Chemical Generation of Hydroxyl Radical for Oxidative ‘Footprinting’

Author(s): Micheal Leser, Jessica R. Chapman, Michelle Khine, Jonathan Pegan, Matt Law, Mohammed El Makkaoui, Beatrix M. Ueberheide*, Michael Brenowitz*.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: For almost four decades, hydroxyl radical chemically generated by Fenton chemistry has been a mainstay for the oxidative ‘footprinting’ of macromolecules.

Objective: In this article, we start by reviewing the application of chemical generation of hydroxyl radical to the development of oxidative footprinting of DNA and RNA and the subsequent application of the method to oxidative footprinting of proteins. We next discuss a novel strategy for generating hydroxyl radicals by Fenton chemistry that immobilizes catalytic iron on a solid surface (Pyrite Shrink Wrap laminate) for the application of nucleic acid and protein footprinting.

Method: Pyrite Shrink-Wrap Laminate is fabricated by depositing pyrite (Fe-S2, aka ‘fool’s gold’) nanocrystals onto thermolabile plastic (Shrinky Dink). The laminate can be thermoformed into a microtiter plate format into which samples are deposited for oxidation.

Results: We demonstrate the utility of the Pyrite Shrink-Wrap Laminate for the chemical generation of hydroxyl radicals by mapping the surface of the T-cell co-stimulatory protein Programmed Death – 1 (PD-1) and the interface of the complex with its ligand PD-L1.

Conclusion: We have developed and validated an affordable and reliable benchtop method of hydroxyl radical generation that will broaden the application of protein oxidative footprinting. Due to the minimal equipment required to implement this method, it should be easily adaptable by many laboratories with access to mass spectrometry.

Keywords: Fenton reaction, footprinting, hydroxyl radical, protein, structure mapping, mass spectrometry.

