The Delivery of Personalised, Precision Medicines via Synthetic Proteins

Author(s): Benedita Kaç Labbé Feron , Simon Clifford Wainwright Richardson* .

Journal Name: Drug Delivery Letters

Volume 9 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Introduction: The design of advanced drug delivery systems based on synthetic and supramolecular chemistry has been very successful. Liposomal doxorubicin (Caelyx®), and liposomal daunorubicin (DaunoXome®), estradiol topical emulsion (EstrasorbTM) as well as soluble or erodible polymer systems such as pegaspargase (Oncaspar®) or goserelin acetate (Zoladex®) represent considerable achievements.

Discussion: As deliverables have evolved from low molecular weight drugs to biologics (currently representing approximately 30% of the market), so too have the demands made of advanced drug delivery technology. In parallel, the field of membrane trafficking (and endocytosis) has also matured. The trafficking of specific receptors i.e. material to be recycled or destroyed, as well as the trafficking of protein toxins has been well characterized. This, in conjunction with an ability to engineer synthetic, recombinant proteins provides several possibilities.

Conclusion: The first is using recombinant proteins as drugs i.e. denileukin diftitox (Ontak®) or agalsidase beta (Fabrazyme®). The second is the opportunity to use protein toxin architecture to reach targets that are not normally accessible. This may be achieved by grafting regulatory domains from multiple species to form synthetic proteins, engineered to do multiple jobs. Examples include access to the nucleocytosolic compartment. Herein, the use of synthetic proteins for drug delivery has been reviewed.

Keywords: Protein toxin, endomembrane, exosome, endocytosis, drug delivery, siRNA, antisense.

[1]
Walsh, G. Post-translational modifications of protein biopharmaceuticals. Drug Discov. Today, 2010, 15(17-18), 773-780.
[2]
Rosenfeld, P.J.; Schwartz, S.D.; Blumenkranz, M.S.; Miller, J.W.; Haller, J.A.; Reimann, J.D.; Greene, W.L.; Shams, N. Maximum tolerated dose of a humanized anti-vascular endothelial growth factor antibody fragment for treating neovascular age-related macular degeneration. Ophthalmology, 2005, 112(6), 1048-1053.
[3]
Vaishya, R.; Khurana, V.; Patel, S.; Mitra, A.K. Long-term delivery of protein therapeutics. Expert Opin. Drug Deliv., 2015, 12(3), 415-440.
[4]
Shorter, S.A.; Gollings, A.S.; Gorringe-Pattrick, M.A.M.; Coakley, J.E.; Dyer, P.D.R.; Richardson, S.C.W. The potential of toxin-based drug delivery systems for enhanced nucleic acid therapeutic delivery. Expert Opin. Drug Deliv., 2017, 14(5), 685-696.
[5]
Morris, M.C.; Depollier, J.; Mery, J.; Heitz, F.; Divita, G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol., 2001, 19(12), 1173-1176.
[6]
Kraus, A.; Täger, J.; Kohler, K.; Haerle, M.; Werdin, F.; Schaller, H.E.; Sinis, N. Non-viral genetic transfection of rat Schwann cells with FuGENE HD© lipofection and AMAXA© nucleofection is feasible but impairs cell viability. Neuron Glia Biol., 2010, 6(4), 225-230.
[7]
Cardarelli, F.; Digiacomo, L.; Marchini, C.; Amici, A.; Salomone, F.; Fiume, G.; Rossetta, A.; Gratton, E.; Pozzi, D.; Caraccioloa, G. The intracellular trafficking mechanism of lipofectamine-based transfection reagents and its implication for gene delivery. Sci. Rep., 2016, 6, 25879.
[8]
Woods, G.; Zito, K. Preparation of gene gun bullets and biolistic transfection of neurons in slice culture. J. Vis. Exp., 2008, 12, 675.
[9]
Nayerossadat, N.; Maedeh, T.; Abas Ali, P. Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 2012, 1, 27.
