Mesoporous Silica Nanoparticles as a Prospective and Promising Approach for Drug Delivery and Biomedical Applications

Author(s): Xiaohui Pu , Jia Li , Peng Qiao , Mengmeng Li , Haiyan Wang , Lanlan Zong* , Qi Yuan , Shaofeng Duan* .

Journal Name: Current Cancer Drug Targets

Volume 19 , Issue 4 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: With the development of nanotechnology, nanocarrier has widely been applied in such fields as drug delivery, diagnostic and medical imaging and engineering in recent years. Among all of the available nanocarriers, mesoporous silica nanoparticles (MSNs) have become a hot issue because of their unique properties, such as large surface area and voidage, tunable drug loading capacity and release kinetics, good biosafety and easily modified surface.

Objective: We described the most recent progress in silica-assisted drug delivery and biomedical applications according to different types of Cargo in order to allow researchers to quickly learn about the advance in this field.

Methods: Information has been collected from the recently published literature available mainly through Title or Abstract search in SpringerLink and PubMed database. Special emphasis is on the literature available during 2008-2017.

Results: In this review, the major research advances of MSNs on the drug delivery and biomedical applications were summarized. The significant advantages of MSNs have also been listed. It was found that the several significant challenges need to be addressed and investigated to further advance the applications of these structurally defined nanomaterials.

Conclusion: Through approaching this review, the researchers can be aware of many new synthetic methods, smart designs proposed in the recent year and remaining questions of MSNs at present.

Keywords: Mesoporous silica nanoparticles, manufacture technology, drug delivery, biomedical applications, anti-cancer and target, preclinical trial.

[1]
Nazir, S.; Hussain, T.; Ayub, A.; Rashid, U.; MacRobert, A.J. Nanomaterials in combating cancer: Therapeutic applications and developments, nanomedicine. Nanotechnol. Biol. Med., 2014, 10, 19-34.
[2]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3, 16-20.
[3]
Ambrogio, M.W.; Thomas, C.R.; Zhao, Y.L.; Zink, J.I.; Stoddart, J.F. Mechanized silica nanoparticles: A new frontier in theranostic nanomedicine. Acc. Chem. Res., 2011, 44, 903-913.
[4]
Grzywiński, D.; Szumski, M.; Buszewski, B. Polymer monoliths with silver nanoparticles-cholesterol conjugate as stationary phases for capillary liquid chromatography. J. Chromatogr. A, 2017, 1526, 93-103.
[5]
Chang, B.; Sha, X.; Guo, J.; Jiao, Y.; Wang, C.; Yang, W. Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J. Mater. Chem., 2011, 21, 9239.
[6]
Shadjou, N.; Hasanzadeh, M. Bone tissue engineering using silica-based mesoporous nanobiomaterials: Recent progress. Mater. Sci. Eng. C Mater. Biol. Appl, 2015, 55, 401-409.
[7]
Hernandezleon, S.G.; Sarabiasainz, J.A.; Montfort, G.R.; Guzmanpartida, A.M.; Roblesburgueño, M.; Vazquezmoreno, L. Novel synthesis of core-shell silica nanoparticles for the capture of low molecular weight proteins and peptides. Molecules, 2017, 221712.
[8]
Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater., 2012, 241504-241534.
[9]
Trewyn, B.G.; Whitman, C.M.; Lin, V.S.Y. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Lett., 2004, 4, 2139-2143.
[10]
Muhammad, F.; Guo, M.; Qi, W.; Sun, F.; Wang, A.; Guo, Y.; Zhu, G. pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J. Am. Chem. Soc., 2011, 13, 38778-38781.
[11]
Chang, B.; Guo, J.; Liu, C.; Qian, J.; Yang, W. Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release. J. Mater. Chem., 2010, 20, 9941.
[12]
Cauda, V.; Engelke, H.; Sauer, A.; Arcizet, D.; Brauchle, C.; Radler, J.; Bein, T. Colchicine-loaded lipid bilayer-coated 50 nm mesoporous nanoparticles efficiently induce microtubule depolymerization upon cell uptake. Nano Lett., 2010, 10, 2484-2492.
[13]
Mamaeva, V.; Rosenholm, J.M.; Bate-Eya, L.T.; Bergman, L.; Peuhu, E.; Duchanoy, A.; Fortelius, L.E.; Landor, S.; Toivola, D.M.; Linden, M.; Sahlgren, C. Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Mol. Ther., 2011, 19, 1538-1546.
