The Multiple Applications and Possible Mechanisms of the Hyperbaric Oxygenation Therapy

Author(s): Wan Chen, Xingmei Liang, Zhihuan Nong, Yaoxuan Li, Xiaorong Pan, Chunxia Chen*, Luying Huang*.

Journal Name: Medicinal Chemistry

Volume 15 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Hyperbaric Oxygenation Therapy (HBOT) is used as an adjunctive method for multiple diseases. The method meets the routine treating and is non-invasive, as well as provides 100% pure oxygen (O2), which is at above-normal atmospheric pressure in a specialized chamber. It is well known that in the condition of O2 deficiency, it will induce a series of adverse events. In order to prevent the injury induced by anoxia, the capability of offering pressurized O2 by HBOT seems involuntary and significant. In recent years, HBOT displays particular therapeutic efficacy in some degree, and it is thought to be beneficial to the conditions of angiogenesis, tissue ischemia and hypoxia, nerve system disease, diabetic complications, malignancies, Carbon monoxide (CO) poisoning and chronic radiation-induced injury. Single and combination HBOT are both applied in previous studies, and the manuscript is to review the current applications and possible mechanisms of HBOT. The applicability and validity of HBOT for clinical treatment remain controversial, even though it is regarded as an adjunct to conventional medical treatment with many other clinical benefits. There also exists a negative side effect of accepting pressurized O2, such as oxidative stress injury, DNA damage, cellular metabolic, activating of coagulation, endothelial dysfunction, acute neurotoxicity and pulmonary toxicity. Then it is imperative to comprehensively consider the advantages and disadvantages of HBOT in order to obtain a satisfying therapeutic outcome.

Keywords: Angiogenesis, Cardiovascular system disease, DNA damage, HBOT, Ischemia and hypoxia, Nerve system disease.

[1]
Chin, W.; Jacoby, L.; Simon, O.; Talati, N.; Wegrzyn, G.; Jacoby, R.; Proano, J.; Sprau, S.E.; Markovitz, G.; Hsu, R.; Joo, E. Hyperbaric programs in the United States: Locations and capabilities of treating decompression sickness, arterial gas embolisms, and acute carbon monoxide poisoning: Survey results. Undersea Hyperb. Med., 2016, 43, 29-43.
[2]
Tibbles, P.M.; Edelsberg, J.S. Hyperbaric-oxygen therapy. N. Engl. J. Med., 1996, 334, 1642-1648.
[3]
Chen, C.; Huang, L.; Nong, Z.; Li, Y.; Chen, W.; Huang, J.; Pan, X.; Wu, G.; Lin, Y. Hyperbaric oxygen prevents cognitive impairments in mice induced by D-Galactose by improving cholinergic and anti-apoptotic functions. Neurochem. Res., 2017, 42, 1240-1253.
[4]
Sharma, A.K.; Zhou, G.P.; Kupferman, J.; Surks, H.K.; Christensen, E.N.; Chou, J.J.; Mendelsohn, M.E.; Rigby, A.C. Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J. Biol. Chem., 2008, 283, 32860-32869.
[5]
Schnell, J.R.; Chou, J.J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 2008, 451, 591-595.
[6]
Schnell, J.R.; Zhou, G.P.; Zweckstetter, M.; Rigby, A.C.; Chou, J.J. Rapid and accurate structure determination of coiled-coil domains using NMR dipolar couplings: Application to cGMP-dependent protein kinase Ialpha. Protein Sci., 2005, 14, 2421-2428.
[7]
Dev, J.; Park, D.; Fu, Q.; Chen, J.; Ha, H.J.; Ghantous, F.; Herrmann, T.; Chang, W.; Liu, Z.; Frey, G.; Seaman, M.S.; Chen, B.; Chou, J.J. Structural basis for membrane anchoring of HIV-1 envelope spike. Science, 2016, 353, 172-175.
[8]
Berardi, M.J.; Shih, W.M.; Harrison, S.C.; Chou, J.J. Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature, 2011, 476, 109-113.
[9]
OuYang, B.; Xie, S.; Berardi, M.J.; Zhao, X.M.; Dev, J.; Yu, W.; Sun, B.; Chou, J.J. Unusual architecture of the p7 channel from hepatitis C virus. Nature, 2013, 498, 521-525.
[10]
Oxenoid, K.; Dong, Y.S.; Cao, C.; Cui, T.; Sancak, Y.; Markhard, A.L.; Grabarek, Z.; Kong, L.; Liu, Z.; Ouyang, B.; Cong, Y.; Mootha, V.K.; Chou, J.J. Architecture of the Mitochondrial calcium uniporter. Nature, 2016, 533, 269-273.
[11]
Troy, F.A. 2-D NMR analyses reveals a specific interaction between polyisoprenols (PIs) and the polyisoprenol recognition sequences (PIRS) in model membranes. Glycoconj. J., 1995, 12, 434.
[12]
Zhou, G.P.; Troy, F.A. Characterization by NMR and molecular modeling of the binding of polyisoprenols (PI) and polyisoprenyl recognition sequence (PIRS) peptides: Three-dimensional structure of the complexes reveals sites of specific interactions. Glycobiology, 2003, 13, 51-71.
[13]
Zhou, G.P.; Troy, F.A., II NMR studies on how the binding complex of polyisoprenol recognition sequence peptides and polyisoprenols can modulate membrane structure. Curr. Protein Pept. Sci., 2005, 6, 399-411.
[14]
Zhou, G.P.; Troy, F.A. NMR study of the preferred membrane orientation of polyisoprenols (dolichol) and the impact of their complex with polyisoprenyl recognition sequence peptides on membrane structure. Glycobiology, 2005, 15, 347-359.
[15]
Chou, K.C.; Jones, D.; Heinrikson, R.L. Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett., 1997, 419, 49-54.
[16]
Chou, K.C.; Wei, D.Q.; Zhong, W.Z. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem. Biophys. Res. Commun., 2003, 308, 148-151.
[17]
Chou, K.C.; Tomasselli, A.G.; Heinrikson, R.L. Prediction of the tertiary structure of a Caspase-9/inhibitor complex. FEBS Lett., 2000, 470, 249-256.
[18]
Liao, Q.H.; Gao, Q.Z.; Wei, J. Docking and molecular dynamics study on the inhibitory activity of novel inhibitors on Epidermal Growth Factor Receptor (EGFR). Med. Chem., 2011, 7, 24-31.
