Fe3O4@L-arginine as a Reusable Catalyst for the Synthesis of Polysubstituted 2-Pyrrolidinones

Author(s): Mohammad Ali Ghasemzadeh*, Mohammad Hossein Abdollahi-Basir, Zahra Elyasi.

Journal Name: Current Organocatalysis

Volume 6 , Issue 1 , 2019

Submit Manuscript
Submit Proposal

Graphical Abstract:


Abstract:

Background: This research introduces an effective and green method for the synthesis of polysubstituted 2-pyrrolidinone derivatives as biologically-active heterocyclic compounds using multi- component reactions using Fe3O4@L-arginine as a reusable organocatalyst.

Material and Method: The Fe3O4@L-arginine nanoparticles were prepared by a facile one-step approach and the structure elucidation of the magnetic nanocatalyst has been done using various spectroscopy techniques.

Results: L-arginine-functionalized magnetite nanoparticles were obtained with particle sizes around 10 nm. Fe3O4@L-arginine exhibited strong catalytic activity to obtain some polysubstituted 2- pyrrolidinone.

Conclusion: The considerable advantages of this research are short reaction times, excellent yields, simple workup procedure and reusability of the nanocatalyst which is in good agreement with green chemistry disciplines. The study on the reusability of the Fe3O4@L-arginine nanoparticles showed that the recovered catalyst could be reused six consecutive times.

Keywords: Fe3O4@L-arginine, multi-component reaction, nanocatalyst, pyrrolidinone, solvent-free, catalytic.

