Lab-on-a-chip Dielectrophoretic Manipulation of Beta-2 Microglobulin for Toxin Removal in An Artificial Kidney

Author(s): Muhammad Izzuddin Abd Samad, Aminuddin Ahmad Kayani, Ahmad Sabirin Zoolfakar, Azrul Azlan Hamzah, Burhanuddin Yeop Majlis, Muhamad Ramdzan Buyong*.

Journal Name: Micro and Nanosystems

Volume 11 , Issue 1 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Background: This paper presents a fundamental study of protein manipulation under the influence of dielectrophoretic (DEP) force for a lab-on-a-chip platform.

Objective: Protein manipulation is dependent on the polarisation factor of protein when exposed to an electric field. Therefore the objective of this work is a microfluidic device and measurement system are used to characterise the human beta-2 microglobulin (β2M) protein via lateral attractive forces and vertical repulsive forces by means of DEP responses.

Method: The manipulation of the β2M protein was conducted using a microfluidic platform with a tapered DEP microelectrode and the protein concentration was quantified based on a biochemical interaction using an Enzyme-Linked Immunosolvent Assay (ELISA). The protein distribution has been analysed based on the β2M concentration for each microfluidic outlet.

Results: At 300 kHz, the protein experienced a negative DEP (nDEP) with of 83.3% protein distribution on the middle microchannel. In contrast, the protein experienced a positive DEP (pDEP) at 1.2 MHz with of 78.7% of protein on the left and right sides of the microchannel.

Conclusion: This is concept proved that the tapered DEP microelectrode is capable of manipulating a β2M via particle polarisation, hence making it suitable to be utilised for purifying proteins in biomedical application.

Keywords: Dielectrophoresis, Beta-2-microglobulin, Lab on chip, artificial kidney, hollow fibre membrane, end-stage renal disease.