[10]
Engel, A.; Walter, P. Membrane lysis during biological membrane fusion: collateral damage by misregulated fusion machines. J. Cell Biol., 2008, 183(2), 181-186.
[11]
Luzio, J.P.; Rous, B.A.; Bright, N.A.; Pryor, P.R.; Mullock, B.M.; Piper, R.C. Lysosome-endosome fusion and lysosome biogenesis. J. Cell Sci., 2000, 113(9), 1515-1524.
[12]
Geary, R.; Henry, S.P.; Grillone, L.R. Fomivirsen: Clinical pharmacology and potential drug interactions. Clin. Pharmacokinet., 2002, 41(4), 255-260.
[13]
Stein, C.A.; Castanotto, D. FDA-Approved oligonucleotide therapies in 2017. Mol. Ther., 2017, 25(5), 1069-1075.
[14]
Senior, M. After Glybera’s withdrawal, what’s next for gene therapy? Nature. Biotechnol., 2017, 35, 491-492.
[15]
Aartsma-Rus, A.; Krieg, A.M. FDA approves eteplirsen for duchenne muscular dystrophy: The next chapter in the eteplirsen saga. Nucleic Acid Ther., 2017, 27(1), 1-3.
[16]
Nair, J.K.; Willoughby, J.L.S.; Chan, A.; Charisse, K.; Alam, M.R.; Wang, Q.; Hoekstra, M.; Kandasamy, P.; Kel’in, A.V.; Milstein, S.; Taneja, N.; O’Shea, J.; Shaikh, S.; Zhang, L.; Sluis, R.J.V.D.; Jung, M.E.; Akinc, A.; Hutabarat, R.; Kuchimanchi, S.; Fitzgerald, K.; Zimmermann, T.; Berkel, T.J.C.V.; Maier, M.A.; Rajeev, K.G.; Manoharan, M. Multivalent N‐acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc., 2014, 136, 16958-16961.
[17]
Dyer, P.D.R.; Kotha, A.K.; Gollings, A.S.; Shorter, S.A.; Shepherd, T.R.; Pettit, M.W.; Alexander, B.D.; Getti, G.T.M.; El-Daher, S.; Baillie, L.; Richardson, S.C.W. An in vitro evaluation of epigallocatechin gallate (eGCG) as a biocompatible inhibitor of ricin toxin. Biochim. Biophys. Acta, 2016, 1860(7), 1541-1550.
[18]
Khutoryanskiy, V.V. Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Adv. Drug Deliv. Rev., 2018, 124, 140-149.
[19]
Rytting, M. Peg-asparaginase for acute lymphoblastic leukemia. Expert Opin. Biol. Ther., 2010, 10(5), 833-839.
[20]
Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics, 2017, 9(2), E12.
[21]
Jankovic, J. Botulinum toxin: State of the art. Mov. Disord., 2017, 32(8), 1131-1138.
[22]
Baldo, B.A. Chimeric fusion proteins used for therapy: Indications, mechanisms, and safety. Drug Saf., 2015, 38(5), 455-479.
[23]
Pellizzari, R.; Rossetto, O.; Schiavo, G.; Montecucco, C. Tetanus and botulinum neurotoxins: Mechanism of action and therapeutic uses. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1999, 354(1381), 259-268.
[24]
Blum, F.C.; Chen, C.; Kroken, A.R.; Barbieri, J.T. Tetanus toxin and botulinum toxin a utilize unique mechanisms to enter neurons of the central nervous system. Infect. Immun., 2012, 80(5), 1662-1669.
[25]
Wang, Z.; Zheng, Q.; Zhang, H.; Bronson, R.T.; Madsen, J.C.; Sachs, D.H.; Huang, C.A.; Wang, Z. Ontak-like human IL-2 fusion toxin. J. Immunol. Methods, 2017, 448, 51-58.