[1]
Do¨mling, A.; Ugi, I. Multicomponent Reactions with Isocyanides. Angew. Chem. Int. Ed., 2000, 39, 3168-3210.
[2]
Ghasemzadeh, M.A.; Safaei-Ghomi, J.; Zahedi, S. Fe3O4 nanoparticles: A highly efficient and easily reusable catalyst for the one-pot synthesis of xanthene derivatives under solvent-free conditions. J. Serb. Chem. Soc., 2013, 78, 769-779.
[3]
De Meijere, A.; Nu¨ske, H.; Es-Sayed, M.; Labahn, T.; Schroen, M.; Bra¨se, S. New efficient multicomponent reactions with c-c coupling for combinatorial application in liquid and on solid phase. Angew. Chem. Int. Ed., 1999, 38, 3669-3672.
[4]
Ghasemzadeh, M.A.; Elyasi, Z.; Azimi-Nasrabad, M.; Mirhosseini Eshkevari, B. Magnetite nanoparticles-supported APTES as a powerful and recoverable nanocatalyst for the preparation of 2-amino-5,10-dihydro- 5,10-dioxo-4H-benzo[g]chromenes and tetrahydrobenzo[g]quinoline-5,10- diones. Comb. Chem. High Throughput Screen., 2017, 20, 64-76.
[5]
Atacan, K.; Çakırog˘lu, B.; Özacar, M. Improvement of the stability and activity of immobilized trypsin on modified Fe3O4 magnetic nanoparticles for hydrolysis of bovine serum albumin and its application in the bovine milk. Food Chem., 2016, 212, 460-468.
[6]
Umegaki, T.; Xu, Q.; Kojima, Y. Effect of l-arginine on the catalytic activity and stability of nickel nanoparticles for hydrolytic dehydrogenation of ammonia borane. J. Power Sources, 2012, 216, 363-367.
[7]
Rajabi, H.R.; Arjmand, H.; Hoseini, S.J.; Nasrabadi, H. Surface modified magnetic nanoparticles as efficient and green sorbents: Synthesis, characterization, and application for the removal of anionic dye. J. Magn. Magn. Mater., 2015, 394, 7-13.
[8]
Zhang, Y.R.; Su, P.; Huang, J.; Wang, Q.R.; Zhao, B.X. A magnetic nanomaterial modified with poly-lysine for efficient removal of anionic dyes from water. Chem. Eng. J., 2015, 262, 313-318.
[9]
Shariati, S.; Faraji, M.; Yamini, Y.; Rajabi, A.A. Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination, 2011, 270, 160-165.
[10]
Zhang, C.; Shan, C.; Jin, Y.; Tong, M. Enhanced removal of trace arsenate by magnetic nanoparticles modified with arginine and lysine. Chem. Eng. J., 2014, 254, 340-348.
[11]
Jin, Y.; Liu, F.; Shan, C.; Tong, M.; Hou, Y. Efficient bacterial capture with amino acid modified magnetic nanoparticles. Water Res., 2014, 50, 124-134.
[12]
Gao, H.; Sun, J.; Yan, C.G. Synthesis of functionalized 2-pyrrolidinones via domino reactions of arylamines, ethyl glyoxylate and acetylenedicarboxylates. Tetrahedron, 2013, 69, 589-594.
[13]
(a) Adam, W.; Zhang, A. High π‐facial selectivity through chelation of magnesium ions in the DMD epoxidation of α,β‐unsaturated imides with chiral pyrrolidinone auxiliaries. Eur. J. Org. Chem., 2004, 1, 147-152.
(b) Moutevelis-Minakakis, P.; Gianni, M.; Stougiannou, H.; Zoumpoulakis, P.; Zoga, A.; Vlahakos, A.D. iliodromitis, E.; Mavromoustakos, T. Design and synthesis of novel antihypertensive drugs. Bioorg. Med. Chem. Lett., 2003, 13, 1737-1340.
(c) Mavromoustakos, T.; Moutevelis Minakakis, P.; Kokotos, C.G.; Kontogianni, P.; Politi, A.; Zoumpoulakis, P.; Findlay, J.; Cox, A.; Balmforth, A.; Zoga, A.; Iliodromitis, E. Synthesis, binding studies and in vivo biological evaluation of novel non-peptide antihypertensive analogues. Bioorg. Med. Chem., 2006, 14, 4353-4360.
[14]
Ma, K.; Wang, P.; Fu, W.; Wan, X.; Zhou, L.; Chu, Y.; Ye, D. Rational design of 2-pyrrolinones as inhibitors of HIV-1 integrase. Bioorg. Med. Chem. Lett., 2011, 21, 6724-6727.
[15]
Thamotharan, S.; Parthasarathi, V.; Malik, R.; Jindal, D.P.; Piplani, P. 2-[(2-Oxopyrrolidin-1-yl)carbonylmethyl]- 2,3-dihydro-1 H -isoindole-1,3-dione: an antiamnesic agent. Act. Crys., 2003, E59, 1012-1013.
[16]
Becker, M.R.; Ewing, W.R.; Davis, R.S.; Pauls, H.W.; Li, C.; Li, A.; Mason, H.J.; Choi-Sledeski, Y.M.; Spada, A.P.; Chu, V. Synthesis, SAR and in vivo activity of novel thienopyridine sulfonamide pyrrolidinones as factor Xa inhibitors. Bioorg. Med. Chem. Lett., 1999, 9, 2753-2758.
[17]
Brychtova, K.; Jampilek, J.; Opatrilova, R.; Raich, I.; Farsa, O. sollei, J. C. Synthesis, physico-chemical properties and penetration activity of alkyl-6-(2,5-dioxopyrrolidin-1-yl)-2-(2-oxopyrrolidin-1-yl)hexanoates as potential transdermal penetration enhancers. Bioorg. Med. Chem., 2010, 18, 73-79.
[18]
Reddy, P.A.; Hsiang, B.C.; Latifi, T.N.; Hill, M.W.; Woodward, K.E.; Rothman, S.M.; Ferrendelli, J.A.; Covey, D.F. 3,3-Dialkyl- and 3-alkyl-3-benzyl-substituted 2-pyrrolidinones: a new class of anticonvulsant agents. J. Med. Chem., 1996, 26, 1898-1906.
[19]
Patel, N.; Singh, A.; Gupta, D.K. Synthesis, spectral and antimicrobial studies of new 2-pyrrolidinones containing benzofuran moiety. Rasayan J. Chem., 2015, 8, 207-212.
