Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research

Author(s): Anju Sharma, Rajnish Kumar, Imlimaong Aier, Rahul Semwal, Pankaj Tyagi, Pritish Varadwaj*.

Journal Name: Current Neuropharmacology

Volume 17 , Issue 9 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Olfaction, the sense of smell detects and discriminate odors as well as social cues which influence our innate responses. The olfactory system in human beings is found to be weak as compared to other animals; however, it seems to be very precise. It can detect and discriminate millions of chemical moieties (odorants) even in minuscule quantities. The process initiates with the binding of odorants to specialized olfactory receptors, encoded by a large family of Olfactory Receptor (OR) genes belonging to the G-protein-coupled receptor superfamily. Stimulation of ORs converts the chemical information encoded in the odorants, into respective neuronal action-potentials which causes depolarization of olfactory sensory neurons. The olfactory bulb relays this signal to different parts of the brain for processing. Odors are encrypted using a combinatorial approach to detect a variety of chemicals and encode their unique identity. The discovery of functional OR genes and proteins provided an important information to decipher the genomic, structural and functional basis of olfaction. ORs constitute 17 gene families, out of which 4 families were reported to contain more than hundred members each. The olfactory machinery is not limited to GPCRs; a number of non- GPCRs is also employed to detect chemosensory stimuli. The article provides detailed information about such olfaction machinery, structures, transduction mechanism, theories of odor perception, and challenges in the olfaction research. It covers the structural, functional and computational studies carried out in the olfaction research in the recent past.

Keywords: GPCR, olfactory bulb, odor, receptor, signal transduction.

[1]
Harel, D.; Carmel, L.; Lancet, D. Towards an odor communication system. Comput. Biol. Chem., 2003, 27(2), 121-133.
[http://dx.doi.org/10.1016/S1476-9271(02)00092-0] [PMID: 12821309]
[2]
Breer, H. Olfactory receptors: molecular basis for recognition and discrimination of odors. Anal. Bioanal. Chem., 2003, 377(3), 427-433.
[http://dx.doi.org/10.1007/s00216-003-2113-9] [PMID: 12898108]
[3]
Spehr, M.; Munger, S.D. Olfactory receptors: G protein-coupled receptors and beyond. J. Neurochem., 2009, 109(6), 1570-1583.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06085.x] [PMID: 19383089]
[4]
Touhara, K.; Vosshall, L.B. Sensing odorants and pheromones with chemosensory receptors. Annu. Rev. Physiol., 2009, 71, 307-332.
[http://dx.doi.org/10.1146/annurev.physiol.010908.163209] [PMID: 19575682]
[5]
Sarafoleanu, C.; Mella, C.; Georgescu, M.; Perederco, C. The importance of the olfactory sense in the human behavior and evolution. J. Med. Life, 2009, 2(2), 196-198.
[PMID: 20108540]
[6]
Bear, D.M.; Lassance, J.M.; Hoekstra, H.E.; Datta, S.R. Evolution of the genetic and neural architecture for vertebrate odor perception. Curr. Biol., 2016, 26, R1039-R1049.
[http://dx.doi.org/10. 1016/j.cub.2016.09.011] [PMID: 27780046]
[7]
Buck, L.; Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 1991, 65(1), 175-187.
[http://dx.doi.org/10.1016/0092-8674(91)90418-X] [PMID: 1840504]
[8]
Zhang, X.; Firestein, S. The olfactory receptor gene superfamily of the mouse. Nat. Neurosci., 2002, 5(2), 124-133.
[http://dx.doi.org/ 10.1038/nn800] [PMID: 11802173]
[9]
Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; Funke, R.; Gage, D.; Harris, K.; Heaford, A.; Howland, J.; Kann, L.; Lehoczky, J.; LeVine, R.; McEwan, P.; McKernan, K.; Meldrim, J.; Mesirov, J.P.; Miranda, C.; Morris, W.; Naylor, J.; Raymond, C.; Rosetti, M.; Santos, R.; Sheridan, A.; Sougnez, C.; Stange-Thomann, Y.; Stojanovic, N.; Subramanian, A.; Wyman, D.; Rogers, J.; Sulston, J.; Ainscough, R.; Beck, S.; Bentley, D.; Burton, J.; Clee, C.; Carter, N.; Coulson, A.; Deadman, R.; Deloukas, P.; Dunham, A.; Dunham, I.; Durbin, R.; French, L.; Grafham, D.; Gregory, S.; Hubbard, T.; Humphray, S.; Hunt, A.; Jones, M.; Lloyd, C.; McMurray, A.; Matthews, L.; Mercer, S.; Milne, S.; Mullikin, J.C.; Mungall, A.; Plumb, R.; Ross, M.; Shownkeen, R.; Sims, S.; Waterston, R.H.; Wilson, R.K.; Hillier, L.W.; McPherson, J.D.; Marra, M.A.; Mardis, E.R.; Fulton, L.A.; Chinwalla, A.T.; Pepin, K.H.; Gish, W.R.; Chissoe, S.L.; Wendl, M.C.; Delehaunty, K.D.; Miner, T.L.; Delehaunty, A.; Kramer, J.B.; Cook, L.L.; Fulton, R.S.; Johnson, D.L.; Minx, P.J.; Clifton, S.W.; Hawkins, T.; Branscomb, E.; Predki, P.; Richardson, P.; Wenning, S.; Slezak, T.; Doggett, N.; Cheng, J.F.; Olsen, A.; Lucas, S.; Elkin, C.; Uberbacher, E.; Frazier, M.; Gibbs, R.A.; Muzny, D.M.; Scherer, S.E.; Bouck, J.B.; Sodergren, E.J.; Worley, K.C.; Rives, C.M.; Gorrell, J.H.; Metzker, M.L.; Naylor, S.L.; Kucherlapati, R.S.; Nelson, D.L.; Weinstock, G.M.; Sakaki, Y.; Fujiyama, A.; Hattori, M.; Yada, T.; Toyoda, A.; Itoh, T.; Kawagoe, C.; Watanabe, H.; Totoki, Y.; Taylor, T.; Weissenbach, J.; Heilig, R.; Saurin, W.; Artiguenave, F.; Brottier, P.; Bruls, T.; Pelletier, E.; Robert, C.; Wincker, P.; Smith, D.R.; Doucette-Stamm, L.; Rubenfield, M.; Weinstock, K.; Lee, H.M.; Dubois, J.; Rosenthal, A.; Platzer, M.; Nyakatura, G.; Taudien, S.; Rump, A.; Yang, H.; Yu, J.; Wang, J.; Huang, G.; Gu, J.; Hood, L.; Rowen, L.; Madan, A.; Qin, S.; Davis, R.W.; Federspiel, N.A.; Abola, A.P.; Proctor, M.J.; Myers, R.M.; Schmutz, J.; Dickson, M.; Grimwood, J.; Cox, D.R.; Olson, M.V.; Kaul, R.; Raymond, C.; Shimizu, N.; Kawasaki, K.; Minoshima, S.; Evans, G.A.; Athanasiou, M.; Schultz, R.; Roe, B.A.; Chen, F.; Pan, H.; Ramser, J.; Lehrach, H.; Reinhardt, R.; McCombie, W.R.; de la Bastide, M.; Dedhia, N.; Blöcker, H.; Hornischer, K.; Nordsiek, G.; Agarwala, R.; Aravind, L.; Bailey, J.A.; Bateman, A.; Batzoglou, S.; Birney, E.; Bork, P.; Brown, D.G.; Burge, C.B.; Cerutti, L.; Chen, H.C.; Church, D.; Clamp, M.; Copley, R.R.; Doerks, T.; Eddy, S.R.; Eichler, E.E.; Furey, T.S.; Galagan, J.; Gilbert, J.G.; Harmon, C.; Hayashizaki, Y.; Haussler, D.; Hermjakob, H.; Hokamp, K.; Jang, W.; Johnson, L.S.; Jones, T.A.; Kasif, S.; Kaspryzk, A.; Kennedy, S.; Kent, W.J.; Kitts, P.; Koonin, E.V.; Korf, I.; Kulp, D.; Lancet, D.; Lowe, T.M.; McLysaght, A.; Mikkelsen, T.; Moran, J.V.; Mulder, N.; Pollara, V.J.; Ponting, C.P.; Schuler, G.; Schultz, J.; Slater, G.; Smit, A.F.; Stupka, E.; Szustakowki, J.; Thierry-Mieg, D.; Thierry-Mieg, J.; Wagner, L.; Wallis, J.; Wheeler, R.; Williams, A.; Wolf, Y.I.; Wolfe, K.H.; Yang, S.P.; Yeh, R.F.; Collins, F.; Guyer, M.S.; Peterson, J.; Felsenfeld, A.; Wetterstrand, K.A.; Patrinos, A.; Morgan, M.J.; de Jong, P.; Catanese, J.J.; Osoegawa, K.; Shizuya, H.; Choi, S.; Chen, Y.J.; Szustakowki, J. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822), 860-921.
