Non Nucleoside Reverse Transcriptase Inhibitors, Molecular Docking Studies and Antitubercular Activity of Thiazolidin-4-one Derivatives

Author(s): Trupti S. Chitre*, Shital M. Patil, Anagha G. Sujalegaonkar, Kalyani D. Asgaonkar, Vijay M. Khedkar, Dinesh R. Garud, Prakash C. Jha, Sharddha Y. Gaikwad, Smita S. Kulkarni, Amit Choudhari, Dhiman Sarkar.

Journal Name: Current Computer-Aided Drug Design

Volume 15 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Management of Co-existence of Acquired immunodeficiency syndrome and Tuberculosis has become a global challenge due to the emergence of resistant strains and pill burden.

Objective: Hence the aim of the present work was to design and evaluate compounds for their dual activity on HIV-1 and Tuberculosis (TB).

Methods: A series of seven, novel Thiazolidin-4-one derivatives were synthesized and evaluated for their anti-HIV and anti-tubercular activity along with Molecular docking studies. All the seven compounds displayed promising activity against the replication of HIV-1 in cell-based assays. The four most active compounds were further evaluated against X4 tropic HIV-1UG070 and R5 tropic HIV-1VB59 primary isolates. The binding affinity of all the designed compounds for HIV-RT and Mycobacterium tuberculosis Enol Reductase (MTB InhA) was gauged by molecular docking studies which revealed crucial thermodynamic interactions governing their binding.

Results: The CC50 values for the test compounds were in the range of, 15.08-34.9 μg/ml, while the IC50 values were in the range of 16.1-27.13(UG070; X4) and 12.03-23.64 (VB59; R5) μg/ml. The control drug Nevirapine (NVP) exhibited CC50 value of 77.13 μg/ml and IC50 value of 0.03 μg/ml. Amongst all these compounds, compound number 3 showed significant activity with a TI value of 2.167 and 2.678 against the HIV-1 X4 and the R5 tropic virus respectively. In anti-mycobacterial screening, the compounds proved effective in inhibiting the growth of both log phase and starved MTB cultures.

Conclusion: Compound 3 has been found to be active against HIV-1 as well as MTB.

Keywords: Non nucleoside reverse transcriptase, human immunodeficiency virus-1, anti-HIV-1 activity, antitubercular activity, molecular docking, thiazolidin-4-ones.