[14]
Slowing, I.I.; Trewyn, B.G.; Giri, S.; Lin, V.S.Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater., 2007, 17, 1225-1236.
[15]
Lee, J.E.; Lee, N.; Kim, H.; Kim, J.; Choi, S.H.; Kim, J.H.; Kim, T.; Song, I.C.; Park, S.P.; Moon, W.K.; Hyeon, T. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J. Am. Chem. Soc., 2010, 13, 2552-2557.
[16]
Xing, X.; He, X.; Peng, J.; Wang, K.; Tan, W. Uptake of silica-coated nanoparticles by HeLa cells. J. Nanosci. Nanotechnol., 2005, 5, 1688-1693.
[17]
Ganguly, A.; Ganguli, A.K. Anisotropic silica mesostructures for DNA encapsulation. Bull. Mater. Sci., 2013, 36, 329-332.
[18]
Li, L.; Sun, T.H.; Shu, C.H.; Zhang, H.B. Low temperature H 2 S removal with 3-D structural mesoporous molecular sieves supported ZnO from gas stream. J. Hazard. Mater., 2016, 311, 142-150.
[19]
Yang, Y.X.; Pi, N.; Zhang, J.B.; Huang, Y.; Yao, P.P.; Xi, Y.J.; Yuan, H.M. USPIO assisting degradation of MXC by host/guest-type immobilized laccase in AOT reverse micelle system. Environ. Sci. Pollut. Res. , 2016, 23, 13342-13354.
[20]
Liu, W.T. Facile and simple preparation of pH-sensitive chitosan-mesoporous silica nanoparticles for future breast cancer treatment. Express Polym. Lett.9, 2015, 1068-1075.
[21]
Mizoshita, N.; Ishii, M.; Kato, N.; Tanaka, H. Hierarchical nanoporous silica films for wear resistant antireflection coatings. ACS Appl. Mater. Interfaces, 2015, 7, 19424-19430.
[22]
Andreou, I.; Amenitsch, H.; Likodimos, V.; Falaras, P.; Koutsoukos, P.G.; Leontidis, E. Organized silica films generated by evaporation-induced self-assembly as hosts for iron oxide nanoparticles. Materials , 2013, 6, 1467-1484.
[23]
Lu, F.; Wu, S.H.; Hung, Y.; Mou, C.Y. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small, 2009, 5, 1408-1413.
[24]
Lund, B.C.; Abrams, T.E.; Gravely, A.A. Validity of PTSD diagnoses in VA administrative data: Comparison of VA administrative PTSD diagnoses to self-reported PTSD Checklist scores. J. Rehabil. Res. Dev., 2011, 48, vii-ix.
[25]
Vallet-Regi, M.; Rámila, A.; del Real, R.P.; Pérez-Pariente, J. A new property of MCM-41: Drug delivery system. Chem. Mater., 2001, 13, 308-311.
[26]
Hu, Y.; Wang, J.; Zhi, Z.; Jiang, T.; Wang, S. Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug. J. Colloid Interface Sci., 2011, 363, 410-417.
[27]
Maji, S.K.; Mandal, A.K.; Nguyen, K.T.; Borah, P.; Zhao, Y. Cancer cell detection and therapeutics using peroxidase-active nanohybrid of gold nanoparticle-loaded mesoporous silica-coated graphene. ACS Appl. Mater. Interfaces, 2015, 7, 9807-9816.
[28]
Izquierdo-Barba, I.; Sousa, E.; Doadrio, J.C.; Doadrio, A.L.; Pariente, J.P.; Martínez, A.; Babonneau, F.; Vallet-Regí, M. Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15. J. Sol-Gel Sci. Technol., 2009, 50, 421-429.
[29]
Coti, K.K.; Belowich, M.E.; Liong, M.; Ambrogio, M.W.; Lau, Y.A.; Khatib, H.A.; Zink, J.I.; Khashab, N.M.; Stoddart, J.F. Mechanised nanoparticles for drug delivery. Nanoscale, 2009, 1, 16-39.
[30]
Vallet-Regí, M.; Balas, F.; Colilla, M.; Manzano, M. Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Prog. Solid State Chem., 2008, 36, 163-191.