[19]
Li, X.B.; Wang, S.Q.; Xu, W.R.; Wang, R.L. Novel inhibitor design for Hemagglutinin against H1N1 Influenza virus by core hopping method. PLoS One, 2011, 6e28111
[20]
Ma, Y.; Wang, S.Q.; Xu, W.R.; Wang, R.L. Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. PLoS One, 2012, 7e38546
[21]
Wang, J.F.; Chou, K.C. Insights from modeling the 3D structure of New Delhi metallo-beta-lactamase and its binding interactions with antibiotic drugs. PLoS One, 2011, 6e18414
[22]
Wang, J.F.; Chou, K.C. Insights into the mutation-induced HHH syndrome from modeling human Mitochondrial Ornithine Transporter-1. PLoS One, 2012, 7e31048
[23]
Chou, K.C. Insights from modelling three-dimensional structures of the human potassium and sodium channels. J. Proteome Res., 2004, 3, 856-861.
[24]
Chou, K.C. Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem. Biophys. Res. Commun., 2004, 319, 433-438.
[25]
Chou, K.C. Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J. Proteome Res., 2005, 4, 1681-1686.
[26]
Chou, K.C. Insights from modelling the tertiary structure of BACE2. J. Proteome Res., 2004, 3, 1069-1072.
[27]
Chou, K.C. Insights from modeling the 3D structure of DNA-CBF3b complex. J. Proteome Res., 2005, 4, 1657-1660.
[28]
Wang, J.F.; Wei, D.Q.; Lin, Y.; Wang, Y.H.; Du, H.L.; Li, Y.X. Insights from modeling the 3D structure of NAD(P)H-dependent D-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. Biochem. Biophys. Res. Commun., 2007, 359, 323-329.
[29]
Zhou, G.P.; Doctor, K. Subcellular location prediction of apoptosis proteins. Proteins, 2003, 50, 44-48.
[30]
Wang, J.F.; Chou, K.C. Insights from studying the mutation-induced allostery in the M2 proton channel by molecular dynamics. Protein Eng. Des. Sel., 2010, 23, 663-666.
[31]
Chou, K.C.; Elrod, D.W. Bioinformatical analysis of G-protein-coupled receptors. J. Proteome Res., 2002, 1, 429-433.
[32]
Chou, K.C. Review: Structural bioinformatics and its impact to biomedical science. Curr. Med. Chem., 2004, 11, 2105-2134.
[33]
Fan, Y.N.; Xiao, X.; Min, J.L.; Chou, K.C. iNR-Drug: Predicting the interaction of drugs with nuclear receptors in cellular networking. Int. J. Mol. Sci., 2014, 15, 4915-4937.
[34]
Min, J.L.; Xiao, X.; Chou, K.C. iEzy-Drug: A web server for identifying the interaction between enzymes and drugs in cellular networking. BioMed Res. Int., 2013, 2013701317
[35]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iGPCR-Drug: A web server for predicting interaction between GPCRs and drugs in cellular networking. PLoS One, 2013, 8e72234
[36]
Xiao, X.; Min, J.L.; Wang, P.; Chou, K.C. iCDI-PseFpt: Identify the channel-drug interaction in cellular networking with PseAAC and molecular fingerprints. J. Theor. Biol., 2013, 337C, 71-79.
[37]
Xiao, X.; Min, J.L.; Lin, W.Z.; Liu, Z.; Cheng, X.; Chou, K.C. iDrug-Target: Predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach. J. Biomol. Struct. Dyn., 2015, 33, 2221-2233.
[38]
Zhou, G.P.; Chen, D.; Liao, S.; Huang, R.B. Recent progresses in studying Helix-Helix interactions in proteins by incorporating the Wenxiang diagram into the NMR spectroscopy. Curr. Top. Med. Chem., 2016, 16, 581-590.
[39]
Zhou, G.P. Editorial: Current progress in structural bioinformatics of protein-biomolecule interactions. Med. Chem., 2015, 11, 216-217.
[40]
Zhou, G.P.; Huang, R.B.; Troy, F.A. 3D structural conformation and functional domains of polysialyltransferase ST8Sia IV required for polysialylation of neural cell adhesion molecules. Protein Pept. Lett., 2015, 22, 137-148.
[41]
Zhou, G.P. Missin of randomness. Virulence, 2013, 4, 669-670.
[42]
Zhou, G.P.; Huang, R.B. The pH-triggered conversion of the PrPc to PrPsc. Curr. Top. Med. Chem., 2013, 13, 1152-1163.
[43]
Zhou, G.P. The disposition of the LZCC protein residues in Wenxiang diagram provides new insights into the protein-protein interaction mechanism. J. Theor. Biol., 2011, 284, 142-148.
[44]
Zhou, G.P. The structural determinations of the Leucine Zipper coiled-coil domains of the cGMP-dependent protein Kinase I and its interaction with the Myosin binding subunit of the Myosin light chains phosphase. Protein Pept. Lett., 2011, 18, 966-978.
[45]
Huang, R.B.; Cheng, D.; Lu, B.; Liao, S.M.; Troy, F.A.; Zhou, G.P. the intrinsic relationship between structure and function of the sialyltransferase ST8Sia family members. Curr. Top. Med. Chem., 2017, 17, 2359-2369.
[46]
Zhou, G.P. Predictions and determinations of protein and peptide structures. Protein Pept. Lett., 2011, 18, 964-965.
[47]
Chou, K.C. Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr. Proteomics, 2009, 6, 262-274.
[48]
Chen, W.; Ding, H.; Zhou, X.; Lin, H.; Chou, K.C. iRNA(m6A)-PseDNC: Identifying N6-methyladenosine sites using pseudo dinucleotide composition. Anal. Biochem., 2018, 561-562, 59-65.
[49]
Khan, Y.D.; Rasool, N.; Hussain, W.; Khan, S.A. iPhosT-PseAAC: Identify phosphothreonine sites by incorporating sequence statistical moments into PseAAC. Anal. Biochem., 2018, 550, 109-116.
[50]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C.; Jia, J.H. iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics, 2018, 110, 239-246.