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[10]
Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; Gocayne, J.D.; Amanatides, P.; Ballew, R.M.; Huson, D.H.; Wortman, J.R.; Zhang, Q.; Kodira, C.D.; Zheng, X.H.; Chen, L.; Skupski, M.; Subramanian, G.; Thomas, P.D.; Zhang, J.; Gabor Miklos, G.L.; Nelson, C.; Broder, S.; Clark, A.G.; Nadeau, J.; McKusick, V.A.; Zinder, N.; Levine, A.J.; Roberts, R.J.; Simon, M.; Slayman, C.; Hunkapiller, M.; Bolanos, R.; Delcher, A.; Dew, I.; Fasulo, D.; Flanigan, M.; Florea, L.; Halpern, A.; Hannenhalli, S.; Kravitz, S.; Levy, S.; Mobarry, C.; Reinert, K.; Remington, K.; Abu-Threideh, J.; Beasley, E.; Biddick, K.; Bonazzi, V.; Brandon, R.; Cargill, M.; Chandramouliswaran, I.; Charlab, R.; Chaturvedi, K.; Deng, Z.; Di Francesco, V.; Dunn, P.; Eilbeck, K.; Evangelista, C.; Gabrielian, A.E.; Gan, W.; Ge, W.; Gong, F.; Gu, Z.; Guan, P.; Heiman, T.J.; Higgins, M.E.; Ji, R.R.; Ke, Z.; Ketchum, K.A.; Lai, Z.; Lei, Y.; Li, Z.; Li, J.; Liang, Y.; Lin, X.; Lu, F.; Merkulov, G.V.; Milshina, N.; Moore, H.M.; Naik, A.K.; Narayan, V.A.; Neelam, B.; Nusskern, D.; Rusch, D.B.; Salzberg, S.; Shao, W.; Shue, B.; Sun, J.; Wang, Z.; Wang, A.; Wang, X.; Wang, J.; Wei, M.; Wides, R.; Xiao, C.; Yan, C.; Yao, A.; Ye, J.; Zhan, M.; Zhang, W.; Zhang, H.; Zhao, Q.; Zheng, L.; Zhong, F.; Zhong, W.; Zhu, S.; Zhao, S.; Gilbert, D.; Baumhueter, S.; Spier, G.; Carter, C.; Cravchik, A.; Woodage, T.; Ali, F.; An, H.; Awe, A.; Baldwin, D.; Baden, H.; Barnstead, M.; Barrow, I.; Beeson, K.; Busam, D.; Carver, A.; Center, A.; Cheng, M.L.; Curry, L.; Danaher, S.; Davenport, L.; Desilets, R.; Dietz, S.; Dodson, K.; Doup, L.; Ferriera, S.; Garg, N.; Gluecksmann, A.; Hart, B.; Haynes, J.; Haynes, C.; Heiner, C.; Hladun, S.; Hostin, D.; Houck, J.; Howland, T.; Ibegwam, C.; Johnson, J.; Kalush, F.; Kline, L.; Koduru, S.; Love, A.; Mann, F.; May, D.; McCawley, S.; McIntosh, T.; McMullen, I.; Moy, M.; Moy, L.; Murphy, B.; Nelson, K.; Pfannkoch, C.; Pratts, E.; Puri, V.; Qureshi, H.; Reardon, M.; Rodriguez, R.; Rogers, Y.H.; Romblad, D.; Ruhfel, B.; Scott, R.; Sitter, C.; Smallwood, M.; Stewart, E.; Strong, R.; Suh, E.; Thomas, R.; Tint, N.N.; Tse, S.; Vech, C.; Wang, G.; Wetter, J.; Williams, S.; Williams, M.; Windsor, S.; Winn-Deen, E.; Wolfe, K.; Zaveri, J.; Zaveri, K.; Abril, J.F.; Guigó, R.; Campbell, M.J.; Sjolander, K.V.; Karlak, B.; Kejariwal, A.; Mi, H.; Lazareva, B.; Hatton, T.; Narechania, A.; Diemer, K.; Muruganujan, A.; Guo, N.; Sato, S.; Bafna, V.; Istrail, S.; Lippert, R.; Schwartz, R.; Walenz, B.; Yooseph, S.; Allen, D.; Basu, A.; Baxendale, J.; Blick, L.; Caminha, M.; Carnes-Stine, J.; Caulk, P.; Chiang, Y.H.; Coyne, M.; Dahlke, C.; Mays, A.; Dombroski, M.; Donnelly, M.; Ely, D.; Esparham, S.; Fosler, C.; Gire, H.; Glanowski, S.; Glasser, K.; Glodek, A.; Gorokhov, M.; Graham, K.; Gropman, B.; Harris, M.; Heil, J.; Henderson, S.; Hoover, J.; Jennings, D.; Jordan, C.; Jordan, J.; Kasha, J.; Kagan, L.; Kraft, C.; Levitsky, A.; Lewis, M.; Liu, X.; Lopez, J.; Ma, D.; Majoros, W.; McDaniel, J.; Murphy, S.; Newman, M.; Nguyen, T.; Nguyen, N.; Nodell, M.; Pan, S.; Peck, J.; Peterson, M.; Rowe, W.; Sanders, R.; Scott, J.; Simpson, M.; Smith, T.; Sprague, A.; Stockwell, T.; Turner, R.; Venter, E.; Wang, M.; Wen, M.; Wu, D.; Wu, M.; Xia, A.; Zandieh, A.; Zhu, X. The sequence of the human genome. Science, 2001, 291(5507), 1304-1351.
[http://dx.doi.org/10.1126/science.1058040] [PMID: 11181995]
[11]
Glusman, G.; Yanai, I.; Rubin, I.; Lancet, D. The complete human olfactory subgenome. Genome Res., 2001, 11(5), 685-702.
[http://dx.doi.org/10.1101/gr.171001] [PMID: 11337468]
[12]
Niimura, Y.; Nei, M. Comparative evolutionary analysis of olfactory receptor gene clusters between humans and mice. Gene, 2005, 346, 13-21.
[http://dx.doi.org/10.1016/j.gene.2004.09.025] [PMID: 15716120]
[13]
Zozulya, S.; Echeverri, F.; Nguyen, T. The human olfactory receptor repertoire Genome Biol, 2001, 2(6), 18.1-18.12,
[14]
Malnic, B.; Godfrey, P.A.; Buck, L.B. The human olfactory receptor gene family. Proc. Natl. Acad. Sci. USA, 2004, 101(8), 2584-2589.
[http://dx.doi.org/10.1073/pnas.0307882100] [PMID: 14983052]
[15]
Godfrey, P.A.; Malnic, B.; Buck, L.B. The mouse olfactory receptor gene family. Proc. Natl. Acad. Sci. USA, 2004, 101(7), 2156-2161.
[http://dx.doi.org/10.1073/pnas.0308051100] [PMID: 14769939]
[16]
Breer, H.; Fleischer, J.; Strotmann, J. The sense of smell: multiple olfactory subsystems. Cell. Mol. Life Sci., 2006, 63(13), 1465-1475.
[http://dx.doi.org/10.1007/s00018-006-6108-5] [PMID: 16732429]
[17]
Strotmann, J.; Levai, O.; Fleischer, J.; Schwarzenbacher, K.; Breer, H. Olfactory receptor proteins in axonal processes of chemosensory neurons. J. Neurosci., 2004, 24(35), 7754-7761.
