alves, D.; Savegnago, L.; Luchese, C.; Wilhelm, E.A. 4-Phenylselenyl-7-chloroquinoline, a new quinoline derivative containing selenium, has potential antinociceptive and anti-inflammatory actions. Eur. J. Pharmacol., 2016, 780, 122-128.
[23]
Abdel-Hafez, S.H. Selenium containing heterocycles: Synthesis, anti-inflammatory, analgesic and anti-microbial activities of some new 4-cyanopyridazine-3(2H)selenone derivatives. Eur. J. Med. Chem., 2008, 43, 1971-1977.
[24]
Abdel-Hafez, S.H.; Abdel-Monem, M.I.; Mohamed, M.G.; Metwally, S.A.M. Selenium-containing heterocycles 3*. Synthesis and reactions of selenolo-[2,3-b] pyridine derivatives and related fused tricyclic systems. Chem. Heterocycl. Compd., 2011, 47(3), 371-376.
[25]
Naka, T.; Minakawa, N.; Abe, H.; Kaga, D.; Matsuda, A. The stereoselective synthesis of 4′-β-Thioribonucleosides via the pummerer reaction. J. Am. Chem. Soc., 2000, 122, 7233-7243.
[26]
(a) Du, J.; Surzhykov, S.; Lin, J.S.; Newton, M.G.; Cheng, Y.C.; Schinazi, R.F.; Chu, C.K. Synthesis, anti-human immunodeficiency virus and anti-hepatitis B virus activities of novel oxaselenolane nucleosides. J. Med. Chem., 1997, 40, 2991-2993.
(b) Chu, C.K.; Ma, L.; Olgen, S.; Pierra, C.; Du, J.; Gumina, G.; Gullen, E.; Cheng, J.C.; Schinazi, R.F. Synthesis and antiviral activity of oxaselenolane nucleosides. J. Med. Chem., 2000, 43, 3906-3912.
[27]
(a) Jeong, L.S.; Choi, Y.N.; Tosh, D.K.; Choi, W.J.; Kim, H.O.; Choi, J. Design and synthesis of novel 2′,3′ -dideoxy-4′-selenonucleosides as potential antiviral agents. Bioorg. Med. Chem., 2008, 16, 9891-9897.
(b) Jayakanthan, K.; Johnston, B.D.; Pinto, B.M. Stereoselective synthesis of 4′-selenonucleosides using the Pummerer glycosylation reaction. Carbohydr. Res., 2008, 343, 1790-1800.
(c) Yu, J.; Kim, J.H.; Lee, H.W.; Alexander, V.; Ahn, H.C.; Choi, W.J.; Choi, J.; Jeong, L.S. New RNA purine building blocks, 4′-Selenopurine nucleosides: First synthesis and unusual mixture of sugar puckerings. Chem. Eur. J., 2013, 19, 5528-5532.
[28]
Sancineto, L.; Mariotti, A.; Bagnoli, L.; Marini, F.; Desantis, J.; Iraci, N.; Santi, C.; Pannecouque, C.; Tabarrini, O. Design and Synthesis of DiselenoBisBenzamides (DISeBAs) as Nucleocapsid Protein 7 (NCp7) inhibitors with anti-HIV activity. J. Med. Chem., 2015, 58(24), 9601-9614.
[29]
(a) Sancineto, L.; Iraci, N.; Tabarrini, O.; Santi, C. NCp7: Targeting a multitasking protein for next-generation anti-HIV drug development: Covalent inhibitors. Drug Discov. Today, 2018, 23(2), 260-271.
(b) Iraci, N.; Tabarrini, O.; Santi, C. Sancineto, L. NCp7: Targeting a multitask protein for next-generation anti-HIV drug development part 2. Noncovalent inhibitors and nucleic acid binders. Drug Discov. Today, 2018, 23(3), 687-695.
[30]
Taniike, H.; Inagaki, Y.; Matsuda, A.; Minakawa, N. Practical synthesis of 4′-selenopyrimidine nucleosides using hypervalent iodine. Tetrahedron, 2011, 67, 7977-7982.
[31]
Ishii, K.; Saito-Tarashima, N.; Ota, M.; Yamamoto, S.; Okamoto, Y.; Tanaka, Y.; Minakawa, N. Practical synthesis of 4′-selenopurine nucleosides by combining chlorinated purines and ‘armed’ 4-selenosugar. Tetrahedron, 2016, 72, 6589-6594.
[32]
(a) Sahu, P.K.; Naik, S.D.; Yu, J.; Jeong, L.S. 4′-Selenonucleosides as next-generation nucleosides. Eur. J. Org. Chem., 2015, 6115-6124.