[51]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iSS-PseDNC: Identifying splicing sites using pseudo dinucleotide composition. BioMed Res. Int., 2014, 2014623149
[52]
Xie, H.L.; Fu, L.; Nie, X.D. Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou’s PseAAC. Protein Eng. Des. Sel., 2013, 26, 735-742.
[53]
Xu, Y.; Ding, J.; Wu, L.Y.; Chou, K.C. iSNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One, 2013, 8e55844
[54]
Zhou, G.P. Editorial: Modulations and their biological functions of protein-biomolecule interactions. Curr. Top. Med. Chem., 2016, 16, 579-580.
[55]
Jia, C.; Lin, X.; Wang, Z. Prediction of protein S-Nitrosylation sites based on adapted normal distribution Bi-profile bayes and Chou’s pseudo amino acid composition. Int. J. Mol. Sci., 2014, 15, 10410-10423.
[56]
Qiu, W.R.; Xiao, X.; Lin, W.Z.; Chou, K.C. iMethyl-PseAAC: Identification of protein methylation sites via a pseudo amino acid composition approach. BioMed Res. Int., 2014, 2014947416
[57]
Xu, Y.; Wen, X.; Shao, X.J.; Deng, N.Y.; Chou, K.C. iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int. J. Mol. Sci., 2014, 15, 7594-7610.
[58]
Xu, Y.; Wen, X.; Wen, L.S.; Wu, L.Y.; Deng, N.Y.; Chou, K.C. iNitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One, 2014, 9e105018
[59]
Zhang, J.; Zhao, X.; Sun, P.; Ma, Z. PSNO: Predicting Cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou’s PseAAC. Int. J. Mol. Sci., 2014, 15, 11204-11219.
[60]
Zhou, G.P.; W.Z., Zhong Perspectives in the medicinal chemistry. Curr. Top. Med. Chem., 2016, 16, 381-382.
[61]
Chou, K.C. Impacts of bioinformatics to medicinal chemistry. Med. Chem., 2015, 11, 218-234.
[62]
Qiu, W.R.; Xiao, X.; Lin, W.Z.; Chou, K.C. iUbiq-Lys: Prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model. J. Biomol. Struct. Dyn., 2015, 33, 1731-1742.
[63]
Chen, W.; Tang, H.; Ye, J.; Lin, H.; Chou, K.C. iRNA-PseU: Identifying RNA pseudouridine sites. Mol. Ther. Nucleic Acids, 2016, 5e332
[64]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem., 2016, 497, 48-56.
[65]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol., 2016, 394, 223-230.
[66]
Jia, J.; Liu, Z.; Xiao, X.; Liu, B. iCar-PseCp: Identify carbonylation sites in proteins by Monto Carlo sampling and incorporating sequence coupled effects into general PseAAC. Oncotarget, 2016, 7, 34558-34570.
[67]
Jia, J.; Zhang, L.; Liu, Z.; Xiao, X.; Chou, K.C. pSumo-CD: Predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC. Bioinformatics, 2016, 32, 3133-3141.
[68]
Liu, Z.; Xiao, X.; Yu, D.J.; Jia, J.; Qiu, W.R. pRNAm-PC: Predicting N-methyladenosine sites in RNA sequences via physical-chemical properties. Anal. Biochem., 2016, 497, 60-67.
[69]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C. iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating sequence-coupled effects into general PseAAC. Oncotarget, 2016, 7, 44310-44321.
[70]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, Z.C. iPTM-mLys: Identifying multiple lysine PTM sites and their different types. Bioinformatics, 2016, 32, 3116-3123.
[71]
Qiu, W.R.; Xiao, X.; Xu, Z.C.; Chou, K.C. iPhos-PseEn: Identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget, 2016, 7, 51270-51283.
[72]
Xu, Y. Recent progress in predicting posttranslational modification sites in proteins. Curr. Top. Med. Chem., 2016, 16, 591-603.
[73]
Feng, P.; Ding, H.; Yang, H.; Chen, W.; Lin, H. iRNA-PseColl: Identifying the occurrence sites of different RNA modifications by incorporating collective effects of nucleotides into PseKNC. Mol. Ther. Nucleic Acids, 2017, 7, 155-163.
[74]
Ju, Z.; He, J.J. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou’s general PseAAC. J. Mol. Graph. Model., 2017, 77, 200-204.
[75]
Liu, L.M.; Xu, Y. iPGK-PseAAC: Identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC. Med. Chem., 2017, 13, 552-559.
[76]
Qiu, W.R.; Jiang, S.Y.; Sun, B.Q.; Xiao, X.; Cheng, X. iRNA-2methyl: Identify RNA 2′-O-methylation sites by incorporating sequence-coupled effects into general PseKNC and ensemble classifier. Med. Chem., 2017, 13, 734-743.
[77]
Qiu, W.R.; Jiang, S.Y.; Xu, Z.C.; Xiao, X. iRNAm5C-PseDNC: Identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition. Oncotarget, 2017, 8, 41178-41188.
[78]
Qiu, W.R.; Sun, B.Q.; Xiao, X.; Xu, D.; Chou, K.C. iPhos-PseEvo: Identifying human phosphorylated proteins by incorporating evolutionary information into general PseAAC via grey system theory. Mol. Inform., 2017.
[http://dx.doi.org/10.1002/minf.201600010]
[79]
Xu, Y.; Li, C.; Chou, K.C. iPreny-PseAAC: Identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC. Med. Chem., 2017, 13, 544-551.
[80]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H. iRNA-3typeA: Identifying 3-types of modification at RNA’s adenosine sites. Mol. Ther. Nucleic Acids, 2018, 11, 468-474.
[81]
Feng, P.; Yang, H.; Ding, H.; Lin, H.; Chen, W. iDNA6mA-PseKNC: Identifying DNA N6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC. Genomics, 2018.
[http://dx.doi.org/10.1016/j.ygeno.2018.01.005]
[82]
Ju, Z.; Wang, S.Y. Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou’s general pseudo amino acid composition. Gene, 2018, 664, 78-83.
[83]
Sabooh, M.F.; Iqbal, N.; Khan, M.; Khan, M.; Maqbool, H.F. Identifying 5-methylcytosine sites in RNA sequence using composite encoding feature into Chou’s PseKNC. J. Theor. Biol., 2018, 452, 1-9.
