Review Article

Recent Review on Subclass B1 Metallo-β-lactamases Inhibitors: Sword for Antimicrobial Resistance

Author(s): Aditi Kaushik*, Manish Kaushik, Viney Lather and J.S. Dua

Volume 20, Issue 7, 2019

Page: [756 - 762] Pages: 7

DOI: 10.2174/1389450120666181217101812

Price: $65

Abstract

An emerging crisis of antibiotic resistance for microbial pathogens is alarming all the nations, posing a global threat to human health. The production of the metallo-β-lactamase enzyme is the most powerful strategy of bacteria to produce resistance. An efficient way to combat this global health threat is the development of broad/non-specific type of metallo-β-lactamase inhibitors, which can inhibit the different isoforms of the enzyme. Till date, there are no clinically active drugs against metallo- β-lactamase. The lack of efficient drug molecules against MBLs carrying bacteria requires continuous research efforts to overcome the problem of multidrug-resistance bacteria. The present review will discuss the clinically potent molecules against different variants of B1 metallo-β-lactamase.

Keywords: Antibiotic resistance, B1 metallo-β-lactamase, variants, enzyme, isoforms, multidrug-resistance bacteria.

Graphical Abstract
[1]
Shahnaz Armin S, Fallah F, Navidinia M, Vosoghian S. Prevalence of blaOXA-1 and blaDHA-1 AmpC β-Lactamase-producing and methicillin-resistant staphylococcus aureus in Iran. Arch Pediatr Infect Dis 2017; 5(4): e36778.
[2]
Goudarzi M, Navidinia M, Beiranvand E, Goudarzi H. Phenotypic and molecular characterization of methicillin-resistant Staphylococcus aureus clones carrying the panton-valentine leukocidin genes disseminating in Iranian Hospitals. Microb Drug Resist 2018; 12.
[3]
Fahimzad SA, Ghasemi M, Shiva F, et al. Susceptibility pattern of bacille calmette-guerin strains against pyrazinamide and other major anti-mycobacterial drugs. Arch Pediatr Infect Dis 2015; 3(1 TB): e17814.
[4]
Mohsen J, Fatemeh F, Shams BR, et al. The first report of CMY, Aac (6′) -Ib And 16s rna Methylase Genes Among Pseudomonas Aeruginosa Isolates From Iran. Arch Pediatric Infectious Dis 2013; 1(3): 109-12.
[5]
Navidinai M, Goudarzi M, Rameshe SM, et al. Molecular Characterization of resistance genes in MDR-ESKAPE pathogens. J Pure Appl Microbiol 2017; 11(2): 779-92.
[6]
Navidinia M. The clinical importance of emerging ESKAPE pathogens in nosocomial infections. J Paramed Sci 2016; 7(3): 2008-4978.
[7]
Peerayeh SN, Navidinia M, Fallah F, Bakhshi B, Jamali J. Pathogenicity determinants and epidemiology of uropathogenic E. coli (UPEC) strains isolated from children with urinary tract infection (UTI) to define distinct pathotypes. Biomed Res 2018; 29(10): 2035-43.
[8]
Navidinia M, Peerayeh SN, Fallah F, Bakhshi B. Phylogenetic groups and pathogenicity island markers in escherichia coli isolated from children. Jundishapur J Microbiol 2013; 6(10): e8362.
[9]
Levy SB, Marshall B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat Med 2004; 10: S122-9.
[10]
Kallen AJ, Srinivasan A. Current epidemiology of multidrug-resistant gram-negative bacilli in the United States. Infect Control Hosp Epidemiol 2010; 31: S51-4.
[11]
Boucher HW, Talbot GH, Bradley JS, et al. Bad bugs, no drugs: No eskape! An update from the infectious diseases society of america. Clin Infect Dis 2009; 48(1): 1-12.
[12]
Llarrull LI, Testero SA, Fisher JF, Mobashery S. The future of the β-lactams. Curr Opin Microbiol 2010; 13: 551-7.
[13]
Worthington RJ, Melander C. Overcoming resistance to β-lactam antibiotics. J Org Chem 2013; 78: 4207-13.
[14]
Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32: 234-58.
[15]
Shlaes DM. New β-lactam–β-lactamase inhibitor combinations in clinical development. Ann N Y Acad Sci 2013; 1277: 105-14.
[16]
Drawz SM, Papp-Wallace KM, Bonomo RA. New β-lactamase inhibitors: A therapeutic renaissance in an MDR World. Antimicrob Agents Chemother 2014; 58: 1835-46.