[http://dx.doi.org/ 10.1523/JNEUROSCI.2588-04.2004] [PMID: 15342743]
[18]
Menco, B.P.; Bruch, R.C.; Dau, B.; Danho, W. Ultrastructural localization of olfactory transduction components: the G protein subunit Golf alpha and type III adenylyl cyclase. Neuron, 1992, 8(3), 441-453.
[http://dx.doi.org/10.1016/0896-6273(92)90272-F] [PMID: 1550671]
[19]
Mombaerts, P. How smell develops. Nat. Neurosci., 2001, 4(Suppl.), 1192-1198.
[http://dx.doi.org/10.1038/nn751] [PMID: 11687829]
[20]
Lodovichi, C.; Belluscio, L. Odorant receptors in the formation of the olfactory bulb circuitry. Physiology (Bethesda), 2012, 27(4), 200-212.
[http://dx.doi.org/10.1152/physiol.00015.2012] [PMID: 22875451]
[21]
Witt, M.; Woźniak, W. Structure and function of the vomeronasal organ. Adv. Otorhinolaryngol., 2006, 63, 70-83.
[http://dx.doi.org/ 10.1159/000093751] [PMID: 16733333]
[22]
Meredith, M. Human vomeronasal organ function: a critical review of best and worst cases. Chem. Senses, 2001, 26(4), 433-445.
[http://dx.doi.org/10.1093/chemse/26.4.433] [PMID: 11369678]
[23]
Dulac, C.; Axel, R. A novel family of genes encoding putative pheromone receptors in mammals. Cell, 1995, 83(2), 195-206.
[http://dx.doi.org/10.1016/0092-8674(95)90161-2] [PMID: 7585937]
[24]
Rodriguez, I.; Mombaerts, P. Novel human vomeronasal receptor-like genes reveal species-specific families. Curr. Biol., 2002, 12(12), R409-R411.
[http://dx.doi.org/10.1016/S0960-9822(02) 00909-0] [PMID: 12123587]
[25]
Rodriguez, I.; Feinstein, P.; Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell, 1999, 97(2), 199-208.
[http://dx.doi.org/10.1016/S0092-8674(00)80730-8] [PMID: 10219241]
[26]
Roppolo, D.; Vollery, S.; Kan, C.D.; Lüscher, C.; Broillet, M.C.; Rodriguez, I. Gene cluster lock after pheromone receptor gene choice. EMBO J., 2007, 26(14), 3423-3430.
[http://dx.doi.org/10. 1038/sj.emboj.7601782] [PMID: 17611603]
[27]
Mombaerts, P. Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neuron hypothesis revisited. Curr. Opin. Neurobiol., 2004, 14(1), 31-36 b.
[http://dx.doi.org/10.1016/j.conb.2004.01.014] [PMID: 15018935]
[28]
Dulac, C.; Wagner, S. Genetic analysis of brain circuits underlying pheromone signaling. Annu. Rev. Genet., 2006, 40, 449-467.
[http://dx.doi.org/10.1146/annurev.genet.39.073003.093937] [PMID: 16953793]
[29]
Shi, P.; Zhang, J. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res., 2007, 17(2), 166-174.
[http://dx.doi.org/10.1101/gr.6040007] [PMID: 17210926]
[30]
Grus, W.E.; Shi, P.; Zhang, Y.P.; Zhang, J. Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals. Proc. Natl. Acad. Sci. USA, 2005, 102(16), 5767-5772.
[http://dx.doi.org/10.1073/pnas. 0501589102] [PMID: 15790682]
[31]
Herrada, G.; Dulac, C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell, 1997, 90(4), 763-773.
[http://dx.doi.org/10.1016/S0092-8674(00)80536-X] [PMID: 9288755]
[32]
Matsunami, H.; Buck, L.B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell, 1997, 90(4), 775-784.
[http://dx.doi.org/10.1016/S0092-8674(00)80537-1] [PMID: 9288756]
[33]
Ryba, N.J.; Tirindelli, R. A new multigene family of putative pheromone receptors. Neuron, 1997, 19(2), 371-379.
[http://dx.doi.org/10.1016/S0896-6273(00)80946-0] [PMID: 9292726]
[34]
Young, J.M.; Trask, B.J. V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet., 2007, 23(5), 212-215.
[http://dx.doi.org/10.1016/j.tig.2007.03.004] [PMID: 17382427]
[35]
Silvotti, L.; Moiani, A.; Gatti, R.; Tirindelli, R. Combinatorial co-expression of pheromone receptors, V2Rs. J. Neurochem., 2007, 103(5), 1753-1763.
[http://dx.doi.org/10.1111/j.1471-4159.2007. 04877.x] [PMID: 17854397]
[36]
Rodriguez, I.; Greer, C.A.; Mok, M.Y.; Mombaerts, P. A putative pheromone receptor gene expressed in human olfactory mucosa. Nat. Genet., 2000, 26(1), 18-19.
[http://dx.doi.org/10.1038/79124] [PMID: 10973240]
[37]
Savic, I.; Berglund, H.; Gulyas, B.; Roland, P. Smelling of odorous sex hormone-like compounds causes sex-differentiated hypothalamic activations in humans. Neuron, 2001, 31(4), 661-668.
[http://dx.doi.org/10.1016/S0896-6273(01)00390-7] [PMID: 11545724]
[38]
Kosaka, T.; Kosaka, K. Olfactory Anatomy. Reference Module in Biomedical Research. Elsevier
[39]
Mombaerts, P. Seven-transmembrane proteins as odorant and chemosensory receptors. Science, 1999, 286(5440), 707-711.
[http://dx.doi.org/10.1126/science.286.5440.707] [PMID: 10531047]
[40]
Mombaerts, P. Molecular biology of odorant receptors in vertebrates. Annu. Rev. Neurosci., 1999, 22, 487-509.
[http://dx.doi.org/ 10.1146/annurev.neuro.22.1.487] [PMID: 10202546]
[41]
Pilpel, Y.; Sosinsky, A.; Lancet, D. Molecular biology of olfactory receptors. Essays Biochem., 1998, 33, 93-104.
[http://dx.doi.org/ 10.1042/bse0330093] [PMID: 10488444]
[42]
Rouquier, S.; Taviaux, S.; Trask, B.J.; Brand-Arpon, V.; van den Engh, G.; Demaille, J.; Giorgi, D. Distribution of olfactory receptor genes in the human genome. Nat. Genet., 1998, 18(3), 243-250.
[http://dx.doi.org/10.1038/ng0398-243] [PMID: 9500546]
[43]
Rouquier, S.; Blancher, A.; Giorgi, D. The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc. Natl. Acad. Sci. USA, 2000, 97(6), 2870-2874.
[http://dx.doi.org/10.1073/pnas.040580197] [PMID: 10706615]
[44]
Serizawa, S.; Miyamichi, K.; Nakatani, H.; Suzuki, M.; Saito, M.; Yoshihara, Y.; Sakano, H. Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science, 2003, 302(5653), 2088-2094.
[http://dx.doi.org/10.1126/science.1089122] [PMID: 14593185]
[45]
Lewcock, J.W.; Reed, R.R. A feedback mechanism regulates monoallelic odorant receptor expression. Proc. Natl. Acad. Sci. USA, 2004, 101(4), 1069-1074.
[http://dx.doi.org/10.1073/pnas. 0307986100] [PMID: 14732684]
[47]
senselab.med.yale.edu/ordb (Accessed June 25, 2018)
[48]
Glusman, G.; Clifton, S.; Roe, B.; Lancet, D. Sequence analysis in the olfactory receptor gene cluster on human chromosome 17: recombinatorial events affecting receptor diversity. Genomics, 1996, 37(2), 147-160.
[http://dx.doi.org/10.1006/geno.1996.0536] [PMID: 8921386]
[49]
Walensky, L.D.; Ruat, M.; Bakin, R.E.; Blackshaw, S.; Ronnett, G.V.; Snyder, S.H. Two novel odorant receptor families expressed in spermatids undergo 5′-splicing. J. Biol. Chem., 1998, 273(16), 9378-9387.