[31]
Song, S.W.; Hidajat, K.; Kawi, S. Functionalized SBA-15 materials as carriers for controlled drug delivery: Influence of surface properties on matrix−drug interactions. Langmuir, 2005, 21, 9568-9575.
[32]
Wu, H.; Zhang, S.; Zhang, J.; Liu, G.; Shi, J.; Zhang, L.; Cui, X.; Ruan, M.; He, Q.; Bu, W. A hollow-core, magnetic, and mesoporous double-shell nanostructure: In situ decomposition/reduction synthesis, bioimaging, and drug-delivery properties. Adv. Funct. Mater., 2011, 21, 1850-1862.
[33]
Barnes, D.G.; Vidiassov, M.; Ruthensteiner, B.; Fluke, C.J.; Quayle, M.R.; McHenry, C.R. Biomedical applications and potential health risks of nanomaterials: Molecular mechanisms. PLoS One, 2013, 8, e69446.
[34]
Hoffman, A.S. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev., 2013, 65, 10-16.
[35]
Fadeel, B.; Garcia-Bennett, A.E. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev., 2010, 62, 362-374.
[36]
Areva, S.; Aaritalo, V.; Tuusa, S.; Jokinen, M.; Linden, M.; Peltola, T. Sol-gel-derived TiO2-SiO2 implant coatings for direct tissue attachment. Part II: Evaluation of cell response. J. Mater. Sci. Mater. Med., 2007, 18, 1633-1642.
[37]
Goscianska, J.; Nowak, I.; Olejnik, A. Sorptive properties of aluminium ions containing mesoporous silica towards l-histidine. Adsorption, 2015, •••, 1-9.
[38]
Fantini, M.C.A.; Matos, J.R.; de Silva, L.C.C.; Mercuri, L.P.; Chiereci, G.O.; Celer, E.B.; Jaroniec, M. Ordered mesoporous silica: Microwave synthesis. Mater. Sci. Eng. B, 2004, 112, 106-110.
[39]
Song, M-G.; Kim, J-Y.; Cho, S-H.; Kim, J-D. Rapid synthesis of mesoporous silica by an accelerated microwave radiation method. Korean J. Chem. Eng., 2004, 21, 1224-1230.
[40]
Gu, J.; Fan, W.; Shimojima, A.; Okubo, T. Organic-inorganic mesoporous nanocarriers integrated with biogenic ligands. Small, 2007, 3, 1740-1744.
[41]
Yang, P.; Zhao, D.; Margolese, D.I.; Chmelka, B.F.; Stucky, G.D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 1998, 396, 152-155.
[42]
Zhong, S-H.; Li, C-F.; Li, Q.; Xiao, X-F. Supported mesoporous SiO2 membrane synthesized by sol-gel-template technology. Separ. Purif. Tech., 2003, 32, 17-22.
[43]
Gu, J.L.; Dong, X.; Elangovan, S.P.; Li, Y.; Zhao, W.; Iijima, T.; Yamazaki, Y.; Shi, J.L. Simultaneous pore enlargement and introduction of highly dispersed Fe active sites in MSNs for enhanced catalytic activity. J. Solid State Chem., 2012, 186, 208-216.
[44]
Tanev, P.T.; Pinnavaia, T.J. A neutral templating route to mesoporous molecular sieves. Science, 1995, 267, 865-867.
[45]
Gao, F.; Botella, P.; Corma, A.; Blesa, J.; Dong, L. Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. J. Phys. Chem. B, 2009, 113, 1796-1804.
[46]
Margolese, D.; Melero, J.A.; Christiansen, S.C.; Chmelka, B.F.; Stucky, G.D. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chem. Mater., 2000, 12, 2448-2459.
[47]
Wang, S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater., 2009, 117, 1-9.
[48]
Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.W.; Lin, V.S.Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008, 60, 1278-1288.
[49]
Rosenholm, J.M.; Sahlgren, C.; Linden, M. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr. Drug Targets, 2011, 12, 1166-1186.
[50]
Xu, H.T.; Wang, X.S.; Tao, L.M.; Wu, S.X. Fabrication and sustained release properties of porous hollow silica nanoparticles. Sci. China Chem., 2010, 53, 556-561.
[51]
Ahern, R.J.; Hanrahan, J.P.; Tobin, J.M.; Ryan, K.B.; Crean, A.M. Comparison of fenofibrate-mesoporous silica drug-loading processes for enhanced drug delivery. Eur. J. Pharm. Sci., 2013, 50, 400-409.