[26]
Duncan, R.; Richardson, S.C. Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: Opportunities and challenges. Mol. Pharm., 2012, 9(9), 2380-2402.
[27]
Li, M. Enzyme replacement therapy: A review and its role in treating lysosomal storage diseases. Pediatr. Ann., 2018, 47(5), e191-e197.
[28]
Richardson, S.C.; Winistorfer, S.C.; Poupon, V.; Luzio, J.P.; Piper, R.C. Mammalian late vacuole protein sorting orthologues participate in early endosomal fusion and interact with the cytoskeleton. Mol. Biol. Cell, 2004, 15(3), 1197-1210.
[29]
Shorter, S.A.; Pettit, M.W.; Dyer, P.D.R.; Youngs, E.C.; Gorringe-Pattrick, A.M.A.; El-Daher, S.; Richardson, S. Green fluorescent protein (GFP): Is seeing believing and is that enough? J. Drug Target., 2017, 9-10, 809-817.
[30]
Richardson, S.C.; Wallom, K.L.; Ferguson, E.L.; Deacon, S.P.; Davies, M.W.; Powell, A.J.; Piper, R.C.; Duncan, R. The use of fluorescence microscopy to define polymer localisation to the late endocytic compartments in cells that are targets for drug delivery. J. Control. Release, 2008, 127(1), 1-11.
[31]
Wright, C.S. Structural comparison of the two distinct sugar binding sites in wheat germ agglutinin isolectin II. J. Mol. Biol., 1984, 178(1), 91-104.
[32]
Nadimpalli, S.K.; Amancha, P.K. Evolution of mannose 6-phosphate receptors (MPR300 and 46): Lysosomal enzyme sorting proteins. Curr. Protein Pept. Sci., 2010, 11(1), 68-90.
[33]
Ortiz, A.; Germain, D.P.; Desnick, R.J.; Politei, J.; Mauer, M.; Burlina, A.; Eng, C.; Hopkin, R.J.; Laney, D.; Linhart, A.; Waldek, S.; Wallace, E.; Weidemann, F.; Wilcox, W.R. Fabry disease revisited: Management and treatment recommendations for adult patients. Mol. Genet. Metab., 2018, 123(4), 416-427.
[34]
Chen, Y.; Sud, N.; Hettinghouse, A.; Liu, C.J. Molecular regulations and therapeutic targets of Gaucher disease. Cytokine Growth Factor Rev., 2018, 41, 65-74.
[35]
Keating, G.M.; Simpson, D. Agalsidase beta: A review of its use in the management of Fabry disease. Drugs, 2007, 67(3), 435-455.
[36]
Weinreb, N.J. Imiglucerase and its use for the treatment of Gaucher’s disease. Expert Opin. Pharmacother., 2008, 9(11), 1987-2000.
[37]
Grabowski, G.A.; Golembo, M.; Shaaltiel, Y. Taliglucerase alfa: An enzyme replacement therapy using plant cell expression technology. Mol. Genet. Metab., 2014, 112(1), 1-8.
[38]
Parenti, G.; Andria, G.; Ballabio, A. Lysosomal storage diseases: From pathophysiology to therapy. Annu. Rev. Med., 2015, 66, 471-486.
[39]
Lachmann, R.H. Enzyme replacement therapy for lysosomal storage diseases. Curr. Opin. Pediatr., 2011, 23(6), 588-593.
[40]
Spooner, R.A.; Lord, J.M. Ricin trafficking in cells. Toxins, 2015, 7(1), 49-65.
[41]
van Deurs, B.; Sandvig, K.; Petersen, O.W.; Olsnes, S.; Simons, K.; Griffiths, G. Estimation of the amount of internalized ricin that reaches the trans-Golgi network. J. Cell Biol., 1988, 106(2), 253-267.
[42]
Utskarpen, A.; Slagsvold, H.H.; Iversen, T.G.; Wälchli, S.; Sandvig, K. Transport of ricin from endosomes to the golgi apparatus is regulated by Rab6A and Rab6A′. Traffic, 2006, 7(6), 663-672.