Lohr, D.; Van Holde, K.E. Yeast chromatin subunit structure. Science, 1975, 188(4184), 165-166.
Galas, D.J.; Schmitz, A. DNAse footprinting: A simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res., 1978, 5(9), 3157-3170.
Maxam, A.M.; Gilbert, W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA, 1977, 74(2), 560-564.
Petri, V.; Brenowitz, M. Quantitative nucleic acids footprinting: Thermodynamic and kinetic approaches. Curr. Opin. Biotechnol., 1997, 8(1), 36-44.
Wardman, P.; Candeias, L.P. Fenton chemistry: An introduction. Radiat. Res., 1996, 145(5), 523-331.
Tullius, T.D.; Dombroski, B.A. Iron(II) EDTA used to measure the helical twist along any DNA molecule. Science, 1985, 230(4726), 679-681.
Tullius, T.D.; Dombroski, B.A. Hydroxyl radical “footprinting”: High-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Proc. Natl. Acad. Sci. USA, 1986, 83(15), 5469-5473.
Tullius, T.D.; Dombroski, B.A.; Churchill, M.E.; Kam, L. Hydroxyl radical footprinting: A high-resolution method for mapping protein-DNA contacts. Methods Enzymol., 1987, 155, 537-558.
Balasubramanian, B.; Pogozelski, W.K.; Tullius, T.D. DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc. Natl. Acad. Sci. USA, 1998, 95(17), 9738-9743.
Latham, J.A.; Cech, T.R. Defining the inside and outside of a catalytic RNA molecule. Science, 1989, 245(4915), 276-282.
Celander, D.W.; Cech, T.R. Visualizing the higher order folding of a catalytic RNA molecule. Science, 1991, 251(4992), 401-407.
Takamoto, K.; Das, R.; He, Q.; Doniach, S.; Brenowitz, M.; Herschlag, D.; Chance, M.R. Principles of RNA compaction: Insights from the equilibrium folding pathway of the p4-p6 RNA domain in monovalent cations. J. Mol. Biol., 2004, 343(5), 1195-1206.
Shcherbakova, I.; Mitra, S.; Beer, R.H.; Brenowitz, M. Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res., 2006, 34(6), e48.
Shcherbakova, I.; Brenowitz, M. Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting. Nat. Protoc., 2008, 3(2), 288-302.
Joseph, S.; Weiser, B.; Noller, H.F. Mapping the inside of the ribosome with an RNA helical ruler. Science, 1997, 278(5340), 1093-1098.
King, P.A.; Jamison, E.; Strahs, D.; Anderson, V.E.; Brenowitz, M. ‘Footprinting’ proteins on DNA with peroxonitrous acid. Nucleic Acids Res., 1993, 21(10), 2473-2478.
Swisher, J.F.; Su, L.J.; Brenowitz, M.; Anderson, V.E.; Pyle, A.M. Productive Folding to the Native State by a Group II Intron Ribozyme. J. Mol. Biol., 2002, 315(3), 297-310.
Chaulk, S.G.; MacMillan, A.M. Characterization of the Tetrahymena ribozyme folding pathway using the kinetic footprinting reagent peroxynitrous acid. Biochemistry, 2000, 39(1), 2-8.
Kim, K.; Rhee, S.G.; Stadtman, E.R. Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron. J. Biol. Chem., 1985, 260(29), 15394-15397.
Rana, T.M.; Meares, C.F. Transfer of oxygen from an artificial protease to peptide carbon during proteolysis. Proc. Natl. Acad. Sci. USA, 1991, 88(23), 10578-10582.
Heyduk, E.; Heyduk, T. Mapping protein domains involved in macromolecular interactions: A novel protein footprinting approach. Biochemistry, 1994, 33(32), 9643-9450. [published erratum appears in Biochemistry 1995 Nov 21;34(46):15388].
Baichoo, N.; Heyduk, T. Mapping conformational changes in a protein: Application of a protein footprinting technique to cAMPinduced conformational changes in cAMP receptor protein. Biochemistry, 1997, 36(36), 10830-10836.
Heyduk, T.; Baichoo, N.; Heyduk, E. Hydroxyl radical footprinting of proteins using metal ion complexes. Met. Ions Biol. Syst., 2001, 38, 255-287.
Datwyler, S.A.; Meares, C.F. Protein-protein interactions mapped by artificial proteases: where sigma factors bind to RNA polymerase. Trends Biochem. Sci., 2000, 25(9), 408-414.
Hlavaty, J.J.; Benner, J.S.; Hornstra, L.J.; Schildkraut, I. Identification of the metal-binding sites of restriction endonucleases by Fe2+-mediated oxidative cleavage. Biochemistry, 2000, 39(11), 3097-3105.
Garrison, W.M.; Jayko, M.E.; Bennett, W. Radiation-induced oxidation of protein in aqueous solution. Radiat. Res., 1962, 16, 483-502.
Garrison, W.M.; Kland-English, M.; Sokol, H.A.; Jayko, M.E. Radiolytic degradation of the peptide main chain in dilute aqueous solution containing oxygen. J. Phys. Chem., 1970, 74(26), 4506-4509.
Garrison, W.M. Reaction-mechanisms in the radiolysis of peptides, polypeptides, and Proteins. Chem. Rev., 1987, 87(2), 381-398.
Liebster, J.; Kopoldová, J. Radiation chemical reactions in aqueous oxygenated and oxygen-free solutions of aliphatic dipeptides and tripeptides. Radiat. Res., 1966, 27(2), 162-173.