[52]
Wang, Y.; Sun, L.; Jiang, T.; Zhang, J.; Zhang, C.; Sun, C.; Deng, Y.; Sun, J.; Wang, S. The investigation of MCM-48-type and MCM-41-type mesoporous silica as oral solid dispersion carriers for water insoluble cilostazol. Drug Dev. Ind. Pharm., 2014, 40, 819-828.
[53]
Popova, M.D.; Szegedi, Á.; Kolev, I.N.; Mihály, J.; Tzankov, B.S.; Momekov, G.T.; Lambov, N.G.; Yoncheva, K.P. Carboxylic modified spherical mesoporous silicas as drug delivery carriers. Int. J. Pharm., 2012, 436, 778-785.
[54]
Xie, M.; Xu, Y.; Shen, H.; Shen, S.; Ge, Y.; Xie, J. egativecharge- functionalized mesoporous silica nanoparticles as drug vehicles targeting hepatocellular carcinoma. Int. J. Pharm. (Amsterdam, Neth.), 2014, 474, 223-231
[55]
Mellaerts, R.; Mols, R.; Jammaer, J.A.; Aerts, C.A.; Annaert, P.; Van Humbeeck, J.; Van den Mooter, G.; Augustijns, P.; Martens, J.A. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur. J. pharma. Biopharmaceut., 2008, 69, 223-230.
[56]
Merisko-Liversidge, E.M.; Liversidge, G.G. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol. Pathol., 2008, 36, 43-48.
[57]
Gary-Bobo, M.; Hocine, O.; Brevet, D.; Maynadier, M.; Raehm, L.; Richeter, S.; Charasson, V.; Loock, B.; Morere, A.; Maillard, P.; Garcia, M.; Durand, J.O. Cancer therapy improvement with mesoporous silica nanoparticles combining targeting, drug delivery and PDT. Int. J. Pharm., 2012, 423, 509-515.
[58]
Xie, M.; Shi, H.; Li, Z.; Shen, H.; Ma, K.; Li, B.; Shen, S.; Jin, Y. A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids Surf. B Biointerfaces, 2013, 110, 138-147.
[59]
Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2008, 2, 889-896.
[60]
Chen, Y.; Chen, H.; Shi, J. Drug delivery/imaging multifunctionality of mesoporous silica-based composite nanostructures. Expert Opin. Drug Deliv., 2014, 11, 917-930.
[61]
Sahoo, B.K.; Devi, S.P.; Dutta, S.; Maiti, T.K.; Pramanik, P.; Dhara, D. Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J. Colloid Interface Sci., 2014, 431, 31-41.
[62]
Palanikumar, L.; Choi, E.S.; Cheon, J.Y.; Joo, S.H.; Ryu, J-H. Noncovalent polymer-gatekeeper in mesoporous silica nanoparticles as a targeted drug delivery platform. Adv. Funct. Mater., 2015, 25, 957-965.
[63]
Yuan, Q.; Venkatasubramanian, R.; Hein, S.; Misra, R.D. A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomater., 2008, 4, 1024-1037.
[64]
Gary-Bobo, M.; Brevet, D.; Benkirane-Jessel, N.; Raehm, L.; Maillard, P.; Garcia, M.; Durand, J-O. Hyaluronic acid-functionalized mesoporous silica nanoparticles for efficient photodynamic therapy of cancer cells. Photodiagn. Photodyn. Ther., 2012, 9, 256-260.
[65]
Liu, Z.; Rong, P.; Yu, L.; Zhang, X.; Yang, C.; Guo, F.; Zhao, Y.; Zhou, K.; Wang, W.; Zeng, W. Dual-modality noninvasive mapping of sentinel lymph node by photoacoustic and near-infrared fluorescent imaging using dye-loaded mesoporous silica nanoparticles. Mol. Pharm., 2015, 12, 3119-3128.
[66]
Xie, M.; Shi, H.; Ma, K.; Shen, H.; Li, B.; Shen, S.; Wang, X.; Jin, Y. Hybrid nanoparticles for drug delivery and bioimaging: mesoporous silica nanoparticles functionalized with carboxyl groups and a near-infrared fluorescent dye. J. Colloid Interface Sci., 2013, 395, 306-314.
