Evaluation of Angiogenesis Process after Metformin and LY294002 Treatment in Mammary Tumor

Author(s): Marina G. Moschetta, Camila Leonel, Larissa B. Maschio-Signorini, Thaiz F. Borin, Gabriela B. Gelaleti, Bruna V. Jardim-Perassi, Lívia C. Ferreira, Nathália M. Sonehara, Livia G.S. Carvalho, Eva Hellmén, Debora A.P. de Campos Zuccari*.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The angiogenesis process is regulated by many factors, such as Hypoxia-Inducible Factor-1 (HIF-1) and Vascular Endothelial Growth Factor (VEGF). Metformin has demonstrated its ability to inhibit cell growth and the LY294002 is the major inhibitor of PI3K/AKT/mTOR pathway that has antiangiogenic properties.

Methods: Canine mammary tumor cell lines CMT-U229 and CF41 were treated with metformin and LY294002. Cell viability, protein and gene expression of VEGF and HIF-1 were determined in vitro. For the in vivo study, CF41 cells were inoculated in female athymic nude mice treated with either metformin or LY294002. The microvessel density by immunohistochemistry for CD31 as well as the gene and protein expression of HIF-1 and VEGF were evaluated.

Results: The treatment with metformin and LY294002 was able to reduce the cellular viability after 24 hours. The protein and gene expression of HIF-1 and VEGF decreased after treatment with metformin and LY294002. In the in vivo study, there was a decrease in tumor size, protein and gene expression of HIF-1 and VEGFA, in addition to the decreasing of CD31 expression after all treatments.

Conclusion: Our results demonstrate the effectiveness of metformin and LY294002 in controlling the angiogenesis process in mammary tumors by VEGF and HIF-1, the most important angiogenic markers.

Keywords: Angiogenesis, canine mammary tumors, hypoxia, hypoxia-inducible factor-1α, mammary tumors, metformin, vascular endothelial growth factor.