[20]
Gao, H.; Sun, J.; Yan, C.G. Four-component reaction of cyclic amines, 2-aminobenzothiazole, aromatic aldehydes and acetylenedicarboxylate. Beilstein J. Org. Chem., 2013, 9, 2934-2939.
[21]
Goksu, H.; Zengin, N.; Arife Karaosman, A.; Sen, F. Highly active and reusable Pd/AlO(OH) nanoparticles for the suzuki cross-coupling reaction. Curr. Organocatal., 2018, 5, 34-41.
[22]
Pamuka, H.; Adayb, B.; Şena, F.; Kayaa, M. Pt NPs@GO as Highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives. RSC Advances, 2015, 5, 49295-49300.
[23]
Goksu, H.; Yıldız, Y.; Çelik, B.; Yazici, M.; Kilbas, B.; Sen, F. Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst. Catal. Sci. Technol., 2016, 6, 2318-2324.
[24]
Esirden, I.; Esma Erken, E.; Kaya, M.; Sen, S. Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives. Catal. Sci. Technol., 2015, 5, 4452-4457.
[25]
Aday, B.; Yıldız, Y.; Ulus, R.; Sinan Eris, S.; Fatih Sen, F.; Kaya, M. One-pot, efficient and green synthesis of acridinedione derivatives using highly monodisperse platinum nanoparticles supported with reduced graphene oxide. New J. Chem., 2016, 40, 748-754.
[26]
Erken, E.; Esirden, I.; Kaya, M.; Sen, F. A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation. RSC Advances, 2015, 5, 68558-68564.
[27]
Aday, B.; Pamuk, H.; Kaya, M.; Sen, F. Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1, 8-dioxoacridine derivatives. J. Nanosci. Nanotechnol., 2016, 16, 6498-6504.
[28]
Göksu, H.; Yunus Yıldız, Y.; Celik, B.; Yazıcı, M.; Kilbas, B.; Sen, F. Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. ChemistrySelect, 2016, 5, 953-958.
[29]
Akocak, S.; Şen, B.; Lolak, N.; Şavk, A.; Koca, M.; Kuzu, S.; Şen, F. One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Structures & Nano-Objects, 2017, 11, 25-31.
[30]
Goksu, H.; Celik, B.; Yıldız, Y.; Sen, F.; Kılbas, B. Superior monodisperse CNT-supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in aqueous medium. ChemistrySelect, 2016, 1, 2366-2372.
[31]
Demirci, T.; Çelik, B.; Yıldız, Y.; Eriş, S.; Arslan, M.; Sen, F.; Kilbas, B. One-pot synthesis of Hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst. RSC Advances, 2016, 6, 76948-76956.
[32]
Gaye Baskaya, G.; Esirden, E.; Erken, E.; Sen, F.; Kaya, M. Synthesis of 5-substituted-1H-tetrazole derivatives using monodisperse carbon black decorated pt nanoparticles as heterogeneous nanocatalysts. J. Nanosci. Nanotechnol., 2017, 17, 1992-1999.
[33]
Zamani, F.; Hosseini, S.M. Palladium nanoparticles supported on Fe3O4/amino acid nanocomposite: Highly active magnetic catalyst for solvent-free aerobic oxidation of alcohols. Catal. Commun., 2014, 43, 164-168.
[34]
Nakamoto, K. Infrared and raman spectra of inorganic and coordination compounds; Wiley: New York, 1986.
[35]
Yu, S.; Chow, G.M. Carboxyl group (–CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J. Mater. Chem., 2004, 14, 2781-2786.
[36]
Ma, M.; Zhang, Y.; Yu, W.; Shen, H.Y.; Zhang, H.Q.; Gu, N. Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf. A , 2003, 212, 219-226.
[37]
Qu, H.; Ma, H.; Zhou, W.; O’Connor, C.J. In situ surface functionalization of magnetic nanoparticles with hydrophilic natural amino acids. Inorg. Chim. Acta, 2012, 389, 60-65.
[38]
Sarkar, R.; Mukhopadhyay, C.H. Admicellar catalysis in multicomponent synthesis of polysubstituted pyrrolidinones. Tetrahedron Lett., 2013, 54, 3706-3711.
[39]
Gao, H.; Sun, J.; Yan, C.G. Synthesis of functionalized 2-pyrrolidinones via domino reactions of arylamines, ethyl glyoxilate and acetylenedicarboxylates. Tetrahedron, 2013, 69, 589-594.
[40]
Wdowik, T.; Chemler, S.H. Direct Synthesis of 2-formylpyrrolidines, 2-pyrrolidinones and 2-dihydrofuranones via aerobic copper-catalyzed aminooxygenation and dioxygenation of 4-pentenylsulfonamides and 4-pentenylalcohols. J. Am. Chem. Soc., 2017, 139, 9515-9518.
[41]
Joseph, Y.; Kuhrs, C.; Ranke, W.; Ritter, M.; Weiss, W. Adsorption of water on FeO(111) and Fe3O4 (111): identification of active sites for dissociation. Chem. Phys. Lett., 1999, 314, 195-202.
[42]
Hartlen, K.D.; Athanasopoulos, A.P.T.; Kitaev, V. Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered Arrays. Langmuir, 2008, 24, 1714-1720.
[43]
Azizi, Kobra. Karimi, Meghdad.; Shaterian, H.R. Heydari, A. Ultrasound irradiation for the green synthesis of chromenes using L-arginine-functionalized magnetic nanoparticles as a recyclable organocatalyst. RSC Advances, 2015, 4, 42220-42225.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 6
ISSUE: 1
Year: 2019
Page: [61 - 68]
Pages: 8
DOI: 10.2174/2213337206666181211125226

Article Metrics

PDF: 10