Design, Synthesis and Antiproliferative Evaluation of Novel 1,2,4-Triazole/Schiff Base Hybrids with EGFR and B-RAF Inhibitory Activities

Author(s): Hany A.M. El-Sherief , Bahaa G.M. Youssif* , Ahmed H. Abdelazeem , Mohamed Abdel-Aziz , Hamdy M. Abdel-Rahman* .

Journal Name: Anti-Cancer Agents in Medicinal Chemistry

Volume 19 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: 1,2,4-triazoles possess a broad spectrum of biological activities such as analgesic, antimicrobial, antitubercular, anti-inflammatory and antineoplastic activities. This heterocycle and their derivatives were included into a wide variety of therapeutically interesting drugs. Hence, it is of great interest to explore new 1,2,4-triazoles as cytotoxic agents targeting EGFR, B-Raf kinases.

Methods: The final compounds 9a-b, 10a-b, 11a-b, 12a-b, 13a-b and 14a-f were prepared by refluxing a mixture of triazole 3a-b and 7a-d with the corresponding benzaldehyde derivatives 8a-d in absolute ethanol to afford the target final compounds in good yields. The newly synthesized triazole-containing compounds were assessed according to standard protocols for their in vitro antiproliferative activity against four human cancer cell lines including human pancreas cancer cell line (Panc-1), pancreatic carcinoma cells (PaCa-2), colon cancer cells (HT-29) and lung cancer cells (H-460) using the propidium iodide (PI) fluorescence assay. Compounds 9a and 13a were evaluated against EGFR, B-Raf and Tubulin anticancer targets.

Results: Compounds 9a, 9b, 10a, 11a, 12a, 13a and 13b showed remarkable antiproliferative activity against the tested cell lines with IC50 range of 1.3-5.9µM. Compounds 9a and 13a with the least IC50 values in the anticancer screening assay were tested against three known anticancer targets including EGFR, B-Raf kinase and Tubulin. The results revealed that compound 13a showed the highest potency against B-Raf and EGFR kinases with IC50 = 0.7 and 1.9 µM, respectively.

Conclusion: 1,2,4-triazoles reported herein are potent EGFR, B-Raf inhibitors. These lead compounds will be subjected to more detailed mechanistic studies.

Keywords: Triazole, antiproliferative, epidermal growth factor receptor, B-Raf, Tubulin and molecular docking simulation, EGFR kinases.