[1]
Masaki, Y.; Shimizu, Y.; Yoshioka, T.; Feng, F.; Zhao, S.; Higashino, K.; Numata, Y.; Kuge, Y. Imaging mass spectrometry revealed the accumulation characteristics of the 2-nitroimidazole-based agent “Pimonidazole” in hypoxia. PLoS One, 2016, 11e0161639
[2]
Kourtzelis, I.; Rafail, S. The dual role of complement in cancer and its implication in anti-tumor therapy. Ann. Transl. Med., 2016, 4, 265.
[3]
Roviello, G.; Ravelli, A.; Polom, K.; Petrioli, R.; Marano, L.; Marrelli, D.; Roviello, F.; Generali, D. Apatinib: A novel receptor tyrosine kinase inhibitor for the treatment of gastric cancer. Cancer Lett., 2016, 372, 187-191.
[4]
Lokadasan, R.; James, F.V.; Narayanan, G.; Prabhakaran, P.K. Targeted agents in epithelial ovarian cancer: Review on emerging therapies and future developments. Ecanc. Med. Sci., 2016, 10, 626.
[5]
Yoo, S.Y.; Kwon, S.M. Angiogenesis and its therapeutic opportunities. Mediators Inflamm., 2013, 2013127170
[6]
Arjaans, M.; Schröder, C.P.; Oosting, S.F.; Dafni, U.; Kleibeuker, J.E.; de-Vries, E.G. VEGF pathway targeting agents; vessel normalization and tumor drug uptake: from bench to bedside. Oncotarget, 2016, 7, 21247-21258.
[7]
Tadakawa, M.; Takeda, T.; Li, B.; Tsuiji, K.; Yaegashi, N. The anti-diabetic drug metformin inhibits vascular endothelial growth factor expression via the mammalian target of rapamycin complex 1/hypoxia-inducible factor-1α signaling pathway in ELT-3 cells. Mol. Cell. Endocrinol., 2015, 399, 1-8.
[8]
Wang, L.H.; Jiang, X.R.; Yang, J.Y.; Bao, X.F.; Chen, J.L.; Liu, X.; Chen, G.L.; Wu, C.F. SYP-5, a novel HIF-1 inhibitor, suppressed tumor cell invasion and angiogenesis. Eur. J. Pharmacol., 2016, 791, 560-568.
[9]
Li, S.; Meng, W.; Guan, Z.; Guo, Y.; Han, X. The hypoxia-related signaling pathways of vasculogenic mimicry in tumor treatment. Biomed. Pharmacother., 2016, 80, 127-135.
[10]
Lee, S.O.; Kim, J.S.; Lee, M.S.; Lee, H.J. Anti-cancer effect of pristimerin by inhibition of HIF-1α involves the SPHK-1 pathway in hypoxic prostate cancer cells. BMC Cancer, 2016, 16, 701.
[11]
Du, J.; Xu, R.; Hu, Z.; Tian, Y.; Zhu, Y.; Gu, L.; Zhou, L. PI3K and ERK-induced Rac1 activation mediates hypoxia-induced HIF-1α expression in MCF-7 breast cancer cells. PLoS One, 2011, 6e25213
[12]
Mayer, I.A.; Arteaga, C.L. The PI3K/AKT pathway as a target for cancer treatment. Annu. Rev. Med., 2016, 67, 11-28.
[13]
Zhu, M.; Zhang, Q.; Wang, X.; Kang, L.; Yang, Y.; Liu, Y.; Yang, L.; Li, J.; Yang, L.; Liu, J.; Li, Y.; Zu, L.; Shen, Y.; Qi, Z. Metformin potentiates anti-tumor effect of resveratrol on pancreatic cancer by down-regulation of VEGF-B signaling pathway. Oncotarget, 2016, 7, 84190-84200.
[14]
Wang, D.; Wu, X. In vitro and in vivo targeting of bladder carcinoma with metformin in combination with cisplatin. Oncol. Lett., 2015, 10, 975-981.
[15]
Coyle, C.; Cafferty, F.H.; Vale, C.; Langley, R.E. Metformin as an adjuvant treatment for cancer: A systematic review and meta-analysis. Ann. Oncol., 2016, 27, 2184-2195.
[16]
Zhao, L.; Wen, Z.H.; Jia, C.H.; Li, M.; Luo, S.Q.; Bai, X.C. Metformin induces G1 cell cycle arrest and inhibits cell proliferation in nasopharyngeal carcinoma cells. Anat. Rec., 2011, 294, 1337-1343.
[17]
Ferletta, M.; Grawé, J.; Hellmén, E. Canine mammary tumors contain cancer stem-like cells and form spheroids with an embryonic stem cell signature. Int. J. Dev. Biol., 2011, 55, 791-799.
[18]
Borin, T.F.; Arbab, A.S.; Gelaleti, G.B.; Ferreira, L.C.; Moschetta, M.G.; Jardim-Perassi, B.V.; Iskander, A.S.; Varma, N.R.; Shankar, A.; Coimbra, V.B.; Fabri, V.A.; de-Oliveira, J.G.; Zuccari, D.A. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J. Pineal Res., 2016, 1, 3-15.
[19]
Rattan, R.; Graham, R.P.; Maguire, J.L.; Giri, S.; Shridhar, V. Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo. Neoplasia, 2011, 5, 483-491.
[20]
Chiavarina, B.; Whitaker-Menezes, D.; Martinez-Outschoorn, U.E.; Witkiewicz, A.K.; Birbe, R.; Howell, A.; Pestell, R.G.; Smith, J.; Daniel, R.; Sotgia, F.; Lisanti, M.P. Pyruvate kinase expression (PKM1 and PKM2) in cancer-associated fibroblasts drives stromal nutrient production and tumor growth. Cancer Biol. Ther., 2011, 12, 1101-1113.
[21]
Jardim-Perassi, B.V.; Lourenço, M.R.; Doho, G.M.; Grígolo, I.H.; Gelaleti, G.B.; Ferreira, L.C.; Borin, T.F.; Moschetta, M.G.