The National Renal Registry. 23rd Report of the Malaysian Dialysis and Transplant Registry 2014 2015.
The National Renal Registry. 22nd Report of the Malaysian Dialysis and Transplant Registry 2014. 2015.
Ramin, S. Hemodialysis: Diffusion and ultrafiltration. Austin J. Nephrol. Hypertens., 2014, 1(1010)
Pannu, N.; Gibney, R.N. Renal replacement therapy in the intensive care unit. Ther. Clin. Risk Manag., 2005, 1(2), 141.
Mehta, R.L.; Letteri, J.M. Current status of renal replacement therapy for acute renal failure. Am. J. Nephrol., 1999, 19(3), 377-382.
Tattersall, J. Clearance of beta-2-microglobulin and middle molecules in haemodiafiltration.In:Hemodiafiltration; Karger Publishers, 2007, Vol. 158, pp. 201-209.
Leypoldt, J.K.; Holmes, C.J.; Rutherford, P. Clearance of middle molecules during haemodialysis and haemodiafiltration: New insights. Nephrol. Dial. Transplant., 2012, 27(12), 4245-4247.
Clark, W.R.; Winchester, J.F. Middle molecules and small-molecular-weight proteins in ESRD: Properties and strategies for their removal. Adv. Ren. Replace. Ther., 2003, 10(4), 270-278.
Estácio, S.G.; Krobath, H.; Vila-Viçosa, D.; Machuqueiro, M.; Shakhnovich, E.I.; Faísca, P.F. A simulated intermediate state for folding and aggregation provides insights into ΔN6 β2-microglobulin amyloidogenic behavior. PLOS Comput. Biol., 2014, 10(5), e1003606.
Moeller, M.J.; Kuppe, C. Point: Proposing the electrokinetic model. Perit. Dial. Int., 2015, 35(1), 5-8.
Moeller, M.J.; Tenten, V. Renal albumin filtration: Alternative models to the standard physical barriers. Nat. Rev. Nephrol., 2013, 9(5), 266.
Adekanmbi, E.O.; Srivastava, S.K. Dielectrophoretic applications for disease diagnostics using lab-on-a-chip platforms. Lab Chip, 2016, 16(12), 2148-2167.
Cheng, I.F.; Huang, W.L.; Chen, T.Y.; Liu, C.W.; Lin, Y.D.; Su, W.C. Antibody-free isolation of rare cancer cells from blood based on 3D lateral dielectrophoresis. Lab Chip, 2015, 15(14), 2950-2959.
Chen, Y.; Li, P.; Huang, P.H.; Xie, Y.; Mai, J.D.; Wang, L.; Nguyen, N.T.; Huang, T.J. Rare cell isolation and analysis in microfluidics. Lab Chip, 2014, 14(4), 626-645.
d’Amico, L.; Ajami, N.J.; Adachi, J.A.; Gascoyne, P.R.; Petrosino, J.F. Isolation and concentration of bacteria from blood using microfluidic membraneless dialysis and dielectrophoresis. Lab Chip, 2017, 17(7), 1340-1348.
Pan, J.A.; Peng, X.; Gao, Y.; Li, Z.; Lu, X.; Chen, Y.; Ishaq, M.; Liu, D.; DeDiego, M.L.; Enjuanes, L.; Guo, D. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication. PLoS One, 2008, 3(10), e3229.
Nguyen, N.T. Micro-magnetofluidics: Interactions between magnetism and fluid flow on the microscale. Microfluid. Nanofluidics, 2012, 12(1-4), 1-6.
Li, X.; Tao, Y.; Lee, D.H.; Wickramasinghe, H.K.; Lee, A.P. In situ mRNA isolation from a microfluidic single-cell array using an external AFM nanoprobe. Lab Chip, 2017, 17(9), 1635-1644.
Chan, J.Y.; Ahmad Kayani, A.B.; Md Ali, M.A.; Kok, C.K.; Majlis, B.Y.; Hoe, S.L.; Marzuki, M.; Khoo, A.S.; Ostrikov, K.; Rahman, M.A.; Sriram, S. Dielectrophoresis-based microfluidic platforms for cancer diagnostics. Biomicrofluidics, 2018, 12(1), 011503.
Koklu, A.; Sabuncu, A.C.; Beskok, A. Enhancement of dielectrophoresis using fractal gold nanostructured electrodes. Electrophoresis, 2017, 38(11), 1458-1465.
Ali, M.A.; Ostrikov, K.K.; Khalid, F.A.; Majlis, B.Y.; Kayani, A.A. Active bioparticle manipulation in microfluidic systems. RSC Advances, 2016, 6(114), 113066-113094.
Iswardy, E.; Tsai, T.C.; Cheng, I.F.; Ho, T.C.; Perng, G.C.; Chang, H.C. A bead-based immunofluorescence-assay on a microfluidic dielectrophoresis platform for rapid dengue virus detection. Biosens. Bioelectron., 2017, 95, 174-180.
Pethig, R. Dielectric and electrical properties of biological materials. J. Bioelectr, 1985, 4(2), vii-ix.
Hughes, M.P. Nanoelectromechanics in Engineering and Biology; CRC Press, 2002.
Othamany, N.R.A.T.; Aziz, N.A.; Samad, M.I.A.; Buyong, M.R.; Majlis, B.Y. Separation of micro engineered particle using dielectrophoresis technique. In:IEEE International Conference on Semiconductor Electronics (ICSE), 2018, pp. 69-72.
Rahim, M.K.A.; Buyong, M.R.; Jamaludin, N.M.A.; Hamzah, A.A.; Siow, K.S.; Majlis, B.Y. Characterization of permittivity and conductivity for ESKAPE pathogens detection. In:IEEE International Conference on Semiconductor Electronics (ICSE), 2018, pp. 132-135.
Jamaludin, N.M.A.; Buyong, M.R.; Rahim, M.K.A.; Hamzah, A.A.; Mailis, B.Y.; Bais, B. Dielectrophoresis: Characterization of triple-negative breast cancer using Clausius-Mossotti factor. In:IEEE International Conference on Semiconductor Electronics (ICSE), 2018, pp. 85-88.
Samad, M.I.A.; Buyong, M.R.; Yunus, F.W.; Siow, K.S.; Hamzah, A.A.; Majlis, B.Y. Voltage characterization on dielectrophoretic force response to hematologic cell manipulation. In:IEEE International Conference on Semiconductor Electronics (ICSE), 2018, pp. 13-16.
Buyong, M.R.; Larki, F.; Faiz, M.S.; Hamzah, A.A.; Yunas, J.; Majlis, B.Y. A tapered aluminium microelectrode array for improvement of dielectrophoresis-based particle manipulation. Sensors, 2015, 15(5), 10973-10990.
Buyong, M.R.; Larki, F.; Takamura, Y.; Majlis, B.Y. Tapered microelectrode array system for dielectrophoretically filtration: Fabrication, characterization, and simulation study. J. Micro. Nanolithogr. MEMS MOEMS, 2017, 16(4), 044501.
Manual procedure 50383D (PRB-5038), CELL BIOLABS (2016),Human Beta 2 Microglobulin ELISA Kit’, Retrieved from: (Accessed on November 2, 2017).
Buyong, M.R.; Larki, F.; Takamura, Y.; Aziz, N.A.; Yunas, J.; Hamzah, A.A.; Majlis, B.Y. Implementing the concept of dielectrophoresis in glomerular filtration of human kidneys. In:IEEE International Conference on Semiconductor Electronics (ICSE), 2016, pp. 33-37.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [40 - 46]
Pages: 7
DOI: 10.2174/1876402911666181218145459

Article Metrics

PDF: 14
PRC: 1