[67]
Qian, J.; Dai, H.; Pan, X.; Liu, S. Simultaneous detection of dual proteins using quantum dots coated silica nanoparticles as labels. Biosens. Bioelectron., 2011, 28, 314-319.
[68]
Yang, K.; Luo, H.; Zeng, M.; Jiang, Y.; Li, J.; Fu, X. Intracellular pH-triggered, targeted drug delivery to cancer cells by multifunctional envelope-type mesoporous silica nanocontainers. ACS Appl. Mater. Interfaces, 2015, 7, 17399-17407.
[69]
Peng, X.; Chen, M.; Gu, Z.; Liu, H.; Han, M. Preparation and characterization of MSN/PMAA core/shell nanomaterials. Guangdong Huagong, 2015, 42, 13-14.
[70]
Li, H.; Zhang, J.Z.; Tang, Q.; Du, M.; Hu, J.; Yang, D. Reduction-responsive drug delivery based on mesoporous silica nanoparticle core with crosslinked poly(acrylic acid) shell. Mater. Sci. Eng. C, 2013, 33, 3426-3431.
[71]
Bhattarai, S.R.; Muthuswamy, E.; Wani, A.; Brichacek, M.; Castaneda, A.L.; Brock, S.L.; Oupicky, D. Enhanced gene and siRNA delivery by polycation-modified mesoporous silica nanoparticles loaded with chloroquine. Pharm. Res., 2010, 27, 2556-2568.
[72]
Zhang, J.; Prabhakar, N.; Nareoja, T.; Rosenholm, J.M. Semiconducting polymer encapsulated mesoporous silica particles with conjugated europium complexes: Toward enhanced luminescence under aqueous conditions. ACS Appl. Mater. Interfaces, 2014, 6, 19064-19074.
[73]
Wang, J.; Liu, H.; Leng, F.; Zheng, L.; Yang, J.; Wang, W.; Huang, C.Z. Autofluorescent and pH-responsive mesoporous silica for cancer-targeted and controlled drug release. Microporous Mesoporous Mater., 2014, 186, 187-193.
[74]
Wang, Y.; Li, B.; Zhang, L.; Song, H.; Zhang, L. Targeted delivery system based on magnetic mesoporous silica nanocomposites with light-controlled release character. ACS Appl. Mater. Interfaces, 2013, 5, 11-15.
[75]
Yang, S.; Li, N.; Chen, D.; Qi, X.; Xu, Y.; Xu, Y.; Xu, Q.; Li, H.; Lu, J. Visible-light degradable polymer coated hollow mesoporous silica nanoparticles for controlled drug release and cell imaging. J. Mater. Chem. B , 2013, 1, 4628-4636.
[76]
Zhang, L.; Li, Y.; Jin, Z.; Yu, J.C.; Chan, K.M. An NIR-triggered and thermally responsive drug delivery platform through DNA/copper sulfide gates. Nanoscale, 2015, 7, 12614-12624.
[77]
Luo, Z.; Hu, Y.; Cai, K.; Ding, X.; Zhang, Q.; Li, M.; Ma, X.; Zhang, B.; Zeng, Y.; Li, P.; Li, J.; Liu, J.; Zhao, Y. Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials, 2014, 35, 7951-7962.
[78]
Zhang, B.; Luo, Z.; Liu, J.; Ding, X.; Li, J.; Cai, K. Cytochrome c end-capped mesoporous silica nanoparticles as redox-responsive drug delivery vehicles for liver tumor-targeted triplex therapy in vitro and in vivo. J. Control. Release, 2014, 192, 192-201.
[79]
Chen, Y.; Luk, K.D.; Cheung, K.M.; Xu, R.; Lin, M.C.; Lu, W.W.; Leong, J.C.; Kung, H.F. Gene therapy for new bone formation using adeno-associated viral bone morphogenetic protein-2 vectors. Gene Ther., 2003, 10, 1345-1353.
[80]
Pesonen, S.; Diaconu, I.; Cerullo, V.; Escutenaire, S.; Raki, M.; Kangasniemi, L.; Nokisalmi, P.; Dotti, G.; Guse, K.; Laasonen, L.; Partanen, K.; Karli, E.; Haavisto, E.; Oksanen, M.; Karioja-Kallio, A.; Hannuksela, P.; Holm, S.L.; Kauppinen, S.; Joensuu, T.; Kanerva, A.; Hemminki, A. Integrin targeted oncolytic adenoviruses Ad5-D24-RGD and Ad5-RGD-D24-GMCSF for treatment of patients with advanced chemotherapy refractory solid tumors. Int. J. Cancer, 2012, 130, 1937-1947.