[84]
Chou, K.C. An unprecedented revolution in medicinal chemistry driven by the progress of biological science. Curr. Top. Med. Chem., 2017, 17, 2337-2358.
[85]
Shi, J.Y.; Zhang, S.W.; Zhou, G.P. Using pseudo amino acid composition to predict protein subcellular location: Approached with amino acid composition distribution. Amino Acids, 2008, 35, 321-327.
[86]
Chou, K.C. Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review). J. Theor. Biol., 2011, 273, 236-247.
[87]
Chen, W.; Lin, H.; Chou, K.C. Pseudo nucleotide composition or PseKNC: An effective formulation for analyzing genomic sequences. Mol. Biosyst., 2015, 11, 2620-2634.
[88]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mPlant: Predict subcellular localization of multi-location plant proteins via incorporating the optimal GO information into general PseAAC. Mol. Biosyst., 2017, 13, 1722-1727.
[89]
Cheng, X.; Xiao, X. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC. Gene, 2017, 628, 315-321.
[90]
Cheng, X.; Zhao, S.G.; Lin, W.Z.; Xiao, X.; Chou, K.C. pLoc-mAnimal: Predict subcellular localization of animal proteins with both single and multiple sites. Bioinformatics, 2017, 33, 3524-3531.
[91]
Xiao, X.; Cheng, X.; Su, S.; Nao, Q.; Chou, K.C. pLoc-mGpos: Incorporate key gene ontology information into general PseAAC for predicting subcellular localization of Gram-positive bacterial proteins. Nat. Sci., 2017, 9, 331-349.
[92]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics, 2018, 110, 50-58.
[93]
Cheng, X.; Xiao, X. pLoc-mGneg: Predict subcellular localization of Gram-negative bacterial proteins by deep gene ontology learning via general PseAAC. Genomics, 2018, 110, 231-239.
[94]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc-mHum: Predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics, 2018, 34, 1448-1456.
[95]
Cheng, X.; Lin, W.Z.; Xiao, X. pLoc_bal-mAnimal: Predict subcellular localization of animal proteins by balancing training dataset and PseAAC. Bioinformatics, 2018.
[http://dx.doi.org/10.1093/bioinformatics/bty628]
[96]
Cheng, X.; Xiao, X.; Chou, K.C. pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC. J. Theor. Biol., 2018.
[http://dx.doi.org/10.1016/j/jtbi.2018.09.005]
[97]
Chou, K.C.; Cheng, X.; Xiao, X. pLoc_bal-mHum: predict subcellular localization of human proteins by PseAAC and quasi-balancing training dataset. Genomics, 2018.
[http://dx.doi.org/10.1016/j.ygeno.2018.08.007]
[98]
Xuao, X.; Cheng, X.; Chen, G.; Mao, Q. pLoc_bal-mGpos: Predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics, 2018.
[http://dx.doi.org/10.1016/j.ygeno.2018.05.017]
[99]
Cheng, X.; Zhao, S.G.; Xiao, X. iATC-mISF: A multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics, 2017, 33, 341-346.
[100]
Chou, K.C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 2013, 9, 1092-1100.
[101]
Chen, W.; Feng, P.M.; Lin, H.; Chou, K.C. iRSpot-PseDNC: Identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res., 2013, 41e68
[102]
Qiu, W.R.; Xiao, X. iRSpot-TNCPseAAC: Identify recombination spots with trinucleotide composition and pseudo amino acid components. Int. J. Mol. Sci., 2014, 15, 1746-1766.
[103]
Liu, B.; Wang, S.; Long, R.; Chou, K.C. iRSpot-EL: Identify recombination spots with an ensemble learning approach. Bioinformatics, 2017, 33, 35-41.
[104]
Yang, H.; Qiu, W.R.; Liu, G.; Guo, F.B.; Chen, W.; Chou, K.C.; Lin, H. iRSpot-Pse6NC: Identifying recombination spots in Saccharomyces cerevisiae by incorporating hexamer composition into general PseKNC. Int. J. Biol. Sci., 2018, 14, 883-891.
[105]
Lin, H.; Deng, E.Z.; Ding, H.; Chen, W.; Chou, K.C. iPro54-PseKNC: A sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res., 2014, 42, 12961-12972.
[106]
Chen, W.; Feng, P.; Yang, H.; Ding, H.; Lin, H. iRNA-AI: Identifying the adenosine to inosine editing sites in RNA sequences. Oncotarget, 2017, 8, 4208-4217.
[107]
Cheng, X.; Zhao, S.G.; Xiao, X.; Chou, K.C. iATC-mHyb: A hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals. Oncotarget, 2017, 8, 58494-58503.
[108]
Du, Q.S.; Wang, S.Q.; Xie, N.Z.; Wang, Q.Y.; Huang, R.B. 2L-PCA: A two-level principal component analyzer for quantitative drug design and its applications. Oncotarget, 2017, 8, 70564-70578.
[109]
Liu, B.; Wu, H. Pse-in-One 2.0: An improved package of web servers for generating various modes of pseudo components of DNA, RNA, and protein Sequences. Nat. Sci., 2017, 9, 67-91.
[110]
Liu, B.; Wu, H.; Zhang, D.; Wang, X.; Chou, K.C. Pse-Analysis: A python package for DNA/RNA and protein/peptide sequence analysis based on pseudo components and kernel methods. Oncotarget, 2017, 8, 13338-13343.
[111]
Liu, B.; Yang, F.; Chou, K.C. 2L-piRNA: A two-layer ensemble classifier for identifying piwi-interacting RNAs and their function. Mol. Ther. Nucleic Acids, 2017, 7, 267-277.
[112]
Niu, B.; Zhang, M.; Du, P.; Jiang, L.; Qin, R.; Su, Q.; Chen, F.; Du, D.; Shu, Y. Small molecular floribundiquinone B derived from medicinal plants inhibits acetylcholinesterase activity. Oncotarget, 2017, 8, 57149-57162.
[113]
Su, Q.; Lu, W.; Du, D.; Chen, F.; Niu, B. Prediction of the aquatic toxicity of aromatic compounds to tetrahymena pyriformis through support vector regression. Oncotarget, 2017, 8, 49359-49369.
[114]
Wang, J.; Yang, B.; Revote, J.; Leier, A.; Marquez-Lago, T.T.; Webb, G.; Song, J.; Lithgow, T.; Chou, K.C. POSSUM: A bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles. Bioinformatics, 2017, 33, 2756-2758.