[http://dx.doi.org/10.1074/jbc.273.16.9378] [PMID: 9545261]
[50]
Asai, H.; Kasai, H.; Matsuda, Y.; Yamazaki, N.; Nagawa, F.; Sakano, H.; Tsuboi, A. Genomic structure and transcription of a murine odorant receptor gene: differential initiation of transcription in the olfactory and testicular cells. Biochem. Biophys. Res. Commun., 1996, 221(2), 240-247.
[http://dx.doi.org/10.1006/bbrc.1996.0580] [PMID: 8619840]
[51]
Qasba, P.; Reed, R.R. Tissue and zonal-specific expression of an olfactory receptor transgene. J. Neurosci., 1998, 18(1), 227-236.
[http://dx.doi.org/10.1523/JNEUROSCI.18-01-00227.1998] [PMID: 9412503]
[52]
Safran, M.; Chalifa-Caspi, V.; Shmueli, O.; Olender, T.; Lapidot, M.; Rosen, N.; Shmoish, M.; Peter, Y.; Glusman, G.; Feldmesser, E.; Adato, A.; Peter, I.; Khen, M.; Atarot, T.; Groner, Y.; Lancet, D. Human Gene-Centric Databases at the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE. Nucleic Acids Res., 2003, 31(1), 142-146.
[http://dx.doi.org/10.1093/nar/gkg050] [PMID: 12519968]
[53]
Olender, T.; Feldmesser, E.; Atarot, T.; Eisenstein, M.; Lancet, D. The olfactory receptor universe--from whole genome analysis to structure and evolution. Genet. Mol. Res., 2004, 3(4), 545-553.
[PMID: 15688320]
[54]
Olender, T.; Lancet, D.; Nebert, D.W. Update on the olfactory receptor (OR) gene superfamily. Hum. Genomics, 2008, 3(1), 87-97.
[http://dx.doi.org/10.1186/1479-7364-3-1-87] [PMID: 19129093]
[55]
Nebert, D.W.; Adesnik, M.; Coon, M.J.; Estabrook, R.W.; Gonzalez, F.J.; Guengerich, F.P.; Gunsalus, I.C.; Johnson, E.F.; Kemper, B.; Levin, W. The P450 gene superfamily. Recommended nomenclature. DNA Cell Biol., 1987, 6, 1-11.
[PMID: 1991046]
[56]
Nebert, D.W.; Gonzalez, F.J. P450 genes: structure, evolution, and regulation. Annu. Rev. Biochem., 1987, 56, 945-993.
[http://dx.doi.org/10.1146/annurev.bi.56.070187.004501] [PMID: 3304150]
[57]
Nebert, D.W.; Nelson, D.R.; Adesnik, M.; Coon, M.J.; Estabrook, R.W.; Gonzalez, F.J.; Guengerich, F.P.; Gunsalus, I.C.; Johnson, E.F.; Kemper, B. The P450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA, 1989, 8(1), 1-13.
[http://dx.doi.org/10.1089/dna.1.1989.8.1] [PMID: 2651058]
[58]
Nebert, D.W.; Nelson, D.R.; Coon, M.J.; Estabrook, R.W.; Feyereisen, R.; Fujii-Kuriyama, Y.; Gonzalez, F.J.; Guengerich, F.P.; Gunsalus, I.C.; Johnson, E.F. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol., 1991, 10(1), 1-14.
[http://dx.doi.org/10.1089/dna. 1991.10.1] [PMID: 1991046]
[59]
Nelson, D.R.; Kamataki, T.; Waxman, D.J.; Guengerich, F.P.; Estabrook, R.W.; Feyereisen, R.; Gonzalez, F.J.; Coon, M.J.; Gunsalus, I.C.; Gotoh, O. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol., 1993, 12(1), 1-51.
[http://dx.doi.org/10.1089/dna.1993.12.1] [PMID: 7678494]
[60]
Nelson, D.R.; Koymans, L.; Kamataki, T.; Stegeman, J.J.; Feyereisen, R.; Waxman, D.J.; Waterman, M.R.; Gotoh, O.; Coon, M.J.; Estabrook, R.W.; Gunsalus, I.C.; Nebert, D.W. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 1996, 6(1), 1-42.
[http://dx.doi.org/10.1097/00008571-199602000-00002] [PMID: 8845856]
[61]
Glusman, G.; Bahar, A.; Sharon, D.; Pilpel, Y.; White, J.; Lancet, D. The olfactory receptor gene superfamily: data mining, classification, and nomenclature. Mamm. Genome, 2000, 11(11), 1016-1023.
[http://dx.doi.org/10.1007/s003350010196] [PMID: 11063259]
[62]
Lancet. D.; Ben-Arie, N. Olfactory receptors. Curr. Biol., 1993, 3(10), 668-674.
[http://dx.doi.org/10.1016/0960-9822(93)90064-U] [PMID: 15335857]
[63]
Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci., 2004, 5(4), 263-278 a.
[http://dx.doi.org/10.1038/nrn1365] [PMID: 15034552]
[64]
Pace, U.; Hanski, E.; Salomon, Y.; Lancet, D. Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature, 1985, 316(6025), 255-258.
[http://dx.doi.org/10.1038/316255a0] [PMID: 3927168]
[65]
Abaffy, T.; Matsunami, H.; Luetje, C.W. Functional analysis of a mammalian odorant receptor subfamily. J. Neurochem., 2006, 97(5), 1506-1518.
[http://dx.doi.org/10.1111/j.1471-4159.2006. 03859.x] [PMID: 16606354]
[66]
Pace, U.; Lancet, D. Olfactory GTP-binding protein: signal-transducing polypeptide of vertebrate chemosensory neurons. Proc. Natl. Acad. Sci. USA, 1986, 83(13), 4947-4951.
[http://dx.doi.org/ 10.1073/pnas.83.13.4947] [PMID: 3088569]
[67]
Nakamura, T.; Gold, G.H. A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature, 1987, 325(6103), 442-444.
[http://dx.doi.org/10.1038/325442a0] [PMID: 3027574]
[68]
Sklar, P.B.; Anholt, R.R.; Snyder, S.H. The odorant-sensitive adenylate cyclase of olfactory receptor cells. Differential stimulation by distinct classes of odorants. J. Biol. Chem., 1986, 261(33), 15538-15543.
[PMID: 3536906]
[69]
Bockaert, J.; Pin, J.P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J., 1999, 18(7), 1723-1729.
[http://dx.doi.org/10.1093/emboj/18.7.1723] [PMID: 10202136]
[70]
Malnic, B.; Hirono, J.; Sato, T.; Buck, L.B. Combinatorial receptor codes for odors. Cell, 1999, 96(5), 713-723.
[http://dx.doi.org/ 10.1016/S0092-8674(00)80581-4] [PMID: 10089886]
[71]
Krautwurst, D.; Yau, K.W.; Reed, R.R. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell, 1998, 95(7), 917-926.
[http://dx.doi.org/10.1016/S0092-8674(00)81716-X] [PMID: 9875846]
[72]
Floriano, W.B.; Vaidehi, N.; Goddard, W.A. III Making sense of olfaction through predictions of the 3-D structure and function of olfactory receptors. Chem. Senses, 2004, 29(4), 269-290.
[http://dx.doi.org/10.1093/chemse/bjh030] [PMID: 15150141]
[73]
Shirokova, E.; Schmiedeberg, K.; Bedner, P.; Niessen, H.; Willecke, K.; Raguse, J.D.; Meyerhof, W.; Krautwurst, D. Identification of specific ligands for orphan olfactory receptors. G protein-dependent agonism and antagonism of odorants. J. Biol. Chem., 2005, 280(12), 11807-11815.
[http://dx.doi.org/10.1074/jbc. M411508200] [PMID: 15598656]
[74]
Abaffy, T.; Matsunami, H.; Luetje, C.W. Functional analysis of a mammalian odorant receptor subfamily. J. Neurochem., 2006, 97(5), 1506-1518.
[http://dx.doi.org/10.1111/j.1471-4159.2006. 03859.x] [PMID: 16606354]
[75]
Grosmaitre, X.; Vassalli, A.; Mombaerts, P.; Shepherd, G.M.; Ma, M. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice. Proc. Natl. Acad. Sci. USA, 2006, 103(6), 1970-1975.