[81]
Flotte, T.R. Gene therapy progress and prospects: recombinant adeno-associated virus (rAAV) vectors. Gene Ther., 2004, 11, 805-810.
[82]
Prijic, S.; Sersa, G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol. Oncol., 2011, 45, 1-16.
[83]
Malam, Y.; Lim, E.J.; Seifalian, A.M. Current trends in the application of nanoparticles in drug delivery. Curr. Med. Chem., 2011, 18, 1067-1078.
[84]
Chen, Y.; Wang, X.; Liu, T.; Zhang, D.S.; Wang, Y.; Gu, H.; Di, W. Highly effective antiangiogenesis via magnetic mesoporous silica-based siRNA vehicle targeting the VEGF gene for orthotopic ovarian cancer therapy. Int. J. Nanomedicine, 2015, 10, 2579-2594.
[85]
Vivero-Escoto, J.L. Multifunctional silica-based nanomaterials for biomedical applications: Photodynamic therapy and pancreatic cancer treatment. Am. Chem. Soc., 2014, INOR-146.
[86]
Croissant, J.G.; Qi, C.; Maynadier, M.; Cattoën, X. Wong, Chi Man, M.; Raehm, L.; Mongin, O.; Blanchard-Desce, M.; Garcia, M.; Gary-Bobo, M.; Durand, J.O. Multifunctional gold-mesoporous silica nanocomposites for enhanced two-photon imaging and therapy of cancer cells. Front. Mol. Biosci., 2016, 3, 1.
[87]
Mendes, L.S.; Saska, S.; Martines, M.A.U.; Marchetto, R. Nanostructured materials based on mesoporous silica and mesoporous silica/apatite as osteogenic growth peptide carriers. Mater. Sci. Eng. C, 2013, 33, 4427-4434.
[88]
Ehlert, N.; Mueller, P.P.; Stieve, M.; Lenarz, T.; Behrens, P. Mesoporous silica films as a novel biomaterial: Applications in the middle ear. Chem. Soc. Rev., 2013, 42, 3847-3861.
[89]
Kupferschmidt, N.; Qazi, K.R.; Kemi, C.H.; Vallhov, A.E.; Garcia-Bennett, S.; Gabrielsson, A. Scheynius, mesoporous silica particles potentiate antigen-specific t-cell responses. Nanomedicine 9, 2014, 1835-1846.
[90]
Mody, K.T.; Mahony, D.; Cavallaro, A.S.; Stahr, F.; Qiao, S.Z.; Mahony, T.J.; Mitter, N. Freeze-drying of ovalbumin loaded mesoporous silica nanoparticle vaccine formulation increases antigen stability under ambient conditions. Int. J. Pharm., 2014, 465, 325-332.
[91]
Liu, Z.; Rong, P.; Yu, L.; Zhang, X.; Yang, C.; Guo, F.; Zhao, Y.; Zhou, K.; Wang, W.; Zeng, W. Dual-modality noninvasive mapping of sentinel lymph node by photoacoustic and near-infrared fluorescent imaging using dye-loaded mesoporous silica nanoparticles. Mol. Pharm., 2015, 12, 3119-3128.
[92]
Li, J.; Du, X.; Zheng, N.; Xu, L.; Xu, J.; Li, S. Contribution of carboxyl modified chiral mesoporous silica nanoparticles in delivering doxorubicin hydrochloride in vitro: pH-response controlled release, enhanced drug cellular uptake and cytotoxicity. Colloids Surf.8, 2016, 141, 374-381.
[93]
Khatoon, S.; Han, H.S.; Lee, M.; Lee, H.; Jung, D.W.; Thambi, T.; Ikram, M.; Kang, Y.M.; Yi, G.R.; Park, J.H. Zwitterionic mesoporous nanoparticles with a bioresponsive gatekeeper for cancer therapy. Acta Biomater., 2016, 40, 282-292.
[94]
Qiang, F.; Hargrove, D.; Lu, X. Improving paclitaxel pharmacokinetics by using tumor-specific mesoporous silica nanoparticles with intraperitoneal delivery. Nanotechnol. Biol. Med, 2016, 12, 1951-1959.