[115]
Zhang, Z.D.; Liang, K.; Li, K.; Wang, G.Q.; Zhang, K.W.; Cai, L.; Zha, S.T. Chlorella vulgaris induces apoptosis of human Non-Small Cell Lung Carcinoma (NSCLC) cells. Med. Chem., 2017, 13, 560-568.
[116]
Liu, B.; Weng, F.; Huang, D.S.; Chou, K.C. iRO-3wPseKNC: Identify DNA replication origins by three-window-based PseKNC. Bioinformatics, 2018.
[http://dx.doi.org/10.1093/bioinformatics/bty312/4978052]
[117]
Liu, B.; Yang, F.; Huang, D.S.; Chou, K.C. iPromoter-2L: A two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. Bioinformatics, 2018, 34, 33-40.
[118]
Feng, P.M.; Chen, W.; Lin, H.; Chou, K.C. iHSP-PseRAAAC: Identifying the heat shock protein families using pseudo reduced amino acid alphabet composition. Anal. Biochem., 2013, 442, 118-125.
[119]
Cai, L.; Huang, T.; Su, J.; Zhang, X.; Chen, W.; Zhang, F.; He, L. Implications of newly identified brain eQTL genes and their interactors in Schizophrenia. Mol. Ther. Nucleic Acids, 2018, 12, 433-442.
[120]
Chou, K.C.; Shen, H.B. Recent advances in developing web-servers for predicting protein attributes. Nat. Sci., 2009, 1, 63-92.
[121]
Liu, B.; Fang, L.; Liu, F.; Wang, X.; Chen, J.; Chou, K.C. Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS One, 2015, 10e0121501
[122]
Liu, B.; Fang, L.; Long, R.; Lan, X.; Chou, K.C. iEnhancer-2L: A two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition. Bioinformatics, 2016, 32, 362-369.
[123]
Jia, J.; Liu, Z.; Xiao, X. iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J. Theor. Biol., 2015, 377, 47-56.
[124]
Maroko, P.R.; Radvany, P.; Braunwald, E.; Hale, S.L. Reduction of infarct size by oxygen inhalation following acute coronary occlusion. Circulation, 1975, 52, 360-368.
[125]
Sterling, D.L.; Thornton, J.D.; Swafford, A.; Gottlieb, S.F.; Bishop, S.P.; Stanley, A.W.; Downey, J.M. Hyperbaric oxygen limits infarct size in ischemic rabbit myocardium in vivo. Circulation, 1993, 88, 1931-1936.
[126]
Chen, C.; Chen, W.; Li, Y.; Dong, Y.; Teng, X.; Nong, Z.; Pan, X.; Lv, L.; Gao, Y.; Wu, G. Hyperbaric oxygen protects against myocardial reperfusion injury via the inhibition of inflammation and the modulation of autophagy. Oncotarget, 2017, 8, 111522-111534.
[127]
Chen, C.; Chen, W.; Nong, Z.; Ma, Y.; Qiu, S.; Wu, G. Cardioprotective effects of combined therapy with hyperbaric oxygen and diltiazem pretreatment on myocardial ischemia-reperfusion injury in rats. Cell. Physiol. Biochem., 2016, 38, 2015-2029.
[128]
Madias, J.E.; Madias, N.E.; Hood, W.B. Jr. Precordial ST-segment mapping. 2. Effects of oxygen inhalation on ischemic injury in patients with acute myocardial infarction. Circulation, 1976, 53, 411-417.
[129]
Dekleva, M.; Neskovic, A.; Vlahovic, A.; Putnikovic, B.; Beleslin, B.; Ostojic, M. Adjunctive effect of hyperbaric oxygen treatment after thrombolysis on left ventricular function in patients with acute myocardial infarction. Am. Heart J., 2004, 148e14
[130]
Dekleva, M.; Ostojic, M.; Neskovic, A.; Mazic, S.; Vlahovic, A.; Suzic, L.J.; Dekleva, N. Early detection of myocardial viability by hyperbaric oxygenation in patients with acute myocardial infarction treated with thrombolysis. Gen. Physiol. Biophys., 2009, 28, 127-134.
[131]
Khan, M.; Meduru, S.; Pandian, R.P.; Rivera, B.K.; Kuppusamy, P. Effect of oxygenation on stem-cell therapy for myocardial infarction. Adv. Exp. Med. Biol., 2011, 701, 175-181.
[132]
Tezcan, O.; Karahan, O.; Alan, M.; Ekinci, C.; Yavuz, C.; Demirtas, S.; Ekinci, A.; Caliskan, A. Hyperbaric oxygen preconditioning provides preliminary protection against doxorubicin cardiotoxicity. Acta Cardiol. Sin., 2017, 33, 150-155.
[133]
Özkan, M.T.; Vural, A.; Çiçek, Ö.F.; Yener, A.Ü.; Özcan, S.; Toman, H.; Ünver, A.; Saçar, M. Is hyperbaric oxygen or ozone effective in experimental endocarditis? J. Surg. Res., 2016, 202, 66-70.
[134]
Wunderlich, T.; Frey, N.; Kähler, W.; Lutz, M.; Radermacher, P.; Klapa, S.; Koch, I.; Tillmans, F.; Witte, J.; Koch, A. Influence of hyperoxia on diastolic myocardial and arterial endothelial function. Undersea Hyperb. Med., 2017, 44, 521-533.
[135]
Kozakiewicz, M.; Slomko, J.; Buszko, K.; Sinkiewicz, W.; Klawe, J.J.; Tafil-Klawe, M.; Newton, J.L.; Zalewski, P. Acute biochemical, cardiovascular and autonomic response to hyperbaric (4 atm) exposure in healthy subjects. Evid. Based Compl. Alt. Med., 2018, 20185913176
[136]
Bennett, M.; Roeckl-Wiedmann, I.; Debus, S. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst. Rev., 2012, 4CD004123
[137]
Schreml, S.; Szeimies, R.M.; Prantl, L.; Karrer, S.; Landthaler, M.; Babilas, P. Oxygen in acute and chronic wound healing. Br. J. Dermatol., 2010, 163, 257-268.
[138]
Niinikoski, J.H. Clinical hyperbaric oxygen therapy, wound perfusion and transcutaneous oximetry. World J. Surg., 2004, 28, 307-311.