[1]
Abdelrahman, M.H.; Aboraia, A.S.; Youssif, B.G.; Elsadek, B.E. Design, synthesis and pharmacophoric model building of new 3‐alkoxymethyl/3‐phenyl indole‐2‐carboxamides with potential antiproliferative activity. Chem. Biol. Drug Des., 2017, 90, 64-82.
[2]
Singh, M.; Singh, K.S.; Thakur, B.; Ray, P. Design and synthesis of novel Schiff base-benzothiazole hybrids as potential Epidermal Growth Factor Receptor (EGFR) inhibitors. Anticancer. Agents Med. Chem., 2016, 16, 722-739.
[3]
El-Sherief, H.A.; Youssif, B.G.; Bukhari, S.N.A.; Abdel-Aziz, M.; Abdel-Rahman, H.M. Novel 1, 2, 4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies. Bioorg. Chem., 2018, 76, 314-325.
[4]
Navarrete-Vazquez, G.; Paoli, P.; León-Rivera, I.; Villalobos-Molina, R.; Medina-Franco, J.L.; Ortiz-Andrade, R.; Estrada-Soto, S.; Camici, G.; Diaz-Coutiño, D.; Gallardo-Ortiz, I. Synthesis, in vitro and computational studies of protein tyrosine phosphatase 1B inhibition of a small library of 2-arylsulfonylaminobenzothiazoles with antihyperglycemic activity. Bioorg. Med. Chem., 2009, 17, 3332-3341.
[5]
Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. Med., 2015, 372, 2509-2520.
[6]
Shchemelinin, I.; Sefc, L.; Necas, E. Protein kinases, their function and implication in cancer and other diseases. Folia biol., 2006, 52, 81.
[7]
Hubbard, S.R.; Till, J.H. Protein tyrosine kinase structure and function. Annu. Rev. Biochem., 2000, 69, 373-398.
[8]
Pears, C. Structure and function of the protein kinase C gene family. J. Biosci., 1995, 20, 311-332.
[9]
Kini, S.G.; Garg, V.; Prasanna, S.; Rajappan, R.; Mubeen, M. Protein kinases as drug targets in human and animal diseases. Curr. Enzym. Inhib., 2017, 13, 99-106.
[10]
Qin, H.L.; Leng, J.; Youssif, B.G.; Amjad, M.W.; Raja, M.A.G.; Hussain, M.A.; Hussain, Z.; Kazmi, S.N.; Bukhari, S.N.A. Synthesis and mechanistic studies of curcumin analog‐based oximes as potential anticancer agents. Chem. Biol. Drug Des., 2017, 90, 443-449.
[11]
Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W. Mutations of the BRAF gene in human cancer. Nature, 2002, 417, 949-954.
[12]
Boni, A.; Cogdill, A.P.; Dang, P.; Udayakumar, D.; Njauw, C-N.J.; Sloss, C.M.; Ferrone, C.R.; Flaherty, K.T.; Lawrence, D.P.; Fisher, D.E. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res., 2010, 70, 5213-5219.
[13]
Kulabaş, N.; Tatar, E.; Özakpınar, Ö.B.; Özsavcı, D.; Pannecouque, C.; De Clercq, E.; Küçükgüzel, İ. Synthesis and antiproliferative evaluation of novel 2-(4H-1, 2, 4-triazole-3-ylthio) acetamide derivatives as inducers of apoptosis in cancer cells. Eur. J. Med. Chem., 2016, 121, 58-70.
[14]
Pattan, S.; Gadhave, P.; Tambe, V.; Dengale, S.; Thakur, D.; Hiremath, S.; Shete, R.; Deotarse, P. Synthesis and evaluation of some novel 1, 2, 4-triazole derivatives for antmicrobial, antitubercular and anti-inflammatory activities. Indian J. Chem., 2012, 51, 298-301.
[15]
Karabasanagouda, T.; Adhikari, A.V.; Shetty, N.S. Synthesis and antimicrobial activities of some novel 1, 2, 4-triazolo [3, 4-b]-1, 3, 4-thiadiazoles and 1, 2, 4-triazolo [3, 4-b]-1, 3, 4-thiadiazines carrying thioalkyl and sulphonyl phenoxy moieties. Eur. J. Med. Chem., 2007, 42, 521-529.
[16]
Sztanke, K.; Tuzimski, T.; Rzymowska, J.; Pasternak, K.; Kandefer-Szerszeń, M. Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1, 2, 4-triazole derivatives. Eur. J. Med. Chem., 2008, 43, 404-419.
[17]
Kharb, R.; Shahar-Yar, M.; Sharma, P. New insights into chemistry and anti-infective potential of triazole scaffold. Curr. Med. Chem., 2011, 18, 3265-3297.
[18]
Shneine, J.K.; Alaraji, Y.H. Chemistry of 1, 2, 4-triazole: A review article. Spectrosc. IJSR, 2016, 9, 9c.
[19]
Wang, M.; Wang, L-F.; Li, Y-Z.; Li, Q-X.; Xu, Z-D.; Qu, D-M. Antitumour activity of transition metal complexes with the thiosemicarbazone derived from 3-acetylumbelliferone. Trans. Met. Chem., 2001, 26, 307-310.
[20]
Bharti, S.K.; Nath, G.; Tilak, R.; Singh, S. Synthesis, anti-bacterial and anti-fungal activities of some novel Schiff bases containing 2, 4-disubstituted thiazole ring. Eur. J. Med. Chem., 2010, 45, 651-660.
[21]