[43]
Skånland, S.S.; Wälchli, S.; Utskarpen, A.; Wandinger-Ness, A.; Sandvig, K. Phosphoinositide-regulated retrograde transport of ricin: Crosstalk between hVps34 and sorting nexins. Traffic, 2007, 8(3), 297-309.
[44]
Day, P.J.; Owens, S.R.; Wesche, J.; Olsnes, S.; Roberts, L.M.; Lord, J.M. An interaction between ricin and calreticulin that may have implications for toxin trafficking. J. Biol. Chem., 2001, 276(10), 7202-7208.
[45]
Wales, R.; Roberts, L.M.; Lord, J.M. Addition of an endoplasmic reticulum retrieval sequence to ricin A chain significantly increases its cytotoxicity to mammalian cells. J. Biol. Chem., 1983, 268(32), 23986-23990.
[46]
Simpson, J.C.; Roberts, L.M.; Römisch, K.; Davey, J.; Wolf, D.H.; Lord, J.M. Ricin a chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett., 1999, 459(1), 80-84.
[47]
Olsnes, S.; Fernandez-Puentes, C.; Carrasco, L.; Vazquez, D. Ribosome inactivation by the toxic lectins abrin and ricin. Kinetics of the enzymic activity of the toxin A-chains. Eur. J. Biochem., 1975, 60, 281-288.
[48]
Sandvig, K.; Torgersen, M.L.; Engedal, N.; Skotland, T.; Iversen, T.G. Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Lett., 2010, 584, 2626-2634.
[49]
Carbonetti, N.H.; Artamonova, G.V.; Andreasen, C.; Bushar, N. Pertussis toxin and adenylate cyclase toxin provide a one-two punch for establishment of Bordetella pertussis infection of the respiratory tract. Infect. Immun., 2005, 73(5), 2698-2703.
[50]
Young, J.A.; Collier, R.J. Anthrax toxin: Receptor binding, internalization, pore formation, and translocation. Annu. Rev. Biochem., 2007, 76, 243-265.
[51]
Hammamieh, R.; Ribot, W.J.; Abshire, T.G.; Jett, M.; Ezzell, J. Activity of the Bacillus anthracis 20 kDa protective antigen component. BMC Infect. Dis., 2008, 8(124)
[52]
Kintzer, A.F.; Sterling, H.J.; Tang, I.I.; Williams, E.R.; Krantz, B.A. Anthrax toxin receptor drives protective antigen oligomerization and stabilizes the heptameric and octameric oligomer by a similar mechanism. PLoS One, 2010, 5(11), e13888.
[53]
Dyer, P.D.R.; Shepherd, T.R.; Gollings, A.S.; Shorter, S.A.; Gorringe-Pattrick, M.A.M.; Tang, C.K.; Cattoz, B.N.; Baillie, L.; Griffiths, P.C.; Richardson, S.C.W. Disarmed anthrax toxin delivers antisense oligonucleotides and siRNA with high efficiency and low toxicity. J. Control Release,, 2015, 220(Pt A), 316-328.
[54]
Moayeri, M.; Wiggins, J.F.; Leppla, S.H. Anthrax protective antigen cleavage and clearance from the blood of mice and rats. Infect. Immun., 2007, 75(11), 5175-5184.
[55]
Bonuccelli, G.; Sotgia, F.; Frank, P.G.; Williams, T.M.; de Almeida, C.J.; Tanowitz, H.B.; Scherer, P.E.; Hotchkiss, K.A.; Terman, B.I.; Rollman, B.; Alileche, A.; Brojatsch, J.; Lisanti, M.P. ATR/TEM8 is highly expressed in epithelial cells lining Bacillus anthracis' three sites of entry: Implications for the pathogenesis of anthrax infection. Am. J. Physiol. Cell Physiol., 2005, 288(6), C1402-C1410.