[17]
Butler MS, Blaskovich MA, Cooper MA. Antibiotics in the clinical pipeline in 2013. J Antibiot 2013; 66: 571-91.
[18]
Cooper MA, Shlaes D. Fix the antibiotics pipeline. Nat 2011; 472- 32.
[19]
Laxminarayan R, Powers JH, Antibacterial R. D incentives. Nat Rev Drug Discov 2011; 10: 727-8.
[20]
Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010; 54: 969-76.
[21]
Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams? Lancet Infect Dis 2011; 11: 381-93.
[22]
Hata M, Fujii Y, Tanaka Y, et al. Substrate deacylation mechanisms of serine-beta-lactamases. Biol Pharm Bull 2006; 9(11): 2151-9.
[23]
Crowder MW, Spencer J, Vila AJ. Metallo-beta-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res 2006; 39: 721-8.
[24]
Drawz SM, Bonomo RA. Three decades of β -lactamase inhibitors. Clin Microbiol Rev 2010; 23(1): 160-201.
[25]
Bush K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol 2010; 13: 558-64.
[26]
Lee SH, Jarantow LW, Wang H, et al. Antagonism of chemical genetic interaction networks resensitize MRSA to β-lactam antibiotics. Chem Biol 2011; 18: 1379-89.
[27]
Nordmann P, Poirel L, Walsh TR, Livermore DM. The emerging NDM carbapenemases. Trends Microbiol 2011; 19: 588-95.
[28]
Toney JH, Moloughney JG. Metallo-beta-lactamase inhibitors: promise for the future? Curr Opin Investig Drugs 2004; 5(8): 823-6.
[29]
Mojica MF, Bonomo RA, Fast W. B1-Metallo-beta-Lactamases: Where do we stand? Curr Drug Targets 2016; 17(9): 1029-50.
[30]
Palzkill T. Metallo-beta-lactamase structure and function. Ann N Y Acad Sci 2013; 1277: 91-104.
[31]
Massidda O, Rossolini GM, Satta G. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-beta-lactamases. J Bacteriol 1991; 173: 4611-7.
[32]
Saavedra MJ, Peixe L, Sousa JC, et al. Sfh-I, a subclass B2 metallo-beta-lactamase from a Serratia fonticola environmental isolate. Antimicrob Agents Chemother 2003; 47: 2330-3.
[33]
Walsh TR, Hall L, Assinder SJ, et al. Sequence analysis of the L1 metallo-beta-lactamase from Xanthomonas maltophilia. Biochim Biophys Acta 1994; 1218: 199-201.
[34]
Bellais S, Aubert D, Naas T, Nordmann P. Molecular and biochemical heterogeneity of class B carbapenem-hydrolyzing beta-lactamases in Chryseobacterium meningosepticum. Antimicrob Agents Chemother 2000; 44: 1878-86.
[35]
Lienard BM, Garau G, Horsfall L, et al. Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols. Org Biomol Chem 2008; 6: 2282-94.
[36]
Vella P, Hussein WM, Leung EW, et al. The identification of new metallo-beta-lactamase inhibitor leads from fragment-based screening. Bioorg Med Chem Lett 2011; 21: 3282-5.
[37]
Faridoon Hussein WM, Vella P, Islam NU, et al. 3-Mercapto-1,2,4-triazoles and N-acylated thiosemicarbazides as metallo-betalactamase Inhibitors. Bioorg Med Chem Lett 2012; 22: 380-6.
[38]
Hussein WM, Fatahala SS, Mohamed ZM, et al. Synthesis and kinetic testing of tetrahydropyrimidine-2-thione and pyrrole derivatives as inhibitors of the metallo-beta-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Chem Biol Drug Des 2012; 80: 500-15.
[39]
Bounaga S, Galleni M, Laws AP, Page MI. Cysteinyl peptide inhibitors of Bacillus cereus zinc beta-lactamase. Bioorg Med Chem 2001; 9: 503-10.
[40]
Sun Q, Law A, Crowder MW, Geysen HM. Homo-cysteinyl peptide inhibitors of the L1 metallo-beta-lactamase, and SAR as determined by combinatorial library synthesis. Bioorg Med Chem Lett 2006; 16: 5169-75.
[41]
Kang JS, Zhang AL, Faheem M, et al. Virtual screening and experimental testing of b1 metallo-β-lactamase inhibitors. J Chem Inf Model 2018; 58(9): 1902-14.
[42]
Wang X, Lu M, Shi Y, Ou Y, Cheng X. Discovery of novel new delhi metallo-β-lactamases-1 inhibitors by multistep virtual screening. PLoS One 2015; 10(3): 1-17.
[43]
Tao LT, Qin WQ, Fanghong CF, et al. Biochemical Characteristics of New Delhi Metallo-β-Lactamase-1 Show Unexpected Difference to Other MBLs. PLoS One 2013; 8(4): 1-5.