[http://dx.doi.org/10.1073/pnas.0508491103] [PMID: 16446455]
[76]
Touhara, K.; Sengoku, S.; Inaki, K.; Tsuboi, A.; Hirono, J.; Sato, T.; Sakano, H.; Haga, T. Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc. Natl. Acad. Sci. USA, 1999, 96(7), 4040-4045.
[http://dx.doi.org/10. 1073/pnas.96.7.4040] [PMID: 10097159]
[77]
Dong, X.; Han, S.; Zylka, M.J.; Simon, M.I.; Anderson, D.J. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell, 2001, 106(5), 619-632.
[http://dx.doi.org/10.1016/S0092-8674(01)00483-4] [PMID: 11551509]
[78]
Wilson, S.; Bergsma, D. Orphan G-protein coupled receptors: novel drug targets for the pharmaceutical industry. Drug Des. Discov., 2000, 17(2), 105-114.
[PMID: 11045900]
[79]
Baldwin, J.M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J., 1993, 12(4), 1693-1703.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb05814.x] [PMID: 8385611]
[80]
Boekhoff, I.; Breer, H. Differential stimulation of second messenger pathways by distinct classes of odorants. Neurochem. Int., 1990, 17(4), 553-557.
[http://dx.doi.org/10.1016/0197-0186(90) 90043-S] [PMID: 20504658]
[81]
Katada, S.; Hirokawa, T.; Oka, Y.; Suwa, M.; Touhara, K. Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J. Neurosci., 2005, 25(7), 1806-1815.
[http://dx.doi.org/10.1523/JNEUROSCI. 4723-04.2005] [PMID: 15716417]
[82]
Katada, S.; Hirokawa, T.; Touhara, K. Exploring the odorant binding site of a G-protein-coupled olfactory receptor. Curr. Comput. Aided Drug Des., 2008, 4, 123-131.
[http://dx.doi.org/10.2174/157340908784533247]
[83]
Wang, J.; Luthey-Schulten, Z.A.; Suslick, K.S. Is the olfactory receptor a metalloprotein? Proc. Natl. Acad. Sci. USA, 2003, 100(6), 3035-3039.
[http://dx.doi.org/10.1073/pnas.262792899] [PMID: 12610211]
[84]
Abaffy, T.; Malhotra, A.; Luetje, C.W. The molecular basis for ligand specificity in a mouse olfactory receptor: a network of functionally important residues. J. Biol. Chem., 2007, 282(2), 1216-1224.
[http://dx.doi.org/10.1074/jbc.M609355200] [PMID: 17114180]
[85]
Wade, F.; Espagne, A.; Persuy, M.A.; Vidic, J.; Monnerie, R.; Merola, F.; Pajot-Augy, E.; Sanz, G. Relationship between homo-oligomerization of a mammalian olfactory receptor and its activation state demonstrated by bioluminescence resonance energy transfer. J. Biol. Chem., 2011, 286(17), 15252-15259.
[http://dx.doi.org/10.1074/jbc.M110.184580] [PMID: 21454689]
[86]
Park, P.S.; Filipek, S.; Wells, J.W.; Palczewski, K. Oligomerization of G protein-coupled receptors: past, present, and future. Biochemistry, 2004, 43(50), 15643-15656.
[http://dx.doi.org/10.1021/bi047907k] [PMID: 15595821]
[87]
Duncan, R.R.; Bergmann, A.; Cousin, M.A.; Apps, D.K.; Shipston, M.J. Multi-dimensional time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells. J. Microsc., 2004, 215(Pt 1), 1-12.
[http://dx.doi.org/10.1111/j.0022-2720.2004.01343.x] [PMID: 15230870]
[88]
Pfleger, K.D.; Eidne, K.A. Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem. J., 2005, 385(Pt 3), 625-637.
[http://dx.doi.org/10.1042/BJ20041361] [PMID: 15504107]
[89]
Kaupmann, K.; Malitschek, B.; Schuler, V.; Heid, J.; Froestl, W.; Beck, P.; Mosbacher, J.; Bischoff, S.; Kulik, A.; Shigemoto, R.; Karschin, A.; Bettler, B. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature, 1998, 396(6712), 683-687.
[http://dx.doi.org/10.1038/25360] [PMID: 9872317]
[90]
Milligan, G.; Wilson, S.; López-Gimenez, J.F. The specificity and molecular basis of α1-adrenoceptor and CXCR chemokine receptor dimerization. J. Mol. Neurosci., 2005, 26(2-3), 161-168.
[http://dx.doi.org/10.1385/JMN:26:2-3:161] [PMID: 16012189]
[91]
Hague, C.; Hall, R.A.; Minneman, K.P. Olfactory receptor localization and function: an emerging role for GPCR heterodimerization. Mol. Interv., 2004, 4(6), 321-322.
[http://dx.doi.org/10.1124/mi.4.6.4] [PMID: 15616160]
[92]
Neuhaus, E.M.; Gisselmann, G.; Zhang, W.; Dooley, R.; Störtkuhl, K.; Hatt, H. Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat. Neurosci., 2005, 8(1), 15-17.
[http://dx.doi.org/10.1038/nn1371] [PMID: 15592462]
[93]
Minic, J.; Persuy, M.A.; Godel, E.; Aioun, J.; Connerton, I.; Salesse, R.; Pajot-Augy, E. Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening. FEBS J., 2005, 272(2), 524-537.
[http://dx.doi.org/10.1111/j.1742-4658.2004.04494.x] [PMID: 15654890]
[94]
Pajot-Augy, E.; Crowe, M.; Levasseur, G.; Salesse, R.; Connerton, I. Engineered yeasts as reporter systems for odorant detection. J. Recept. Signal Transduct. Res., 2003, 23(2-3), 155-171.
[http://dx.doi.org/10.1081/RRS-120025196] [PMID: 14626444]
[95]
John, C. Olfaction. Leffingwell Reports, 2002, 2(1), 1-34.
[96]
Breer, H.; Boekhoff, I.; Tareilus, E. Rapid kinetics of second messenger formation in olfactory transduction. Nature, 1990, 345(6270), 65-68.
[http://dx.doi.org/10.1038/345065a0] [PMID: 2158631]
[97]
Farrens, D.L.; Altenbach, C.; Yang, K.; Hubbell, W.L.; Khorana, H.G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science, 1996, 274(5288), 768-770.
[http://dx.doi.org/10.1126/science.274.5288.768] [PMID: 8864113]
[98]
Sheikh, S.P.; Zvyaga, T.A.; Lichtarge, O.; Sakmar, T.P.; Bourne, H.R. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature, 1996, 383(6598), 347-350.
[http://dx.doi.org/10.1038/383347a0] [PMID: 8848049]
[99]
Ballesteros, J.A.; Jensen, A.D.; Liapakis, G.; Rasmussen, S.G.; Shi, L.; Gether, U.; Javitch, J.A. Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem., 2001, 276(31), 29171-29177.
[http://dx.doi.org/10.1074/jbc.M103747200] [PMID: 11375997]
[100]
Salom, D.; Lodowski, D.T.; Stenkamp, R.E.; Le Trong, I.; Golczak, M.; Jastrzebska, B.; Harris, T.; Ballesteros, J.A.; Palczewski, K. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc. Natl. Acad. Sci. USA, 2006, 103(44), 16123-16128.
[http://dx.doi.org/10.1073/pnas.0608022103] [PMID: 17060607]
[101]
Kato, A.; Katada, S.; Touhara, K. Amino acids involved in conformational dynamics and G protein coupling of an odorant receptor: targeting gain-of-function mutation. J. Neurochem., 2008, 107(5), 1261-1270.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05693.x] [PMID: 18803693]
[102]
Kaupp, U.B. Olfactory signalling in vertebrates and insects: differences and commonalities. Nat. Rev. Neurosci., 2010, 11(3), 188-200.
[http://dx.doi.org/10.1038/nrn2789] [PMID: 20145624]
[103]
Wong, S.T.; Trinh, K.; Hacker, B.; Chan, G.C.; Lowe, G.; Gaggar, A.; Xia, Z.; Gold, G.H.; Storm, D.R. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron, 2000, 27(3), 487-497.