[56]
Liu, S.; Crown, D.; Miller-Randolph, S.; Moayeri, M.; Wang, H.; Hu, H.; Morley, T.; Leppla, S.H. Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo. Proc. Natl. Acad. Sci. USA, 2009, 106(30), 12424-12429.
[57]
Martchenko, M.; Jeong, S.Y.; Cohen, S.H. Heterodimeric integrin complexes containing β1-integrin promote internalization and lethality of anthrax toxin. Proc. Natl. Acad. Sci. USA, 2010, 107(35), 15583-15588.
[58]
Jiang, J.; Pentelute, B.L.; Collier, R.J.; Zhou, Z.H. Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature, 2015, 521(7553), 545-549.
[59]
Abrami, L.; Leppla, S.H.; van der Goot, F.G. Receptor palmitoylation and ubiquitination regulate anthrax toxin endocytosis. J. Cell Biol., 2006, 172(2), 309-320.
[60]
Abrami, L.; Lindsay, M.; Parton, R.G.; Leppla, S.H.; van der Goot, F.G. Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J. Cell Biol., 2004, 166(5), 645-651.
[61]
Krantz, B.A.; Trivedi, A.D.; Cunningham, K.; Christensen, K.A.; Collier, R.J. Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin. J. Mol. Biol., 2004, 344(3), 739-756.
[62]
Dyer, P.D.R. Development of a protein-based antisense delivery platform modelled on anthrax toxin. PhD thesis, University of Greenwich; London, UK. 2013.
[63]
Gaur, R.; Gupta, P.K.; Goyal, A.; Wels, W.; Singh, Y. Delivery of nucleic acid into mammalian cells by anthrax toxin. Biochem. Biophys. Res. Commun., 2002, 297(5), 1121-1127.
[64]
Wu, G.Y.; Wu, C.H. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem., 1987, 262(10), 4429-4432.
[65]
Erdal, H.; Berndtsson, M.; Castro, J.; Brunk, U.; Shoshan, M.C.; Linder, S. Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. Proc. Natl. Acad. Sci. USA, 2005, 102(1), 192-197.
[66]
Liao, X.; Rabideau, A.E.; Pentelute, B.L. Delivery of antibody mimics into mammalian cells via anthrax toxin protective antigen. ChemBioChem, 2014, 15(16), 2458-2466.
[67]
Shorter, S.A. Biochemical characterisation of the translocation of material through the protective antigen (PA) Pore. PhD thesis, University of Greenwich; London, UK. 2017.
[68]
Phillips, D.D.; Fattah, R.J.; Crown, D.; Zhang, Y.; Liu, S.; Moayeri, M.; Fischer, E.R.; Hansen, B.T.; Ghirlando, R.; Nestorovich, E.M.; Wein, A.N.; Simons, L.; Leppla, S.H.; Leysath, C.E. Engineering anthrax toxin variants that exclusively form octamers and their application to targeting tumors. J. Biol. Chem., 2013, 288(13), 9058-9065.
[69]
Corrotte, M.; Fernandes, M.C.; Tam, C.; Andrews, N.W. Toxin pores endocytosed during plasma membrane repair traffic into the lumen of MVBs for degradation. Traffic, 2012, 13(3), 483-494.
[70]
Frankel, E.B.; Audhya, A. ESCRT-dependent cargo sorting at multivesicular endosomes. Semin. Cell Dev. Biol., 2018, 74, 4-10.
[71]
Woodman, P. ESCRT proteins, endosome organization and mitogenic receptor down-regulation. Biochem. Soc. Trans., 2009, 37(Pt 1), 146-150.
[72]
Janas, T.; Janas, M.M.; Sapoń, K.; Janas, T. Mechanisms of RNA loading into exosomes. FEBS Lett., 2015, 589(13), 1391-1398.
[73]
Porter, D.; Frey, N.; Wood, P.A.; Weng, Y.; Grupp, S.A. Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J. Hematol. Oncol., 2018, 11(1), 35.