Abdelazeem, A.H.; Salama, S.A.; Maghrabi, I.A. Design, synthesis, and anti‐inflammatory evaluation of novel diphenylthiazole–thiazolidinone hybrids. Arch. Pharm., 2015, 348, 518-530.
[22]
Youssif, B.G.; Mohamed, Y.A.; Salim, M.T.; Inagaki, F.; Mukai, C.; Abdu-Allah, H.H. Synthesis of some benzimidazole derivatives endowed with 1, 2, 3-triazole as potential inhibitors of hepatitis C virus. Acta Pharm., 2016, 66, 219-231.
[23]
Adaramoye, O.; Achem, J.; Akintayo, O.; Fafunso, M. P34 lipid-lowering effect of methanolic extract of vernonia amygdalina leaves in rats fed on high cholesterol diet. Atheroscler. Suppl., 2010, 11, 24.
[24]
Celiz, G.; Audisio, M.; Daz, M. Antimicrobial properties of prunin, a citric flavanone glucoside, and its prunin 6 ″‐O‐lauroyl ester. J. Appl. Microbiol., 2010, 109, 1450-1457.
[25]
Nazir, N.; Koul, S.; Qurishi, M.A.; Taneja, S.C.; Ahmad, S.F.; Bani, S.; Qazi, G.N. Immunomodulatory effect of bergenin and norbergenin against adjuvant-induced arthritis-A flow cytometric study. J. Ethnopharmacol., 2007, 112, 401-405.
[26]
Visioli, F.; Bogani, P.; Grande, S.; Galli, C. Olive oil and oxidative stress. Grasas Aceites, 2004, 55, 66-75.
[27]
Oh, Y.; Lee, S.; Yoon, J.; Han, K.; Baek, K. Promoter analysis of the Drosophila melanogaster gene encoding transcription elongation factor TFIIS. Biochim. Biophys. Acta, 2001, 1518, 276-281.
[28]
Ahmed, S.; Zayed, M.F.; El-Messery, S.M.; Al-Agamy, M.H.; Abdel-Rahman, H.M. Design, synthesis, antimicrobial evaluation and molecular modeling study of 1, 2, 4-triazole-based 4-thiazolidinones. Molecules, 2016, 21, 568.
[29]
Sato, Y.; Shimoji, Y.; Fujita, H.; Nishino, H.; Mizuno, H.; Kobayashi, S.; Kumakura, S. Studies on cardiovascular agents. 6. Synthesis and coronary vasodilating and antihypertensive activities of 1, 2, 4-triazolo [1, 5-a] pyrimidines fused to heterocyclic systems. J. Med. Chem., 1980, 23, 927-937.
[30]
Youssif, B.G.; Abdelrahman, M.H.; Abdelazeem, A.H.; Ibrahim, H.M.; Salem, O.I.; Mohamed, M.F.; Treambleau, L.; Bukhari, S.N.A. Design, synthesis, mechanistic and histopathological studies of small-molecules of novel indole-2-carboxamides and pyrazino [1, 2-a] indol-1(2H)-ones as potential anticancer agents effecting the reactive oxygen species production. Eur. J. Med. Chem., 2018, 146, 260-273.
[31]
Zha, G-F.; Qin, H-L.; Youssif, B.G.; Amjad, M.W.; Raja, M.A.G.; Abdelazeem, A.H.; Bukhari, S.N.A. Discovery of potential anticancer multi-targeted ligustrazine based cyclohexanone and oxime analogs overcoming the cancer multidrug resistance. Eur. J. Med. Chem., 2017, 135, 34-48.
[32]
Chernyshev, V.; Tarasova, E.; Chernysheva, A.; Taranushich, V. Synthesis of 3-pyridyl-substituted 5-amino-1, 2, 4-triazoles from aminoguanidine and pyridinecarboxylic acids. Russ. J. Appl. Chem., 2011, 84, 1890-1896.
[33]
Dolzhenko, A.V.; Dolzhenko, A.V.; Chui, W-K. Practical synthesis of regioisomeric 5 (7)-amino-6, 7 (4, 5)-dihydro [1, 2, 4]triazolo [1, 5-a][1, 3, 5] triazines. Tetrahedron, 2007, 63, 12888-12895.
[34]
Kadadevar, D.; Chaluvaraju, K.; Niranjan, M.; Sultanpur, C.; Madinur, S.K.; Nagaraj, M.; Smitha, M.; Chakraborty, K. Synthesis of N-(substituted phenyl)-2 [5-phenyl-2H-1, 2, 4-triazol-3ylamino] acetamide as anticonvulsant. Int. J. Chemtech Res., 2011, 3, 1064-1069.
[35]
Dolzhenko, A.V.; Pastorin, G.; Dolzhenko, A.V.; Chui, W.K. An aqueous medium synthesis and tautomerism study of 3 (5)-amino-1, 2, 4-triazoles. Tetrahedron Lett., 2009, 50, 2124-2128.
[36]
Stamos, J.; Sliwkowski, M.X.; Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem., 2002, 277, 46265-46272.
[37]
King, A.J.; Patrick, D.R.; Batorsky, R.S.; Ho, M.L.; Do, H.T.; Zhang, S.Y.; Kumar, R.; Rusnak, D.W.; Takle, A.K.; Wilson, D.M. Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res., 2006, 66, 11100-11105.
[38]
Abdelazeem, A.H.; El-Saadi, M.T.; Said, E.G.; Youssif, B.G.; Omar, H.A.; El-Moghazy, S.M. Novel diphenylthiazole derivatives with multi-target mechanism: Synthesis, docking study, anticancer and anti-inflammatory activities. Bioorg. Chem., 2017, 75, 127-138.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 5
Year: 2019
Page: [697 - 706]
Pages: 10
DOI: 10.2174/1871520619666181224115346
Price: $58

Article Metrics

PDF: 17
HTML: 3