[http://dx.doi.org/10.1016/S0896-6273(00)00060-X] [PMID: 11055432]
[104]
Belluscio, L.; Gold, G.H.; Nemes, A.; Axel, R. Mice deficient in G(olf) are anosmic. Neuron, 1998, 20(1), 69-81.
[http://dx.doi.org/ 10.1016/S0896-6273(00)80435-3] [PMID: 9459443]
[105]
Brunet, L.J.; Gold, G.H.; Ngai, J. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron, 1996, 17(4), 681-693.
[http://dx.doi.org/ 10.1016/S0896-6273(00)80200-7] [PMID: 8893025]
[106]
Zheng, J.; Zagotta, W.N. Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels. Neuron, 2004, 42(3), 411-421.
[http://dx.doi.org/10.1016/S0896-6273(04)00253-3] [PMID: 15134638]
[107]
Kato, A.; Touhara, K. Mammalian olfactory receptors: pharmacology, G protein coupling and desensitization. Cell. Mol. Life Sci., 2009, 66(23), 3743-3753.
[http://dx.doi.org/10.1007/s00018-009-0111-6] [PMID: 19652915]
[108]
Schroeder, B.C.; Cheng, T.; Jan, Y.N.; Jan, L.Y. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell, 2008, 134(6), 1019-1029.
[http://dx.doi.org/10.1016/j.cell. 2008.09.003] [PMID: 18805094]
[109]
Yang, Y.D.; Cho, H.; Koo, J.Y.; Tak, M.H.; Cho, Y.; Shim, W.S.; Park, S.P.; Lee, J.; Lee, B.; Kim, B.M.; Raouf, R.; Shin, Y.K.; Oh, U. TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature, 2008, 455(7217), 1210-1215.
[http://dx.doi.org/10.1038/nature07313] [PMID: 18724360]
[110]
Bradley, J.; Reisert, J.; Frings, S. Regulation of cyclic nucleotide-gated channels. Curr. Opin. Neurobiol., 2005, 15(3), 343-349.
[http://dx.doi.org/10.1016/j.conb.2005.05.014] [PMID: 15922582]
[111]
Liman, E.R.; Buck, L.B. A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP. Neuron, 1994, 13(3), 611-621.
[http://dx.doi.org/10.1016/0896-6273 (94)90029-9] [PMID: 7522482]
[112]
Prasad, B.C.; Reed, R.R. Chemosensation: molecular mechanisms in worms and mammals. Trends Genet., 1999, 15(4), 150-153.
[http://dx.doi.org/10.1016/S0168-9525(99)01695-9] [PMID: 10203825]
[113]
Reisert, J.; Lai, J.; Yau, K.W.; Bradley, J. Mechanism of the excitatory Cl- response in mouse olfactory receptor neurons. Neuron, 2005, 45(4), 553-561.
[http://dx.doi.org/10.1016/j.neuron.2005. 01.012] [PMID: 15721241]
[114]
Kurahashi, T.; Yau, K.W. Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature, 1993, 363(6424), 71-74.
[http://dx.doi.org/ 10.1038/363071a0] [PMID: 7683113]
[115]
Schild, D.; Restrepo, D. Transduction mechanisms in vertebrate olfactory receptor cells. Physiol. Rev., 1998, 78(2), 429-466.
[http://dx.doi.org/10.1152/physrev.1998.78.2.429] [PMID: 9562035]
[116]
Antunes, G.; Sebastião, A.M.; Simoes de Souza, F.M. Mechanisms of regulation of olfactory transduction and adaptation in the olfactory cilium. PLoS One, 2014, 9(8), e105531.
[http://dx.doi.org/ 10.1371/journal.pone.0105531] [PMID: 25144232]
[117]
Kurahashi, T.; Menini, A. Mechanism of odorant adaptation in the olfactory receptor cell. Nature, 1997, 385(6618), 725-729.
[http://dx.doi.org/10.1038/385725a0] [PMID: 9034189]
[118]
Barnea, G.; O’Donnell, S.; Mancia, F.; Sun, X.; Nemes, A.; Mendelsohn, M.; Axel, R. Odorant receptors on axon termini in the brain. Science, 2004, 304(5676), 1468.
[http://dx.doi.org/10.1126/science.1096146] [PMID: 15178793]
[119]
Buck, L.B. The search for odorant receptors. Cell, 2004, 116(2)(Suppl.), S117-S119, 1, S119
[http://dx.doi.org/10.1016/S0092-8674(04)00051-0] [PMID: 15055598]
[120]
Eggan, K.; Baldwin, K.; Tackett, M.; Osborne, J.; Gogos, J.; Chess, A.; Axel, R.; Jaenisch, R. Mice cloned from olfactory sensory neurons. Nature, 2004, 428(6978), 44-49.
[http://dx.doi.org/10.1038/nature02375] [PMID: 14990966]
[121]
Benovic, J.L.; Kühn, H.; Weyand, I.; Codina, J.; Caron, M.G.; Lefkowitz, R.J. Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc. Natl. Acad. Sci. USA, 1987, 84(24), 8879-8882.
[http://dx.doi.org/10.1073/pnas.84.24.8879] [PMID: 2827157]
[122]
Lohse, M.J.; Benovic, J.L.; Codina, J.; Caron, M.G.; Lefkowitz, R.J. beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science, 1990, 248(4962), 1547-1550.
[http://dx.doi.org/ 10.1126/science.2163110] [PMID: 2163110]
[123]
Boekhoff, I.; Inglese, J.; Schleicher, S.; Koch, W.J.; Lefkowitz, R.J.; Breer, H. Olfactory desensitization requires membrane targeting of receptor kinase mediated by beta gamma-subunits of heterotrimeric G proteins. J. Biol. Chem., 1994, 269(1), 37-40.
[PMID: 8276821]
[124]
Peppel, K.; Boekhoff, I.; McDonald, P.; Breer, H.; Caron, M.G.; Lefkowitz, R.J. G protein-coupled receptor kinase 3 (GRK3) gene disruption leads to loss of odorant receptor desensitization. J. Biol. Chem., 1997, 272(41), 25425-25428.
[http://dx.doi.org/10.1074/jbc.272.41.25425] [PMID: 9325250]
[125]
Mashukova, A.; Spehr, M.; Hatt, H.; Neuhaus, E.M. Beta-arrestin2-mediated internalization of mammalian odorant receptors. J. Neurosci., 2006, 26(39), 9902-9912.
[http://dx.doi.org/10.1523/JNEUROSCI.2897-06.2006] [PMID: 17005854]
[126]
Neuhaus, E.M.; Mashukova, A.; Barbour, J.; Wolters, D.; Hatt, H. Novel function of beta-arrestin2 in the nucleus of mature spermatozoa. J. Cell Sci., 2006, 119(Pt 15), 3047-3056.
[http://dx.doi.org/ 10.1242/jcs.03046] [PMID: 16820410]
[127]
Pelosi, P.; Pisanelli, A.M.; Badaccini, N.E.; Gagliardo, A. Binding of [3H]-2-isobutyl-3-methoxypyrazine to cow olfactory mucosa. Chem. Senses, 1981, 6, 77-85.
[http://dx.doi.org/10.1093/chemse/6.2.77]
[128]
Pes, D.; Pelosi, P. Odorant-binding proteins of the mouse. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1995, 112(3), 471-479.
[http://dx.doi.org/10.1016/0305-0491(95)00063-1] [PMID: 8529023]
[129]
Pelosi, P. Odorant-binding proteins. Crit. Rev. Biochem. Mol. Biol., 1994, 29(3), 199-228.
[http://dx.doi.org/10.3109/10409239409086801] [PMID: 8070277]
[130]
Pevsner, J.; Snynder, S.H. Odorant-binding protein; odorant transport function in the vertebrate nasal epithelium. Chem. Senses, 1990, 15, 217-222.
[http://dx.doi.org/10.1093/chemse/15.2.217]
[131]
Bignetti, E.; Cavaggioni, A.; Pelosi, P.; Persaud, K.C.; Sorbi, R.T.; Tirindelli, R. Purification and characterisation of an odorant-binding protein from cow nasal tissue. Eur. J. Biochem., 1985, 149(2), 227-231.