[74]
Verderio, C.; Gabrielli, M.; Giussani, P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J. Lipid Res., 2018, 59(8), 1325-1340.
[75]
Vader, P.; Mol, E.A.; Pasterkamp, G.; Schiffelers, R.M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev., 2016, 106(Pt A), 148-156.
[76]
Hall, J.; Prabhakar, S.; Balaj, L.; Lai, C.P.; Cerione, R.A.; Breakefield, X.O. Delivery of therapeutic proteins via extracellular vesicles: Review and potential treatments for parkinson’s disease, glioma, and schwannoma. Cell. Mol. Neurobiol., 2016, 36(3), 417-427.
[77]
Dörsam, B.; Reiners, K.S.; von Strandmann, E.P. Cancer-derived extracellular vesicles: Friend and foe of tumour immunosurveillance. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018, 373(1737), 20160481.
[78]
Martin, B.; Canard, B.; Decroly, E. Filovirus proteins for antiviral drug discovery: Structure/function bases of the replication cycle. Antiviral Res., 2017, 141, 48-61.
[79]
Kooijmans, S.A.A.; Schiffelers, R.M.; Zarovni, N.; Vago, R. Modulation of tissue tropism and biological activity of exosomes and other extracellular vesicles: New nanotools for cancer treatment. Pharmacol. Res., 2016, 111, 487-500.
[80]
Bryant, L.M.; Christopher, D.M.; Giles, A.R.; Hinderer, C.; Rodriguez, J.L.; Smith, J.B.; Traxler, E.A.; Tycko, J.; Wojno, A.P.; Wilson, J.M. Lessons learned from the clinical development and market authorization of Glybera. Hum. Gene Ther. Clin. Dev., 2013, 24(2), 55-64.
[81]
Peng, Z. Current status of gendicine in China: Recombinant human Ad-p53 agent for treatment of cancers. Hum. Gene Ther., 2005, 16(9), 1016-1027.
[82]
Monaco, L.; Faccio, L. Patient‐driven search for rare disease therapies: The fondazione telethon success story and the strategy leading to strimvelis. EMBO Mol. Med., 2017, 9(3), 289-292.
[83]
Waldmann, E.; Vogt, A.; Crispin, A.; Altenhofer, J.; Riks, I.; Parhofer, K.G. Effect of mipomersen on LDL-cholesterol in patients with severe LDL-hypercholesterolaemia and atherosclerosis treated by lipoprotein apheresis (The MICA-Study). Atherosclerosis, 2017, 259, 20-25.
[84]
Gidaro, T.; Servais, L. Nusinersen treatment of spinal muscular atrophy: Current knowledge and existing gaps. Dev. Med. Child Neurol., 2018, 61(1), 19-24.
[85]
Wood, H. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat. Rev. Neurol., 2018, 14(10), 570.
[86]
Benson, M.D.; Waddington-Cruz, M.; Berk, J.L.; Polydefkis, M.; Dyck, P.J.; Wang, A.K.; Planté-Bordeneuve, V.; Barroso, F.A.; Merlini, G.; Obici, L.; Scheinberg, M.; Brannagan, T.H.; Litchy, W.J.; Whelan, C.; Drachman, B.M.; Adams, D.; Heitner, S.B.; Conceição, I.; Schmidt, H.H.; Vita, G.; Campistol, J.M.; Gamez, J.; Gorevic, P.D.; Gane, E.; Shah, A.M.; Solomon, S.D.; Monia, B.P.; Hughes, S.G.; Kwoh, T.J.; McEvoy, B.W.; Jung, S.W.; Baker, B.F.; Ackermann, E.J.; Gertz, M.A.; Coelho, T. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med., 2018, 379(1), 22-31.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 2
Year: 2019
Page: [79 - 88]
Pages: 10
DOI: 10.2174/2210303109666181224115722
Price: $58

Article Metrics

PDF: 32
HTML: 3