(b) Sahu, P.K.; Kim, G.; Yu, J.; Ahn, J.Y.; Song, J.; Choi, Y.; Jin, X.; Kim, J.H.; Lee, S.K.; Park, S.; Jeong, L.S. Stereoselective synthesis of 4′-Selenonucleosides via seleno-michael reaction as potent antiviral agents. Org. Lett., 2014, 16, 5796-5799.
[33]
Sahu, P.K.; Umme, T.; Yu, J.; Nayak, A.; Kim, G.; Noh, M.; Lee, J.Y.; Kim, D.D.; Jeong, L.S. Selenoacyclovir and selenoganciclovir: Discovery of a new template for antiviral agents. J. Med. Chem., 2015, 58, 8734-8738.
[34]
(a) Bjarnsholt, T. The role of bacterial biofilms in chronic infections. APMIS, 2013, 121, 1-51.
(b) Drago, L.; Toscano, M. In In: Management of Prosthetic Joint Infections (PJIs); Arts, J.C.C.; Geurts, J., Ed.; eISBN: 9780081002421, 2017. Elsevier-Woodhead Publishing: Amsterdam. , 2017; p. pp. 25-39.
(c) Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358(9276), 135-138.
[35]
Parsek, M.R.; Singh, P.K. Bacterial biofilms: An emerging link to disease pathogenesis. Annu. Rev. Microbiol., 2003, 57, 677-701.
[36]
Martins, C.H.G.; Pires, R.H.; Cunha, A.O.; Pereira, C.A.M.; Singulani, J.L.; Abrao, F.; De Moraes, T.; Mendes-Giannini, M.J.S. Candida/Candida biofilms. First description of dual species Candida albicans/C. rugosa biofilm. Fungal Biol., 2016, 120, 530-537.
[37]
Bueno, R.I.; Taube, J.P.; Barbosa, L.C.; Batista, T.J.; Silva, C.M. Biofilm formation by Candida albicans is inhibited by 4,4-dichloro diphenyl diselenide (pCl-PhSe)2. Curr. Drug Discov. Technol., 2014, 3, 234-238.
[38]
Sancineto, L.; Piccioni, M.; De Marco, S.; Pagiotti, R.; Nascimento, V.; Braga, A.L.; Santi, C.; Pietrella, D. Diphenyl diselenide derivatives inhibit microbial biofilm formation involved in wound infection. BMC Microbiol., 2016, 16, 220.
[39]
(a) Tran, P.L.; Hammond, A.A.; Mosley, T.; Cortez, J.; Gray, T.; Colmer-Hamood, J.A.; Shashtri, M.; Spallholz, J.E.; Hamood, A.N.; Reid, T.W. Organoselenium coating on cellulose inhibits the formation of biofilms by Pseudomonas aeruginosa and Staphylococcus aureus. Appl. Environ. Microbiol., 2009, 75, 3586-3592.
(b) Tran, P.L.; Lowry, N.; Campbell, T.; Reid, T.W.; Webster, D.R.; Tobin, E.; Aslani, A.; Mosley, T.; Dertien, J.; Colmer-Hamood, J.A.; Hamood, A.N. An organoselenium compound inhibits Staphylococcus aureus biofilms on hemodialysis catheters in vivo. Antimicrob. Agents Chemother., 2012, 56(2), 972-978.
[40]
(a) Langi, B.; Shah, C.; Singh, K.; Chaskar, A.; Kumar, M.; Bajaj, P.N. Ionic liquid induced synthesis of selenium nanoparticles. Mater. Res. Bull., 2010, 45(6), 668-671.
(b) Fesharaki, P.; Nazari, P.; Shakibaie, M.; Rezaie, S.; Banoee, M.; Abdollahi, M.; Shahverdi, A.R. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz. J. Microbiol., 2010, 41, 461-466.
(c) Shakibaie, M.; Forootanfar, H.; Golkari, Y.; Mohammadi-Khorsand, T.; Shakibaie, M.R. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J. Trace Elem. Med. Biol., 2015, 29, 235-241.
(d) Ramya, S.; Shanmugasundaram, T.; Balagurunathan, R. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J. Trace Elem. Med. Biol., 2015, 32, 30-39.
(e) Khiralla, G.M.; El-Deeb, B.A. Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT Food Sci. Technol., 2015, 63, 1001-1007.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 6
Year: 2019
Page: [589 - 601]
Pages: 13
DOI: 10.2174/1570193X16666181227111038

Article Metrics

PDF: 36
HTML: 5