[44]
Thomas PW, Zheng M, Wu S, et al. Characterization of Purified New Delhi Metallo-β-lactamase. Biochem 2011; 50(46): 10102-13.
[45]
King D, Strynadka N. Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci 2011; 20: 1484-91.
[46]
Christopeit T, Albert A, Leiros HKS. Discovery of a novel covalent non-β-lactam inhibitor of the metallo-β-lactamase NDM-1. Bioorg Med Chem 2016; 24: 2947-53.
[47]
Christopeit T, Leiros HKS. Fragment-based discovery of inhibitor scaffolds targeting the metallo-β-lactamases NDM-1 and VIM-2. Bioorg Med Chem Lett 2016; 26: 1973-7.
[48]
Ningning LN, Yintong XY, Xia Q, et al. Simplified captopril analogues as NDM-1 inhibitors. Bioorg Med Chem Lett 2014; 24: 386-9.
[49]
González MM, Magda Kosmopoulou M, Mojica MF, et al. Bisthiazolidines: A Substrate-Mimicking Scaffold as an Inhibitor of the NDM-1 Carbapenemase. ACS Infect Dis 2015; 1(11): 544-54.
[50]
Le Zhai L, Zhang YL, Kang JS, et al. Triazolylthioacetamide: A valid scaffold for the development of new delhi metallo-β-lactmase-1 (NDM-1) inhibitors. ACS Med Chem Lett 2016; 7: 413-7.
[51]
Skagseth S, Akhter S, Paulsen MH, et al. Metallo-b-lactamase inhibitors by bioisosteric replacement: Preparation, activity and binding. Eur J Med Chem 2017; 135: 159-73.
[52]
Concha NO, Janson CA, Rowling P, et al. Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochem 2000; 39(15): 4288-98.
[53]
Hammond GG, Huber JL, Greenlee ML, et al. Inhibition of IMP-1 metallo-L-lactamase and sensitization of IMP-1-producing bacteria by thioester derivatives. FEMS Microbiol Lett 1999; 459: 289-96.
[54]
Moloughney JG, Thomas JD, Toney JH. Novel IMP-1 metallo-β-lactamase inhibitors can reverse meropenem resistance in Escherichia coli expressing IMP-1. FEMS Microbiol Lett 2005; 243: 65-71.
[55]
Brem J, Berkel SS, Zollman D, et al. Structural basis of metallo-β-lactamase inhibition by captopril stereoisomers. Antimicrob Agents Chemother 2016; 60(1): 142-50.
[56]
Arjomandi OK, Hussein WM, Vella P, et al. Design, synthesis, and in vitro and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-β-lactamase IMP-1. European J Med Chem 2016; 114: 318-27.
[57]
Faridoon WM, Hussein WM, Vella P, et al. 3-Mercapto-1,2,4-triazoles and N-acylated thiosemicarbazides as metallo-β-lactamase inhibitors. Bioorg Med Chem Lett 2012; 22: 380-6.
[58]
Toney JH, Hammond GG, Fitzgerald PMD, et al. Succinic acids as potent inhibitors of plasmid-borne IMP-1 Metallo-β-lactamase. J Biol Chem 2001; 276(34): 31913-8.
[59]
Siemann S, Evanoff DP, Marrone L, et al. N-Arylsulfonyl Hydrazones as inhibitors of imp-1 metallo-_-lactamase. Antimicrob Agents Chemother 2002; 46(8): 2450-7.
[60]
Hiraiwa Y, Saito J, Watanabe T, et al. X-ray crystallographic analysis of IMP-1 metallo-β-lactamase complexed with a 3-aminophthalic acid derivative, structure-based drug design, and synthesis of 3,6-disubstituted phthalic acid derivative inhibitors. Bioorg Med Chem Lett 2014; 24: 4891-4.
[61]
Yamaguchi Y, Jin W, Matsunaga K, et al. Crystallographic investigation of the inhibition mode of a VIM-2 metallo-beta-lactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. J Med Chem 2007; 50(26): 6647-53.
[62]
Borra PS, Leiros HK, Ahmad R, et al. Structural and computational investigations of VIM-7: insights into the substrate specificity of vim metallo-β-lactamases. J Mol Biol 2011; 411(1): 174-89.
[63]
Brindisi M, Brogi S, Giovani S, et al. Targeting clinically-relevant metallo-β-lactamases: from high-throughput docking to broad-spectrum inhibitors. J Enzyme Inhib Med Chem 2016; 31(S1): 98-109.
[64]
Christopeit T, Carlsen TJO, Helland R, Leiros HKS. Discovery of novel inhibitor scaffolds against the metallo-β-lactamase VIM-2 by Surface Plasmon Resonance (SPR) based fragment screening. J Med Chem 2015; 58(21): 8671-82.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy