GC-MS Characterization of Phyto-Components in the Ethanolic and Hydroalcoholic Extracts of Cocos nucifera Endocarp and Evaluation of their Antimalarial Potential

Author(s): Babita Aggarwal*, Pankaj Sharma, Hardarshan Singh Lamba.

Journal Name: The Natural Products Journal

Volume 9 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Plants are rich and cheap source of active phytoconstituents. Present study was performed in order to authenticate the traditional use of Cocos nucifera in malaria treatment as well as to search an alternative for drug resistant parasites.

Objective: In the present investigation, ethanolic (ACN) and hydroalcoholic (HACN) extracts of Cocos nucifera endocarp were evaluated for antimalarial potential as well as subjected to GC-MS analysis to characterize the bioactive components.

Methods: In vitro antiplasmodial activity of ACN and HACN was assessed against P. falciparum strains MRC-02 (CQ sensitive) and RKL-09 (CQ resistant) and percentage schizont maturation inhibition was determined. To confirm the antimalarial potential, in vivo Peter’s 4-Day suppressive test using P. berghei strain was performed at a dose of 25 and 50 mg/kg/day for 4 consecutive days. Bioactive components were characterized by the application of Gas chromatography and Mass spectrometric technique to the extracts.

Results: Promising in vitro antiplasmodial activity was exhibited by both alcoholic (ACN) and hydroalcoholic (HACN) extracts against P. falciparum strains MRC-02 (CQ sensitive) with IC50 values < 5 µg/mL. HACN (% Suppression = 75.43 ± 0.18; MST=19.21 days) and ACN (% Suppression = 34.65 ± 0.11; MST=10.11 days) showed moderate in vivo antimalarial activity (p < 0.05) at dose 50 mg/Kg while standard drug chloroquine (8mg/kg) suppressed 100% parasitaemia. Twenty compounds have been identified and characterized by GC-MS studies.

Keywords: Cocos nucifera, endocarp, Plasmodium falciparum, antimalarial, GC-MS analysis, antiplasmodial.

[1]
World Malaria Report; World Health Organisation: Geneva, Switzerland, 2008.
[2]
Mendis, K.; Sina, B.J.; Marchesini, P.; Carter, R. The neglected burden of Plasmodium vivax malaria. Am. J. Trop. Med. Hyg., 2001, 64(1-2)(Suppl.), 97-106.
[http://dx.doi.org/10.4269/ajtmh.2001.64.97] [PMID: 11425182]
[3]
Omulokoli, E.; Khan, B.; Chhabra, S.C. Antiplasmodial activity of four Kenyan medicinal plants. J. Ethnopharmacol., 1997, 56(2), 133-137.
[http://dx.doi.org/10.1016/S0378-8741(97)01521-3] [PMID: 9174974]
[4]
Rasoanaivo, P.; Petitjean, A.; Ratsimamanga-Urverg, S.; Rakoto-Ratsimamanga, A. Medicinal plants used to treat malaria in Madagascar. J. Ethnopharmacol., 1992, 37(2), 117-127.
[http://dx.doi.org/10.1016/0378-8741(92)90070-8] [PMID: 1434686]
[5]
Aggarwal, B.; Lamba, H.S.; Ajeet, P.S. Various pharmacological aspects of Cocos nucifera. A review. Am. J. Pharmacol. Sci., 2017, 5(2), 25-30.
[6]
Adebayo, J.O.; Santana, A.E.; Krettli, A.U. Evaluation of the antiplasmodial and cytotoxicity potentials of husk fiber extracts from Cocos nucifera, a medicinal plant used in Nigeria to treat human malaria. Hum. Exp. Toxicol., 2012, 31(3), 244-249.
[http://dx.doi.org/10.1177/0960327111424298] [PMID: 22241625]
[7]
Venkataraman, S.; Ramanujam, T.R.; Venkatasubbu, V.S. Antifungal activity of the alcoholic extract of coconut shell - Cocos nucifera Linn. J. Ethnopharmacol., 1980, 2(3), 291-293.
[http://dx.doi.org/10.1016/S0378-8741(80)81007-5] [PMID: 7412336]
[8]
Esquenazi, D.; Wigg, M.D.; Miranda, M.M.F.S.; Rodrigues, H.M.; Tostes, J.B.F.; Rozental, S.; Da Silva, A.J.R.; Alviano, C.S. Antimicrobial and antiviral activities of polyphenolics from Cocos nucifera Linn. (Palmae) husk fiber extract. Res. Microbiol., 2002, 153(10), 647-652.
[http://dx.doi.org/10.1016/S0923-2508(02)01377-3] [PMID: 12558183]
[9]
Alviano, D.S.; Rodrigues, K.F.; Leitão, S.G.; Rodrigues, M.L.; Matheus, M.E.; Fernandes, P.D.; Antoniolli, A.R.; Alviano, C.S. Antinociceptive and free radical scavenging activities of Cocos nucifera L. (Palmae) husk fiber aqueous extract. J. Ethnopharmacol., 2004, 92(2-3), 269-273.
[http://dx.doi.org/10.1016/j.jep.2004.03.013] [PMID: 15138011]
[10]
Mendonça-Filho, R.R.; Rodrigues, I.A.; Alviano, D.S.; Santos, A.L.S.; Soares, R.M.A.; Alviano, C.S.; Lopes, A.H.C.S.; Rosa, M.S. Leishmanicidal activity of polyphenolic-rich extract from husk fiber of Cocos nucifera Linn. (Palmae). Res. Microbiol., 2004, 155(3), 136-143.
[http://dx.doi.org/10.1016/j.resmic.2003.12.001] [PMID: 15059625]
[11]
Kirszberg, C.; Esquenazi, D.; Alviano, C.S.; Rumjanek, V.M. The effect of a catechin-rich extract of Cocos nucifera on lymphocytes proliferation. Phytother. Res., 2003, 17(9), 1054-1058.
[http://dx.doi.org/10.1002/ptr.1297] [PMID: 14595586]
[12]
Panday, M.M.; Katara, A.; Pandey, G.; Rastogi, S.; Rawat, A.K.S. An important traditional Indian drug of Ayurveda Jatamansi and its substitute Bhootkeshi: Chemical profiling and antioxidant activity Evid. Based Complement. Altern. Med., 2013. Article ID: 142517.
[13]
Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Cazin, J.C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol., 2000, 72(1-2), 35-42.
[http://dx.doi.org/10.1016/S0378-8741(00)00196-3] [PMID: 10967451]
[14]
Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science, 1976, 193(4254), 673-675.
[http://dx.doi.org/10.1126/science.781840] [PMID: 781840]
[15]
Fairlamb, A.H.; Warhurst, D.C.; Peters, W. An improved technique for the cultivation of Plasmodium falciparum in vitro without daily medium change. Ann. Trop. Med. Parasitol., 1985, 79(4), 379-384.
[http://dx.doi.org/10.1080/00034983.1985.11811935] [PMID: 3907558]
[16]
Lambros, C.; Vanderberg, J.P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J. Parasitol., 1979, 65(3), 418-420.