[139]
Boykin, J.V. Jr. Re: Oxygen in wound healing: More than a nutrient. Wound Repair Regen., 2001, 9, 391-392.
[140]
Thackham, J.A.; McElwain, D.L.; Long, R.J. The use of hyperbaric oxygen therapy to treat chronic wounds: A review. Wound Repair Regen., 2008, 16, 321-330.
[141]
Sheikh, A.Y.; Rollins, M.D.; Hopf, H.W.; Hunt, T.K. Hyperoxia improves microvascular perfusion in a murine wound model. Wound Repair Regen., 2005, 13, 303-308.
[142]
Klemetti, E.; Rico-Vargas, S.; Mojon, P. Short duration hyperbaric oxygen treatment effects blood flow in rats: Pilot observations. Lab. Anim., 2005, 39, 116-121.
[143]
Sander, A.L.; Henrich, D.; Muth, C.M.; Marzi, I.; Barker, J.H.; Frank, J.M. In vivo effect of hyperbaric oxygen on wound angiogenesis and epithelialization. Wound Repair Regen., 2009, 17, 179-184.
[144]
Zhao, L.L.; Davidson, J.D.; Wee, S.C.; Roth, S.I.; Mustoe, T.A. Effect of hyperbaric oxygen and growth factors on rabbit ear ischemic ulcers. Arch. Surg., 1994, 129, 1043-1049.
[145]
Helmers, R.; Milstein, D.M.; van Hulst, R.A.; de Lange, J. Hyperbaric oxygen therapy accelerates vascularization in keratinized oral mucosal surgical flaps. Head Neck, 2014, 36, 1241-1247.
[146]
Sciubba, J.J.; Goldenberg, D. Oral complications of radiotherapy. Lancet Oncol., 2006, 7, 175-183.
[147]
Abendstein, H.; Nordgren, M.; Boysen, M.; Jannert, M.; Silander, E.; Ahlner-Elmqvist, M.; Hammerlid, E.; Bjordal, K. Quality of life and head and neck cancer: A 5 year prospective study. Laryngoscope, 2005, 115, 2183-2192.
[148]
Stone, H.B.; Coleman, C.N.; Anscher, M.S.; McBride, W.H. Effects of radiation on normal tissue: Consequences and mechanisms. Lancet Oncol., 2003, 4, 529-536.
[149]
Handschel, J.; Sunderkötter, C.; Kruse-Lösler, B.; Prott, F.J.; Meyer, U.; Piffko, J.; Joos, U. Late effects of radiotherapy on oral mucosa in humans. Eur. J. Oral Sci., 2001, 109, 95-102.
[150]
Riekki, R.; Jukkola, A.; Sassi, M.L.; Höyhtyä, M.; Kallioinen, M.; Risteli, J.; Oikarinen, A. Modulation of skin collagen metabolism by irradiation: Collagen synthesis is increased in irradiated human skin. Br. J. Dermatol., 2000, 142, 874-880.
[151]
Richter, K.K.; Fink, L.M.; Hughes, B.M.; Sung, C.C.; Hauer-Jensen, M. Is the loss of endothelial thrombomodulin involved in the mechanism of chronicity in late radiation enteropathy? Radiother. Oncol., 1997, 44, 65-71.
[152]
Marx, R.E.; Ehler, W.J.; Tayapongsak, P.; Pierce, L.W. Relationship of oxygen dose to angiogenesis induction in irradiated tissue. Am. J. Surg., 1990, 160, 519-524.
[153]
Svalestad, J.; Hellem, S.; Thorsen, E.; Johannessen, A.C. Effect of hyperbaric oxygen treatment on irradiated oral mucosa: Microvessel density. Int. J. Oral Max. Surg., 2015, 44, 301-307.
[154]
Muhonen, A.; Haaparanta, M.; Grönroos, T.; Bergman, J.; Knuuti, J.; Hinkka, S.; Happonen, R.P. Osteoblastic activity and neoangiogenesis in distracted bone of irradiated rabbit mandible with or without hyperbaric oxygen treatment. Int. J. Oral Max. Surg., 2004, 33, 173-178.
[155]
Støre, G.; Smith, H.J.; Larheim, T.A. Dynamic MR imaging of mandibular osteoradionecrosis. Acta Radiol., 2000, 41, 31-37.
[156]
Hopf, H.W.; Gibson, J.J.; Angeles, A.P.; Constant, J.S.; Feng, J.J.; Rollins, M.D. Zamirul, Hussain, M.; Hunt, T.K. Hyperoxia and angiogenesis. Wound Repair Regen., 2005, 13, 558-564.
[157]
Shweiki, D.; Itin, A.; Soffer, D.; Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 1992, 359, 843-845.
[158]
Somaiom, F. Netol.; Ikejiri, A.T.; Bertoletto, P.R.; Chaves, J.C.; Teruya, R.; Fagundes, D.J. Hyperbaric oxygenation and the genic expression related to oxidative stress in the heart of mice during intestinal ischemia and reperfusion. Acta Cir. Bras., 2017, 32, 913-923.
[159]
Nyabanga, C.T.; Kulkarni, G.; Shen, B. Hyperbaric oxygen therapy for chronic antibiotic-refractory ischemic pouchitis. Gastroenterol. Rep., 2017, 5, 320-321.
[160]
Daniel, R.A.; Cardoso, V.K.; Góis, E., Jr; Parra, R.S.; Garcia, S.B.; Rocha, J.J.; Féres, O. Effect of hyperbaric oxygen therapy on the intestinal ischemia reperfusion injury. Acta Cir. Bras., 2011, 26, 463-469.
[161]
Zulec, M.; Volf, A.; Puharić, Z. Hyperbaric oxygen therapy in treating post-ischemic pain caused by polycythemia vera complications: A case report. Undersea Hyperb. Med., 2015, 42, 607-611.
[162]
Lukiswanto, B.S.; Yuniarti, W.M.; Motulo, Y.Y. Effects of hyperbaric therapy on liver morphofunctional of rabbits (Oryctolagus cuniculus) after hind limb ischemia-reperfusion injury. Vet. World, 2017, 10, 1337-1342.