[95]
Qiao, X.F.; Zhou, J.C.; Xiao, J.W.; Wang, Y.F.; Sun, L.D.; Yan, C.H. Triple-functional core-shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro. Nanoscale, 2012, 4, 4611-4623.
[96]
Jia, L.; Shen, J.; Li, Z.; Zhang, D.; Zhang, Q.; Liu, G.; Zheng, D.; Tian, X. In vitro and in vivo evaluation of paclitaxel-loaded mesoporous silica nanoparticles with three pore sizes. Int. J. Pharm., 2013, 445, 12-19.
[97]
Huang, X.; Li, L.; Liu, T.; Hao, N.; Liu, H.; Chen, D.; Tang, F. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano, 2011, 5, 5390-5399.
[98]
Benezra, M.; Penate-Medina, O.; Zanzonico, P.B.; Schaer, D.H.; Ow, A.; Burns, E.; DeStanchina, V.; Longo, E.; Herz, S.; Iyer, J.; Wolchok, S.M.; Larson, U.; Wiesner, M.S. Bradbury, Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest., 2011, 121, 2768-2780.
[99]
Chen, Y.; Yang, W.; Chang, B.; Hu, H.; Fang, X.; Sha, X. In vivo distribution and antitumor activity of doxorubicin-loaded N-isopropylacrylamide-co-methacrylic acid coated mesoporous silica nanoparticles and safety evaluation. Eur. J. Pharm. Biopharm., 2013, 85, 406-412.
[100]
Luo, Z.; Hu, Y.; Cai, K.; Ding, X.; Zhang, Q.; Li, M.; Ma, X.; Zhang, B.; Zeng, Y.; Li, P.; Li, J.; Liu, J.; Zhao, Y. Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials, 2014, 35, 7951-7962.
[101]
Liu, T.; Li, L.; Teng, X.; Huang, X.; Liu, H.; Chen, D.; Ren, J.; He, J. Tang, F. Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials, 2011, 32, 1657-1668.
[102]
Wang, J.; Shen, Y.; Bai, L.; Lv, D.; Zhang, A.; Miao, F.; Tang, M.; Zhang, J. Mesoporous silica shell alleviates cytotoxicity and inflammation induced by colloidal silica particles. Colloids Surf.B, 2014, 116, 334-342.
[103]
Gary-Bobo, M.; Mir, Y.; Rouxel, C.; Brevet, D.; Hocine, O.; Maynadier, M.; Gallud, A.; Da Silva, A.; Mongin, O.; Blanchard-Desce, M.; Richeter, S.; Loock, B.; Maillard, P.; Morère, A.; Garcia, M.; Raehm, L.; Durand, J-O. Multifunctionalized mesoporous silica nanoparticles for the in vitro treatment of retinoblastoma: Drug delivery, one and two-photon photodynamic therapy. Int. J. Pharm., 2012, 432, 99-104.
[104]
Park, Y.I.; Kim, J.H.M.; Kim, H.; Moon, K.C.; Yoo, B.; Lee, K.T.; Lee, N.; Choi, Y.; Park, W.; Ling, D.; Na, K.; Moon, W.K.; Choi, S.H.; Park, H.S.; Yoon, S.Y.; Suh, Y.D.; Lee, S.H.; Hyeon, T. Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv. Mater., 2012, 24, 5755-5761.
[105]
Lai, J.; Shah, B.P.; Zhang, Y.; Yang, L.; Lee, K.B. Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles. ACS Nano, 2015, 9, 5234-5245.
[106]
Wang, C.; Tao, H.; Cheng, L.; Liu, Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials, 2011, 32, 6145-6154.
[107]
Huo, Q.; Margolese, D.I.; Ciesla, U.; Feng, P.; Gier, T.E.; Sieger, P.; Leon, R.; Petroff, P.M.; Schuth, F.; Stucky, G.D. Generalized synthesis of periodic surfactant/inorganic composite materials. Nature, 1994, 368, 317-321.
[108]
Behrens, P. Voids in variable chemical surroundings: Mesoporous metal oxides. Angew. Chem. Int. Ed. Engl., 1996, 35, 515-518.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 4
Year: 2019
Page: [285 - 295]
Pages: 11
DOI: 10.2174/1568009619666181206114904
Price: $58

Article Metrics

PDF: 35
HTML: 5
EPUB: 1
PRC: 1