[http://dx.doi.org/10.2307/3280287] [PMID: 383936]
[17]
Ouattara, Y.; Sanon, S.; Traore, Y.; Mahiou, V.; Azas, N.; Sawadogo, L. Antimalarial activity of Swartzia madagascariensis desv. (leguminosae), combretum glutinosum guill. and perr. (combretaceae) and Tinospora bakis miers. (menispermaceae), burkina faso medicinal plants. Afr. J. Tradit. Complement. Altern. Med., 2006, 3(1), 75-81.
[PMID: 20162075]
[18]
Azas, N.; Laurencin, N.; Delmas, F.; Di, G.C.; Gasquet, M.; Laget, M.; Timon-David, P. Synergistic in vitro antimalarial activity of plant extracts used as traditional herbal remedies in Mali. Parasitol. Res., 2002, 88(2), 165-171.
[http://dx.doi.org/10.1007/s004360100454] [PMID: 11936507]
[19]
Olasehinde, G.I.; Ojurongbe, O.; Adeyeba, A.O.; Fagade, O.E.; Valecha, N.; Ayanda, I.O.; Ajayi, A.A.; Egwari, L.O. In vitro studies on the sensitivity pattern of Plasmodium falciparum to anti-malarial drugs and local herbal extracts. Malar. J., 2014, 13, 63.
[http://dx.doi.org/10.1186/1475-2875-13-63] [PMID: 24555525]
[20]
Peter, W.; Portus, H.; Robinson, L. The four-day suppressive in vivo antimalarial test. Ann. Trop. Med. Parasitol., 1995, 69, 155-171.
[21]
Mekonnen, L.B. In vivo antimalarial activity of the crude root and fruit extracts of Croton macrostachyus (Euphorbiaceae) against Plasmodium berghei in mice. J. Tradit. Complement. Med., 2015, 5(3), 168-173.
[http://dx.doi.org/10.1016/j.jtcme.2014.07.002] [PMID: 26151030]
[22]
Acharya, B.N.; Saraswat, D.; Tiwari, M.; Shrivastava, A.K.; Ghorpade, R.; Bapna, S.; Kaushik, M.P. Synthesis and antimalarial evaluation of 1, 3, 5-trisubstituted pyrazolines. Eur. J. Med. Chem., 2010, 45(2), 430-438.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.023] [PMID: 19926176]
[23]
Waako, P.J.; Katuura, E.; Smith, P.; Folb, P. East African medicinal plants as a source of lead compounds for the development of new antimalarial drugs. Afr. J. Ecol., 2007, 45(1), 102-106.
[http://dx.doi.org/10.1111/j.1365-2028.2007.00752.x]
[24]
Clarkson, C.; Maharaj, V.J.; Crouch, N.R.; Grace, O.M.; Pillay, P.; Matsabisa, M.G.; Bhagwandin, N.; Smith, P.J.; Folb, P.I. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J. Ethnopharmacol., 2004, 92(2-3), 177-191.
[http://dx.doi.org/10.1016/j.jep.2004.02.011] [PMID: 15137999]
[25]
Sadiq, M.B.; Tharaphan, P.; Chotivanich, K.; Tarning, J.; Anal, A.K. In vitro antioxidant and antimalarial activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. BMC Complement. Altern. Med., 2017, 17(1), 372.
[http://dx.doi.org/10.1186/s12906-017-1878-x] [PMID: 28720134]
[26]
Wissam, Z.; Ghada, B.; Wassim, A.; Warid, K. Effective extraction of polyphenols and proanthocyanidins from pomegranate’s peel. Int. J. Pharm. Pharm. Sci., 2012, 4, 675-682.
[27]
Ntie-Kang, F.; Onguéné, P.A.; Lifongo, L.L.; Ndom, J.C.; Sippl, W.; Mbaze, L.M.A. The potential of anti-malarial compounds derived from African medicinal plants, part II: A pharmacological evaluation of non-alkaloids and non-terpenoids. Malar. J., 2014, 13(1), 81.
[http://dx.doi.org/10.1186/1475-2875-13-81] [PMID: 24602358]
[28]
Liu, K.C.; Yang, S.L.; Roberts, M.F.; Elford, B.C.; Phillipson, J.D. Antimalarial activity of Artemisia annua flavonoids from whole plants and cell cultures. Plant Cell Rep., 1992, 11(12), 637-640.
[http://dx.doi.org/10.1007/BF00236389] [PMID: 24213368]
[29]
Al-Adhroey, A.H.; Nor, Z.M.; Al-Mekhlafi, H.M.; Amran, A.A.; Mahmud, R. Antimalarial activity of methanolic leaf extract of Piper betle L. Molecules, 2010, 16(1), 107-118.
[http://dx.doi.org/10.3390/molecules16010107] [PMID: 21189459]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 4
Year: 2019
Page: [289 - 294]
Pages: 6
DOI: 10.2174/2210315509666181219120937
Price: $25

Article Metrics

PDF: 30
HTML: 2
EPUB: 1
PRC: 1

Special-new-year-discount