Joshi, A.; Moss, H.; Riesz, P.E.S.R. study of the post-radiolysis growth of spin-trapped radicals in gamma-irradiated aqueous solutions of thymine. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1978, 34(2), 165-176.
Stadtman, E.R.; Berlett, B.S. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab. Rev., 1998, 30(2), 225-243.
Parker, S.C.; Hansen, L.; Abaan, H.O.; Tullius, T.D.; Margulies, E.H. Local DNA topography correlates with functional noncoding regions of the human genome. Science, 2009, 324(5925), 389-392.
Jones, C.D.; Schlatterer, J.C.; Brenowitz, M.; Pollack, L. A microfluidic device that generates hydroxyl radicals to probe the solvent accessible surface of nucleic acids. Lab Chip, 2011, 11(20), 3458-3464.
Goshe, M.B.; Anderson, V.E. Hydroxyl radical-induced hydrogen deuterium exchange in amino acid carbon-hydrogen bonds. Radiat. Res., 1999, 151(1), 50-58.
Maleknia, S.D.; Brenowitz, M.; Chance, M.R. Millisecond radiolytic modification of peptides by synchrotron X-rays identified by mass spectrometry. Anal. Chem., 1999, 71(18), 3965-3973.
Takamoto, K.; Chance, M.R. Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. Annu. Rev. Biophys. Biomol. Struct., 2006, 35, 251-276.
Zhu, Y.; Guo, T.; Park, J.E.; Li, X.; Meng, W.; Datta, A.; Bern, M.; Lim, S.K.; Sze, S.K. Elucidating in vivo structural dynamics in integral membrane protein by hydroxyl radical footprinting. Mol. Cell. Proteomics, 2009, 8(8), 1999-2010.
Cohn, C.; Borda, M.; Schroonen, M. RNA decomposition by pyrite-induced radicals and possible role of lipids during the emergence of life. Earth Planet. Sci. Lett., 2004, 225, 271-278.
Cohn, C.A.; Laffers, R.; Simon, S.R.; O’Riordan, T.; Schoonen, M.A. Role of pyrite in formation of hydroxyl radicals in coal: Possible implications for human health. Part. Fibre Toxicol., 2006, 3, 16.
Cohn, C.A.; Mueller, S.; Wimmer, E.; Leifer, N.; Greenbaum, S.; Strongin, D.R.; Schoonen, M.A. Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochem. Trans., 2006, 7, 3.
Cohn, C.A.; Laffers, R.; Schoonen, M.A. Using yeast RNA as a probe for generation of hydroxyl radicals by earth materials. Environ. Sci. Technol., 2006, 40(8), 2838-2843.
Schlatterer, J.C.; Brenowitz, M. Complementing global measures of RNA folding with local reports of backbone solvent accessibility by time resolved hydroxyl radical footprinting. Methods, 2009, 49(2), 142-147.
Schlatterer, J.C.; Wieder, M.S.; Jones, C.D.; Pollack, L.; Brenowitz, M. Pyrite footprinting of RNA. Biochem. Biophys. Res. Commun., 2012, 425(2), 374-378.
Leser, M.; Pegan, J.; El Makkaoui, M.; Schlatterer, J.C.; Khine, M.; Law, M.; Brenowitz, M. Protein footprinting by pyrite shrinkwrap laminate. Lab Chip, 2015, 15(7), 1646-1650.
Puthussery, J.; Seefeld, S.; Berry, N.; Gibbs, M.; Law, M. Colloidal iron pyrite(FeS2) nanocrystal inks for thin-film photovoltaics. JACS, 2011, 133(4), 716-719.
Nguyen, D.; Taylor, D.; Qian, K.; Norouzi, N.; Rasmussen, J.; Botzet, S.; Lehmann, M.; Halverson, K.; Khine, M. Better shrinkage than Shrinky-Dinks. Lab Chip, 2010, 10(12), 1623-1626.
Lin, D.Y.; Tanaka, Y.; Iwasaki, M.; Gittis, A.G.; Su, H.P.; Mikami, B.; Okazaki, T.; Honjo, T.; Minato, N.; Garboczi, D.N. The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proc. Natl. Acad. Sci. USA, 2008, 105(8), 3011-3016.
Xu, G.; Chance, M.R. Radiolytic modification of acidic amino acid residues in peptides: Probes for examining protein-protein interactions. Anal. Chem., 2004, 76(5), 1213-1221.
Xu, G.; Chance, M.R. Radiolytic modification of sulfur-containing amino acid residues in model peptides: fundamental studies for protein footprinting. Anal. Chem., 2005, 77(8), 2437-2449.
Xu, G.; Kiselar, J.; He, Q.; Chance, M.R. Secondary reactions and strategies to improve quantitative protein footprinting. Anal. Chem., 2005, 77(10), 3029-3037.
Xu, G.; Takamoto, K.; Chance, M.R. Radiolytic modification of basic amino acid residues in peptides: Probes for examining protein-protein interactions. Anal. Chem., 2003, 75(24), 6995-7007.
Cotto-Rios, X.M.; Bekes, M.; Chapman, J.; Ueberheide, B.; Huang, T.T. Deubiquitinases as a signaling target of oxidative stress. Cell Reports, 2012, 2(6), 1475-1484.
Fraczkiewicz, R.; Braun, W. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J. Comput. Chem., 1998, 19(3), 319-333.
Bern, M.; Kil, Y.J.; Becker, C. Advanced peptide and protein identification software. Curr. Protoc. Bioinformatics , 2012. Chapter 13, Unit13 20.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [61 - 69]
Pages: 9
DOI: 10.2174/0929866526666181212164812
Price: $65

Article Metrics

PDF: 19