Zuccari, P.C.D.A. Melatonin regulates angiogenic factors under hypoxia in breast cancer cell lines. Anticancer. Agents Med. Chem., 2016, 16, 347-358.
[22]
Moschetta, M.G.; Maschio, L.B.; Jardim-Perassi, B.V.; Gelaleti, G.B.; Lopes, J.R.; Leonel, C.; Gonçalves, N.; Ferreira, L.C.; Martins, G.R.; Borin, T.F.; Zuccari, D.A. Prognostic value of vascular endothelial growth factor and hypoxia-inducible factor 1α in canine malignant mammary tumors. Oncol. Rep., 2015, 5, 2345-2353.
[23]
Livak, K.J.; Schmittgen, T.D. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc., 2008, 3, 1101-1108.
[24]
Hida, K.; Maishi, N.; Torii, C.; Hida, Y. Tumor angiogenesis--characteristics of tumor endothelial cells. Int. J. Clin. Oncol., 2016, 2, 206-212.
[25]
Karar, J.; Maity, A. PI3K/AKT/mTOR pathway in angiogenesis. Front. Mol. Neurosci., 2011, 4, 51.
[26]
Azim, S.; Zubair, H.; Srivastava, S.K.; Bhardwaj, A.; Zubair, A.; Ahmad, A.; Singh, S.; Khushman, M.; Singh, A.P. Deep sequencing and in silico analyses identify MYB-regulated gene networks and signaling pathways in pancreatic cancer. Sci. Rep., 2016, 6, 28446.
[27]
Phoenix, K.N.; Vumbaca, F.; Claffey, K.P. Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ER alpha negative MDA-MB-435 breast cancer model. Breast Cancer Res. Treat., 2009, 113, 101-111.
[28]
Kato, H.; Sekine, Y.; Furuya, Y.; Miyazawa, Y.; Koike, H.; Suzuki, K. Metformin inhibits the proliferation of human prostate cancer PC-3 cells via the downregulation of insulin-like growth factor 1 receptor. Biochem. Biophys. Res. Commun., 2015, 1, 115-121.
[29]
Ueno, S.; Kimura, T.; Yamaga, T.; Kawada, A.; Ochiai, T.; Endou, H.; Sakurai, H. Metformin enhances anti-tumor effect of L-type Amino Acid Transporter 1 (LAT1) inhibitor. J. Pharmacol. Sci., 2016, 2, 110-117.
[30]
Komeili-Movahhed, T.; Fouladdel, S.; Barzegar, E.; Atashpour, S.; Ghahremani, H.M.; Ostad, N.S.; Madjd, Z.; Azizi, E. PI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy. Iran. J. Basic Med. Sci., 2015, 5, 472-477.
[31]
Jiang, H.; Fan, D.; Zhou, G.; Li, X.; Deng, H. Phosphatidylinositol 3-kinase inhibitor (LY294002) induces apoptosis of human nasopharyngeal carcinoma in vitro and in vivo. J. Exp. Clin. Cancer Res., 2010, 29, 34.
[32]
Higashimura, Y.; Nakajima, Y.; Yamaji, R.; Harada, N.; Shibasaki, F.; Nakano, Y.; Inui, H. Up-regulation of glyceraldehyde-3-phosphate dehydrogenase gene expression by HIF-1 activity depending on sp1 in hypoxic breast cancer cells. Arch. Biochem. Biophys., 2011, 509, 1-8.
[33]
Dai, M.; Cui, P.; Yu, M.; Han, J.; Li, H.; Xiu, R. Melatonin modulates the expression of VEGF and HIF-1 alpha induced by CoCl2 in cultured cancer cells. J. Pineal Res., 2008, 44, 121-126.
[34]
Soraya, H.; Esfahanian, N.; Shakiba, Y.; Ghazi-Khansari, M.; Nikbin, B.; Hafezzadeh, H.; Dizaji, M.N.; Garjani, A. Anti-angiogenic effects of metformin, an AMPK activator, on human umbilical vein endothelial cells and on granulation tissue in rat. Iran. J. Basic Med. Sci., 2012, 15, 1202-1209.
[35]
Sahra, I.; Le, M.B.Y.; Tanti, J.F.; Bost, F. Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol. Cancer Ther., 2010, 5, 1092-1099.
[36]
Shafaee, A.; Dastyar, D.Z.; Islamian, J.P.; Hatamian, M. Inhibition of tumor energy pathways for targeted esophagus cancer therapy. Metabolism, 2015, 10, 1193-1198.
[37]
Aksoy, S.; Sendur, M.A.; Altundag, K. Demographic and clinico-pathological characteristics in patients with invasive breast cancer receiving metformin. Med. Oncol., 2013, 2, 590.
[38]
Shank, J.J.; Yang, K.; Ghannam, J.; Cabrera, L.; Johnston, C.J.; Reynolds, R.K.; Buckanovich, R.J. Metformin targets ovarian cancer stem cells in vitro and in vivo. Gynecol. Oncol., 2012, 2, 390-397.
[39]
Kabel, A.M.; Omar, M.S.; Balaha, M.F.; Borg, H.M. Effect of metformin and adriamycin on transplantable tumor model. Tissue Cell, 2015, 47, 498-505.
[40]
Liu, B.; Fan, Z.; Edgerton, S.M.; Deng, X.S.; Alimova, I.N.; Lind, S.E.; Thor, A.D. Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle, 2009, 8, 2031-2040.
[41]
Viollet, B.; Guigas, B.; Sanz Garcia, N.; Leclerc, J.; Foretz, M.; Andreelli, F. Cellular and molecular mechanisms of metformin: An overview. Clin. Sci. (Lond.), 2012, 122, 253-270.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 5
Year: 2019
Page: [655 - 666]
Pages: 12
DOI: 10.2174/1871520619666181218164050
Price: $58

Article Metrics

PDF: 26
HTML: 3