[163]
Kihara, K.; Ueno, S.; Sakoda, M.; Aikou, T. Effects of hyperbaric oxygen exposure on experimental hepatic ischemia reperfusion injury: relationship between its timing and neutrophil sequestration. Liver Transpl., 2005, 11, 1574-1580.
[164]
Migliorini, F.; Bianconi, F.; Bizzotto, L.; Porcaro, A.B.; Artibani, W. Acute ischemia of the glans penis after circumcision treated with hyperbaric therapy and pentoxifylline: Case report and revision of the literature. Urol. Int., 2018, 100, 361-363.
[165]
Tobias, D.; Julia, H.; Petru, B.; Otto, P.; Thomas, Z.; Frank, H.; Erich, M.; Günter, W.; Wolfgang, S. Combined hyperbaric oxygen partial pressure at 1.4 bar with infrared radiation: A useful tool to improve tissue hypoxemia? Med. Sci. Monit., 2018, 24, 4009-4019.
[166]
Calvert, J.W.; Cahill, J.; Yamaguchi-Okada, M.; Zhang, J.H. Oxygen treatment after experimental hypoxia-ischemia in neonatal rats alters the expression of HIF-1alpha and its downstream target genes. J. Appl. Physiol., 2006, 101, 853-865.
[167]
Grim, P.S.; Gottlieb, L.J.; Boddie, A.; Batson, E. Hyperbaric oxygen therapy. JAMA, 1990, 263, 2216-2220.
[168]
Markus, Y.M.; Bell, M.J.; Evans, A.W. Ischemic scleroderma wounds successfully treated with hyperbaric oxygen therapy. J. Rheumatol., 2006, 33, 1694-1696.
[169]
Tuk, B.; Tong, M.; Fijneman, E.M.; van Neck, J.W. Hyperbaric oxygen therapy to treat diabetes impaired wound healing in rats. PLoS One, 2014, 9e108533
[170]
Faglia, E.; Favales, F.; Aldeghi, A.; Calia, P.; Quarantiello, A.; Oriani, G.; Michael, M.; Campagnoli, P.; Morabito, A. Adjunctive systemic hyperbaric oxygen therapy in treatment of severe prevalently ischemic diabetic foot ulcer. A randomized study. Diabetes Care, 1996, 19, 1338-1343.
[171]
Kibel, A.; Novak, S.; Cosic, A.; Mihaljevic, Z.; Falck, J.R.; Drenjancevic, I. Hyperbaric oxygenation modulates vascular reactivity to angiotensin-(1-7) in diabetic rats: potential role of epoxyeicosatrienoic acids. Diab. Vasc. Dis. Res., 2015, 12, 33-45.
[172]
Guo, Z.N.; Xu, L.; Hu, Q.; Matei, N.; Yang, P.; Tong, L.S.; He, Y.; Guo, Z.; Tang, J.; Yang, Y.; Zhang, J.H. Hyperbaric oxygen preconditioning attenuates hemorrhagic transformation through teactive oxygen species/thioredoxin-interacting protein/nod-like receptor protein 3 pathway in hyperglycemic middle cerebral artery occlusion rats. Crit. Care Med., 2016, 44e403
[173]
David, H.J.; Utsha, G.K.; Brenna, P.S.; Matthew, K.; Kevin, H.; David, S.L.; David, M.E. Alterations in mitochondrial respiration and reactive oxygen species in patients poisoned with carbon monoxide treated with hyperbaric oxygen. Intensive Care Med. Exp., 2018, 6, 4.
[174]
Jadhav, V.; Ostrowski, R.P.; Tong, W.; Matus, B.; Chang, C.; Zhang, J.H. Hyperbaric oxygen preconditioning reduces postoperative brain edema and improves neurological outcomes after surgical brain injury. Acta Neurochir. Suppl., 2010, 106, 217-220.
[175]
Peng, Z.; Ren, P.; Kang, Z.; Du, J.; Lian, Q.; Liu, Y.; Zhang, J.H.; Sun, X. Up-regulated HIF-1alpha is involved in the hypoxic tolerance induced by hyperbaric oxygen preconditioning. Brain Res., 2008, 1212, 71-78.
[176]
Zhang, Y.; Yang, Y.; Tang, H.; Sun, W.; Xiong, X.; Smerin, D.; Liu, J. Hyperbaric oxygen therapy ameliorates local brain metabolism, brain edema and inflammatory response in a blast-induced traumatic brain injury model in rabbits. Neurochem. Res., 2014, 39, 950-960.
[177]
Pan, X.; Chen, C.; Huang, J.; Wei, H.; Fan, Q. Neuroprotective effect of combined therapy with hyperbaric oxygen and madopar on 6-hydroxydopamine-induced Parkinson’s disease in rats. Neurosci. Lett., 2015, 600, 220-225.
[178]
Sun, L.; Xie, K.; Zhang, C.; Song, R.; Zhang, H. Hyperbaric oxygen preconditioning attenuates postoperative cognitive impairment in aged rats. Neuroreport, 2014, 25, 718-724.
[179]
Chen, X.; Li, Y.; Chen, W.; Nong, Z.; Huang, J.; Chen, C. Protective effect of hyperbaric oxygen on cognitive impairment induced by D-Galactose in mice. Neurochem. Res., 2016, 41, 3032-3041.
[180]
Harch, P.G.; Andrews, S.R.; Fogarty, E.F.; Lucarini, J.; Van Meter, K.W. Case control study: Hyperbaric oxygen treatment of mild traumatic brain injury persistent post-concussion syndrome and post-traumatic stress disorder. Med. Gas Res., 2017, 7, 156-174.
[181]
Chen, C.; Fan, Q.; Nong, Z.; Chen, W.; Li, Y.; Huang, L.; Feng, D.; Pan, X.; Lan, S. Hyperbaric oxygen attenuates withdrawal symptoms by regulating monoaminergic neurotransmitters and NO signaling pathway at nucleus accumbens in morphine-dependent rats. Neurochem. Res., 2018, 43, 531-539.
[182]
Xing, P.; Ma, K.; Li, L.; Wang, D.; Hu, G.; Long, W. The protection effect and mechanism of hyperbaric oxygen therapy in rat brain with traumatic injury. Acta Cir. Bras., 2018, 33, 341-353.
[183]
Long, Y.; Tan, J.; Nie, Y.; Lu, Y.; Mei, X.; Tu, C. Hyperbaric oxygen therapy is safe and effective for the treatment of sleep disorders in children with cerebral palsy. Neurol. Res., 2017, 39, 239-247.