[http://dx.doi.org/10.1111/j.1432-1033.1985.tb08916. x] [PMID: 3996407]
[132]
Pevsner, J.; Trifiletti, R.R.; Strittmatter, S.M.; Snyder, S.H. Isolation and characterization of an olfactory receptor protein for odorant pyrazines. Proc. Natl. Acad. Sci. USA, 1985, 82(9), 3050-3054.
[http://dx.doi.org/10.1073/pnas.82.9.3050] [PMID: 2986147]
[133]
Mulla, M.Y.; Tuccori, E.; Magliulo, M.; Lattanzi, G.; Palazzo, G.; Persaud, K.; Torsi, L. Capacitance-modulated transistor detects odorant binding protein chiral interactions. Nat. Commun., 2015, 6, 6010.
[http://dx.doi.org/10.1038/ncomms7010] [PMID: 25591754]
[134]
Meierhenrich, U.J.; Golebiowski, J.; Fernandez, X.; Cabrol-Bass, D. The molecular basis of olfactory chemoreception. Angew. Chem. Int. Ed. Engl., 2004, 43(47), 6410-6412.
[http://dx.doi.org/10.1002/anie.200462322] [PMID: 15578781]
[135]
Charlier, L.; Cabrol-Bass, D.; Golebiowski, J. How does human odorant binding protein bind odorants? The case of aldehydes studied by molecular dynamics. C. R. Chim., 2009, 12, 905-910.
[http://dx.doi.org/10.1016/j.crci.2008.09.022]
[136]
Tegoni, M.; Ramoni, R.; Bignetti, E.; Spinelli, S.; Cambillau, C. Domain swapping creates a third putative combining site in bovine odorant binding protein dimer. Nat. Struct. Biol., 1996, 3(10), 863-867.
[http://dx.doi.org/10.1038/nsb1096-863] [PMID: 8836103]
[137]
Vincent, F.; Spinelli, S.; Ramoni, R.; Grolli, S.; Pelosi, P.; Cambillau, C.; Tegoni, M. Complexes of porcine odorant binding protein with odorant molecules belonging to different chemical classes. J. Mol. Biol., 2000, 300(1), 127-139.
[http://dx.doi.org/10.1006/jmbi. 2000.3820] [PMID: 10864504]
[138]
Löbel, D.; Strotmann, J.; Jacob, M.; Breer, H. Identification of a third rat odorant-binding protein (OBP3). Chem. Senses, 2001, 26(6), 673-680.
[http://dx.doi.org/10.1093/chemse/26.6.673] [PMID: 11473933]
[139]
Löbel, D.; Marchese, S.; Krieger, J.; Pelosi, P.; Breer, H. Subtypes of odorant-binding proteins--heterologous expression and ligand binding. Eur. J. Biochem., 1998, 254(2), 318-324.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2540318.x] [PMID: 9660186]
[140]
Wojnar, P.; Lechner, M.; Merschak, P.; Redl, B. Molecular cloning of a novel lipocalin-1 interacting human cell membrane receptor using phage display. J. Biol. Chem., 2001, 276(23), 20206-20212.
[http://dx.doi.org/10.1074/jbc.M101762200] [PMID: 11287427]
[141]
Munger, S.D.; Leinders-Zufall, T.; Zufall, F. Subsystem organization of the mammalian sense of smell. Annu. Rev. Physiol., 2009, 71, 115-140.
[http://dx.doi.org/10.1146/annurev.physiol.70.113006. 100608] [PMID: 18808328]
[142]
Spehr, M.; Spehr, J.; Ukhanov, K.; Kelliher, K.R.; Leinders-Zufall, T.; Zufall, F. Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell. Mol. Life Sci., 2006, 63(13), 1476-1484.
[http://dx.doi.org/10.1007/s00018-006-6109-4] [PMID: 16732428]
[143]
Lin, W.; Arellano, J.; Slotnick, B.; Restrepo, D. Odors detected by mice deficient in cyclic nucleotide-gated channel subunit A2 stimulate the main olfactory system. J. Neurosci., 2004, 24(14), 3703-3710.
[http://dx.doi.org/10.1523/JNEUROSCI.0188-04.2004] [PMID: 15071119]
[144]
Liberles, S.D.; Buck, L.B. A second class of chemosensory receptors in the olfactory epithelium. Nature, 2006, 442(7103), 645-650.
[http://dx.doi.org/10.1038/nature05066] [PMID: 16878137]
[145]
Wallrabenstein, I.; Kuklan, J.; Weber, L.; Zborala, S.; Werner, M.; Altmüller, J.; Becker, C.; Schmidt, A.; Hatt, H.; Hummel, T.; Gisselmann, G. Human trace amine-associated receptor TAAR5 can be activated by trimethylamine. PLoS One, 2013, 8(2), e54950.
[http://dx.doi.org/10.1371/journal.pone.0054950] [PMID: 23393561]
[146]
Liberles, S.D. Trace amine-associated receptors: ligands, neural circuits, and behaviors. Curr. Opin. Neurobiol., 2015, 34, 1-7.
[http://dx.doi.org/10.1016/j.conb.2015.01.001] [PMID: 25616211]
[147]
Fulle, H.J. Vassar. R.; Foster, D.C.; Yang, R.B.; Axel, R.; Garbers, D.L. A receptor guanylul cyclase expressed. specifically in olfactory sensory neurons. Proc. Natl. Acad. Sci. USA, 1995, 92, 3571-3575.
[http://dx.doi.org/10.1073/pnas.92.8.3571] [PMID: 7724600]
[148]
Gibson, A.D.; Garbers, D.L. Guanylyl cyclases as a family of putative odorant receptors. Annu. Rev. Neurosci., 2000, 23, 417-439.
[http://dx.doi.org/10.1146/annurev.neuro.23.1.417] [PMID: 10845070]
[149]
Borowsky, B.; Adham, N.; Jones, K.A.; Raddatz, R.; Artymyshyn, R.; Ogozalek, K.L.; Durkin, M.M.; Lakhlani, P.P.; Bonini, J.A.; Pathirana, S.; Boyle, N.; Pu, X.; Kouranova, E.; Lichtblau, H.; Ochoa, F.Y.; Branchek, T.A.; Gerald, C. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. USA, 2001, 98(16), 8966-8971.
[http://dx.doi.org/ 10.1073/pnas.151105198] [PMID: 11459929]
[150]
Bunzow, J.R.; Sonders, M.S.; Arttamangkul, S.; Harrison, L.M.; Zhang, G.; Quigley, D.I.; Darland, T.; Suchland, K.L.; Pasumamula, S.; Kennedy, J.L.; Olson, S.B.; Magenis, R.E.; Amara, S.G.; Grandy, D.K. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol. Pharmacol., 2001, 60(6), 1181-1188.
[http://dx.doi.org/10.1124/mol.60.6.1181] [PMID: 11723224]
[151]
Lindemann, L.; Hoener, M.C. A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol. Sci., 2005, 26(5), 274-281.
[http://dx.doi.org/10.1016/j.tips.2005.03.007] [PMID: 15860375]
[152]
Shi, L.; Javitch, J.A. The binding site of aminergic G protein-coupled receptors: the transmembrane segments and second extracellular loop. Annu. Rev. Pharmacol. Toxicol., 2002, 42, 437-467.
[http://dx.doi.org/10.1146/annurev.pharmtox.42.091101.144224] [PMID: 11807179]
[153]
Horowitz, L.F.; Saraiva, L.R.; Kuang, D.; Yoon, K.H.; Buck, L.B. Olfactory receptor patterning in a higher primate. J. Neurosci., 2014, 34(37), 12241-12252.
[http://dx.doi.org/10.1523/JNEUROSCI. 1779-14.2014] [PMID: 25209267]
[154]
Grus, W.E.; Zhang, J. Distinct evolutionary patterns between chemoreceptors of 2 vertebrate olfactory systems and the differential tuning hypothesis. Mol. Biol. Evol., 2008, 25(8), 1593-1601.
[http://dx.doi.org/10.1093/molbev/msn107] [PMID: 18460446]
[155]
Hashiguchi, Y.; Nishida, M. Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium. Mol. Biol. Evol., 2007, 24(9), 2099-2107.
[http://dx.doi.org/10.1093/molbev/msm140] [PMID: 17634392]
[156]
Nei, M.; Niimura, Y.; Nozawa, M. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat. Rev. Genet., 2008, 9(12), 951-963.