[1]
Banerjee, D.; Yogeshwari, P.; Bhat, P.; Thomas, A.; Srividya, M.; Sriram, D. Novel isatinyl thiosemicarbazones derivatives as potential molecule to combat HIV-TB co-infection. Eur. J. Med. Chem., 2011, 46, 106-121.
[2]
Sarafianos, S.G.; Das, K.; Hughes, S.H.; Arnold, E. Taking aim at a moving target: Designing drugs to inhibit drug-resistant HIV-1 reverse transcriptases. Curr. Opin. Struct. Biol., 2004, 14, 716-730.
[3]
Murugesan, V.; Makwana, N.; Suryawanshi, R.; Saxena, R.; Tripathi, R.; Paranjape, R.; Kulkarni, S.; Katti, S.B. Rational design and synthesis of novel thiazolidin-4-ones as non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem., 2014, 22, 3159-3170.
[4]
Esposito, F.; Corona, A.; Tramontano, E. HIV-1 reverse transcriptase still remains a new drug target: Structure, function, classical inhibitors, and new inhibitors with innovative mechanisms of actions. Mol. Biol. Int., 2012, 2012586401
[5]
Banerjee, A.; Dubnau, E.; Quemard, A.; Balasubramanian, V.; Um, K.S.; Wilson, T.; Collins, D.; de Lisle, G.; Jacobs, W.R., Jr InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Sci, 1994, 263, 227-230.
[6]
Vilcheze, C.; Morbidoni, H.R.; Weisbrod, T.R.; Iwamoto, H.; Kuo, M.; Sacchettini, J.C.; Jacobs, W.R. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol., 2000, 182, 4059-4067.
[7]
Ren, J.; Stammers, D.K. HIV reverse transcriptase structures: Designing new inhibitors and understanding mechanisms of drug resistance. Trends Pharmacol. Sci., 2005, 260, 4-7.
[8]
Barreca, M.L.; Chimirri, A.; De Luca, L.; Monforte, A.M.; Monforte, P.; Rao, A.; Zappalà, M.; Balzarini, J.; De Clercq, E.; Pannecouque, C.; Witvrouw, M. Discovery of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agents. Bioorg. Med. Chem. Lett., 2001, 11, 1793-1796.
[9]
Rao, A.; Balzarini, J.; Carbone, A.; Chimirri, A.; De Clercq, E.; Monforte, A.M.; Monforte, P.; Pannecouque, C.; Zappalà, M. 2-(2,6-Dihalophenyl)-3-(pyrimidin-2-yl)-1,3-thiazolidin-4-ones as non-nucleoside HIV-1 reverse transcriptase inhibitors. Antiviral Res., 2004, 63, 79-84.
[10]
Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Design, synthesis, and evaluation of 2-aryl-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Bioorg. Med. Chem., 2007, 15, 1725-31.
[11]
Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Synthesis and evaluation of 2-(2,6-dihalophenyl)-3-pyrimidinyl-1,3-thiazolidin-4-one analogues as anti-HIV-1 agents. Bioorg. Med. Chem., 2007, 15, 3134-31342.
[12]
Rawal, R.K.; Tripathi, R.K.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Synthesis and biological evaluation of 2,3-diaryl substituted-1,3-thiazolidin-4-ones as anti-HIV agents. Med. Chem., 2007, 3, 355-363.
[13]
Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Design and synthesis of 2-(2,6-dibromophenyl)-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Eur. J. Med. Chem., 2008, 430, 2800-2806.
[14]
Balzarini, J.; Orzeszko, B.; Maurin, J.K.; Orzeszko, A. Synthesis and anti-HIV studies of 2-adamantyl-substituted thiazolidin-4-ones. Eur. J. Med. Chem., 2007, 42, 993-1003.
[15]
Balzarini, J.; Orzeszko-Krzesinska, B.; Maurin, J.K.; Orzeszko, A. Synthesis and anti-HIV studies of 2- and 3-adamantyl-substituted thiazolidin-4-ones. Eur. J. Med. Chem., 2009, 44, 303-311.
[16]
Tripathi, A.C.; Gupta, S.J.; Fatima, G.N.; Sonar, P.K.; Verma, A.; Saraf, S.K. 4-Thiazolidinones: the advances continue. Eur. J. Med. Chem., 2014, 72, 52-77.
[17]
Pawar, V.; Lokwani, D.; Bhandari, S.; Mitra, D.; Sabde, S.; Bothara, K.; Madgulkar, A. Design of potential reverse transcriptase inhibitor containing Isatin nucleus using molecular modeling studies. Bioorg. Med. Chem., 2010, 18, 3198-3211.
[18]
Akkurt, M.; Çelik, I.; Demir, H.; Özkırımlı, S.; Büyükgüngörd, O.N. -[2-(4-Chlorophenyl)-5-methyl-4-oxo-1,3-thiazolidin-3-yl]pyridine-3-carboxamide. Acta Crystallogr. Sect. E Struct. Rep. Online, 2011, 6(4), 745-746.
[19]
Küçükgüzel, S.G.; Oruç, E.E.; Rollas, S.; Sahin, F.; Özbek, A. Synthesis, characterisation and biological activity of novel 4-thiazolidinones, 1,3,4-oxadiazoles and some related compounds. Eur. J. Med. Chem., 2002, 37(3), 197-206.
[20]
Krishna, S.M.; Padmalatha, Y.; Ravindranath, L.K. Thiazolidinone as a core unit biological evaluation agent. Int. J. Med. Pharm. Res, 2015, 3(2), 999-1003.
[21]
Shanthi, V.; Ramanathan, K. Identification of potential inhibitor targeting enoyl-acyl carrier protein reductase (InhA) in Mycobacterium tuberculosis:a computational approach. Biotechnology, 2014, 4, 253-261.
[22]
Cichero, E.; Cesarini, S.; Spallarossa, A.; Mosti, L.; Fossa, P. Acylthiocarbamates as non-nucleoside HIV-1 reverse transcriptase inhibitors: docking studies and ligand-based CoMFA and CoMSIA analyses. J. Mol. Model., 2009, 15(7), 871-884.
[23]
Cichero, E.; Fossa, P. Docking-based 3D-QSAR analyses of pyrazole derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors. J. Mol. Model., 2012, 18, 1153-1182.
[24]
Deep, A.; Jain, S.; Sharma, P.C.; Mittal, S.K.; Phogat, P.; Malhotra, M. Synthesis, characterization and antimicrobial evaluation of 2, 5-disubstituted-4-thiazolidinone derivatives. Arab. J. Chem., 2014, 7, 287-291.
[25]
Desai, N.; Dodiya, A.M. Synthesis, characterization and antimicrobial screening of quinoline based quinazolinone-4-thiazolidinone heterocycles. Arab. J. Chem., 2014, 7, 906-913.
[26]
Geonnotti, A.R.; Bilska, M.; Yuan, X.; Ochsenbauer, C.; Edmonds, T.G.; Kappes, J.C.; Liao, H.; Haynes, B.F.; Montefiori, D.C. Differential inhibition of human immunodeficiency virus type 1 in peripheral blood mononuclear cells and TZM-bl cells by endotoxin-mediated chemokine and gamma interferon production. AIDS Res. Hum. Retroviruses, 2010, 26, 279-291.
[27]
Khopkar, P.; Mallav, V.; Chidrawar, S.; Kulkarni, S. Comparative evaluation of the Abbott HIV-1 RealTime assay with the Standard Roche COBAS(R) Amplicor HIV-1 Monitor(R) Test, v1.5 for determining HIV-1 RNA levels in plasma specimens from Pune, India. J. Virol. Methods, 2013, 191, 82-87.
[28]
Said, M.; Chinchansure, A.; Nawale, L.; Durge, A.; Wadhwani, A.; Kulkarni, S.S.; Sarkar, D.; Joshi, S. A new butenolide cinnamate and other biological active chemical constituents from Polygonum Glabrum. Nat. Prod. Res., 2015, 25(22), 2080-2086.
[29]
Singh, U.; Akhtar, S.; Mishra, A.; Sarkar, D. A novel screening method based on menadione mediated rapid reduction of tetrazolium salt for testing of anti-mycobacterial agents. J. Microbiol. Meth, 2011, 84, 202-207.
[30]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47, 1739-1749.
[31]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in data base screening. J. Med. Chem., 2004, 47, 1750-1759.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 5
Year: 2019
Page: [433 - 444]
Pages: 12
DOI: 10.2174/1573409915666181221102903
Price: $65

Article Metrics

PDF: 45
HTML: 4