[184]
Zeng, S.; Zhou, J.; Peng, Q.; Deng, W.; Zhang, M.; Zhao, Y.; Wang, T.; Zhou, Q. Sustained maternal hyperoxygenation improves aortic arch dimensions in fetuses with coarctation. Sci. Rep., 2016, 6, 39304.
[185]
Oh, S.H.; Kang, H.D.; Jung, S.K.; Choi, S. Implementation of targeted temperature management in a patient with cerebral arterial gas embolism. Ther. Hypothermia Temp. Manag., 2018.
[http://dx.doi.org/10.1089/ther.2018.0010]
[186]
Mori, H.; Shinohara, H.; Arakawa, Y.; Kanemura, H.; Ikemoto, T.; Imura, S.; Morine, Y.; Ikegami, T.; Yoshizumi, T.; Shimada, M. Beneficial effects of hyperbaric oxygen pretreatment on massive hepatectomy model in rats. Transplantation, 2007, 84, 1656-1661.
[187]
Terzioglu, D.; Uslu, L.; Simsek, G.; Atukeren, P.; Erman, H.; Gelisgen, R.; Ayvaz, S.; Aksu, B.; Uzun, H. The effects of hyperbaric oxygen treatment on total antioxidant capacity and prolidase activity after bile duct ligation in rats. J. Invest. Surg., 2017, 30, 376-382.
[188]
Peng, H.S.; Liao, M.B.; Zhang, M.Y.; Xie, Y.; Xu, L.; Zhang, Y.J.; Zheng, X.F.; Wang, H.Y.; Chen, Y.F. Synergistic inhibitory effect of hyperbaric oxygen combined with sorafenib on hepatoma cells. PLoS One, 2014, 9e100814
[189]
Yun, S.; Yankai, W.; Chanjuan, S.; Yuanrun, Z.; Wendong, Y.; Yuanyuan, M.; Lijuan, C.; Yiping, F.; Xiaofeng, Y.; Zuo-Bing, C. Hyperbaric oxygen therapy in liver diseases. Int. J. Med. Sci., 2018, 15, 782-787.
[190]
Moen, I.; Stuhr, L.E. Hyperbaric oxygen therapy and cancer-a review. Target. Oncol., 2012, 7, 233-242.
[191]
Weixler, V.H.; Yates, A.E.; Puchinger, M.; Zirngast, B.; Pondorfer, P.; Ratzenhofer-Komenda, B.; Amegah-Sakotnik, A.; Smolle-Juettner, F.M.; Dapunt, O. Hyperbaric oxygen in patients with ischemic stroke following cardiac surgery: A retrospective observational trial. Undersea Hyperb. Med., 2017, 44, 377-385.
[192]
Gasier, H.G.; Demchenko, I.T.; Zhilyaev, S.Y.; Moskvin, A.N.; Krivchenko, A.I.; Piantadosi, C.A. Adrenoceptor blockade modifies regional cerebral blood flow responses to hyperbaric hyperoxia: Protection against CNS oxygen toxicity. J. Appl. Physiol., 2018.
[http://dx.doi.org/10.1152/japplphysiol.00540.2018]
[193]
Guensch, D.P.; Fischer, K.; Shie, N.; Lebel, J.; Friedrich, M.G. Hyperoxia exacerbates myocardial ischemia in the presence of acute coronary artery stenosis in swine. Circ. Cardiovasc. Interv., 2015, 8e002928
[194]
Lund, V.; Kentala, E.; Scheinin, H.; Klossner, J.; Koskinen, P.; Jalonen, J. Effect of hyperbaric conditions on plasma stress hormone levels and endothelin-1. Undersea Hyperb. Med., 1999, 26, 87-92.
[195]
Al-Waili, N.S.; Butler, G.J. Effects of hyperbaric oxygen on inflammatory response to wound and trauma: Possible mechanism of action. Sci. World J., 2006, 6, 425-441.
[196]
Lund, V.E.; Kentala, E.; Scheinin, H.; Lertola, K.; Klossner, J.; Aitasalo, K.; Sariola-Heinonen, K.; Jalonen, J. Effect of age and repeated hyperbaric oxygen treatments on vagal tone. Undersea Hyperb. Med., 2005, 32, 111-119.
[197]
Stellingwerff, T.; Glazier, L.; Watt, M.J.; LeBlanc, P.J.; Heigenhauser, G.J.; Spriet, L.L. Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise. J. Appl. Physiol., 2005, 98, 250-256.
[198]
Orbegozo, C.D.; Puflea, F.; Donadello, K.; Taccone, F.S.; Gottin, L.; Creteur, J.; Vincent, J.L.; De Backer, D. Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvasc. Res., 2015, 98, 23-28.
[199]
Hinkelbein, J.; Böhm, L.; Spelten, O.; Sander, D.; Soltész, S.; Braunecker, S. Hyperoxia-induced protein alterations in renal rat tissue: A quantitative proteomic approach to identify Hyperoxia-induced effects in cellular signaling pathways. Dis. Markers, 2015, 2015964263
[200]
Chen, C.F.; Liu, H.M.; Fang, H.S. Renal functions following hyperbaric oxygen toxicity in conscious rats. Proc. Natl. Sci. Counc. Repub. China B, 1987, 11, 66-71.
[201]
Sutherland, M.R.; Béland, C.; Lukaszewski, M.A.; Cloutier, A.; Bertagnolli, M.; Nuyt, A.M. Age- and sex-related changes in rat renal function and pathology following neonatal Hyperoxia exposure. Physiol. Rep., 2016, 4e12887
[202]
Tezcan, O.; Caliskan, A.; Demirtas, S.; Yavuz, C.; Kuyumcu, M.; Nergiz, Y.; Guzel, A.; Karahan, O.; Ari, S.; Soker, S.; Yalinkilic, I.; Turkdogan, K.A. Effects of hyperbaric oxygen treatment on renal system. Iran. J. Kidney Dis., 2017, 11, 18-22.
[203]
Ying, W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid. Redox Signal., 2008, 10, 179-206.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 5
Year: 2019
Page: [459 - 471]
Pages: 13
DOI: 10.2174/1573406415666181219101328
Price: $58

Article Metrics

PDF: 32
HTML: 2