[157]
Zhang, J.; Pacifico, R.; Cawley, D.; Feinstein, P.; Bozza, T. Ultrasensitive detection of amines by a trace amine-associated receptor. J. Neurosci., 2013, 33(7), 3228-3239.
[http://dx.doi.org/10.1523/JNEUROSCI.4299-12.2013] [PMID: 23407976]
[158]
Greer, P.L.; Bear, D.M.; Lassance, J.M.; Bloom, M.L.; Tsukahara, T.; Pashkovski, S.L.; Masuda, F.K.; Nowlan, A.C.; Kirchner, R.; Hoekstra, H.E.; Datta, S.R. A Family of non-GPCR Chemosensors Defines an Alternative Logic for Mammalian Olfaction. Cell, 2016, 165(7), 1734-1748.
[http://dx.doi.org/10.1016/j.cell.2016.05.001] [PMID: 27238024]
[159]
Hu, J.; Zhong, C.; Ding, C.; Chi, Q.; Walz, A.; Mombaerts, P.; Matsunami, H.; Luo, M. Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science, 2007, 317(5840), 953-957.
[http://dx.doi.org/10.1126/science. 1144233] [PMID: 17702944]
[160]
Juilfs, D.M.; Fülle, H.J.; Zhao, A.Z.; Houslay, M.D.; Garbers, D.L.; Beavo, J.A. A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc. Natl. Acad. Sci. USA, 1997, 94(7), 3388-3395.
[http://dx.doi.org/ 10.1073/pnas.94.7.3388] [PMID: 9096404]
[161]
Leinders-Zufall, T.; Cockerham, R.E.; Michalakis, S.; Biel, M.; Garbers, D.L.; Reed, R.R.; Zufall, F.; Munger, S.D. Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc. Natl. Acad. Sci. USA, 2007, 104(36), 14507-14512.
[http://dx.doi.org/10.1073/pnas.0704965104] [PMID: 17724338]
[162]
Meyer, M.R.; Angele, A.; Kremmer, E.; Kaupp, U.B.; Muller, F. A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc. Natl. Acad. Sci. USA, 2000, 97(19), 10595-10600.
[http://dx.doi.org/10.1073/pnas.97.19.10595] [PMID: 10984544]
[163]
Guo, D.; Zhang, J.J.; Huang, X.Y. Stimulation of guanylyl cyclase-D by bicarbonate. Biochemistry, 2009, 48(20), 4417-4422.
[http://dx.doi.org/10.1021/bi900441v] [PMID: 19331426]
[164]
Sun, L.; Wang, H.; Hu, J.; Han, J.; Matsunami, H.; Luo, M. Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc. Natl. Acad. Sci. USA, 2009, 106(6), 2041-2046.
[http://dx.doi.org/10.1073/pnas.0812220106] [PMID: 19181845]
[165]
Chastrette, M. Trends in structure-odor relationships. SAR QSAR Environ. Res., 1997, 6(3-4), 215-254.
[http://dx.doi.org/10.1080/10629369708033253] [PMID: 9487700]
[166]
Laska, M.; Trolp, S.; Teubner, P. Odor structure-activity relationships compared in human and nonhuman primates. Behav. Neurosci., 1999, 113(5), 998-1007.
[http://dx.doi.org/10.1037/0735-7044. 113.5.998] [PMID: 10571482]
[167]
Ohloff, G.; Pickenhagen, W.; Kraft, P. Scent and Chemistry The molecular world of Odors, 1st ed; Wiley-VCH, 2001.
[168]
Dravnieks, A. Current status of Odour Theories Flavour Chemistry. Adv. Chem., 1969, 56, 29-52.
[http://dx.doi.org/10.1021/ba-1966-0056.ch002]
[169]
Demole, E.; Wuest, H. Synthèses stéréosélectives de deuxtrioxydes C18H30O3 stéréoisomères, d’ambréinolide et sclaréol-lactone a partir de derives du (+)-manool. Helv. Chim. Acta, 1969, 50, 1314-1322.
[http://dx.doi.org/10.1002/hlca.19670500514]
[170]
Zhang, X.; Rogers, M.; Tian, H.; Zhang, X.; Zou, D.J.; Liu, J.; Ma, M.; Shepherd, G.M.; Firestein, S.J. High-throughput microarray detection of olfactory receptor gene expression in the mouse. Proc. Natl. Acad. Sci. USA, 2004, 101(39), 14168-14173.
[http://dx.doi.org/10.1073/pnas.0405350101] [PMID: 15377787]
[171]
Feldmesser, E.; Olender, T.; Khen, M.; Yanai, I.; Ophir, R.; Lancet, D. Widespread ectopic expression of olfactory receptor genes. BMC Genomics, 2006, 7, 121.
[http://dx.doi.org/10.1186/1471-2164-7-121] [PMID: 16716209]
[172]
Jones, F.N.; Margaret, H. Modern Theories of Olfaction, a Critical Review. J. Psychol., 1953, 36, 207-241.
[http://dx.doi.org/10. 1080/00223980.1953.9712890]
[173]
Bourgeois, A.E.; Bourgeois, J.O. Theories of Olfaction: A Review. Interam. J. Psychol., 2017, 19-31.
[174]
Wendt, G.R. Somesthesis and the chemical senses. Annu. Rev. Psychol., 1952, 3, 105-130.
[http://dx.doi.org/10.1146/annurev.ps. 03.020152.000541] [PMID: 12977187]
[175]
Moncrieff, R.W. The characterization of odours. J. Physiol., 1954, 125(3), 453-465.
[http://dx.doi.org/10.1113/jphysiol.1954.sp005172] [PMID: 13212711]
[176]
Amoore, J.E. Molecular Basis of Odor; C.C. Thomas Pub.: Springfield, 1970.
[177]
Davies, J.T.; Taylor, F.H. The role of adsorption and molecular morphology in olfaction; the calculation of olfactory thresholds. Biol. Bull., 1959, 117, 222-238.
[http://dx.doi.org/10.2307/1538902]
[178]
Wright, R.H. The Sense of Smell; CRC Press: Boca Raton, 1982.
[179]
Moncrieff, R.W. The Chemical Senses; Wiley: New York, 1946.
[180]
Gasser, H.S. Olfactory nerve fibers. J. Gen. Physiol., 1956, 39(4), 473-496.
[http://dx.doi.org/10.1085/jgp.39.4.473] [PMID: 13295549]
[181]
Beck, L.H.; Miles, W.R. Some theoretical and experimental relationships between infra-red absorption and olfaction. Science, 1947, 106, 511.
[PMID: 20340842]
[182]
Morgan, C.T.; Stellar, E. Physiological Psychology; McGraw- Hill: New York, 1950, pp. 109-116.
[183]
Leffingwell, J.C. Comment in Gustation and Olfaction; Academic Press: NY, 1971.
[184]
Langenau, E.E. Olfaction and Taste; Rockefeller University Press: New York, 1967, Vol. III, .
[185]
Wright, R.H. Odour and molecular vibration. Nature, 1961, 190, 1101-1102.
[http://dx.doi.org/10.1038/1901101a0] [PMID: 5921179]
[186]
Young, C.W.; Pletcher, D.E.; Wright, N. On olfaction and infrared radiation theories. Science, 1948, 108(2807), 411-412.
[http://dx.doi.org/10.1126/science.108.2807.411-a] [PMID: 17782696]
[187]
Stemp, E.D.; Barton, J.K. Electron transfer between metal complexes bound to DNA: is DNA a wire? Met. Ions Biol. Syst., 1996, 33, 325-365.
[PMID: 8742848]
[188]
Turin, L. A spectroscopic mechanism for primary olfactory reception. Chem. Senses, 1996, 21(6), 773-791.
[http://dx.doi.org/10. 1093/chemse/21.6.773] [PMID: 8985605]
[189]
Geldard, F.A. Somesthesis and the chemical senses. Annu. Rev. Psychol., 1950, 1, 71-86.
[http://dx.doi.org/10.1146/annurev.ps.01. 020150.000443] [PMID: 14771867]
[190]
Mullins, L.J. Olfaction. Ann. N. Y. Acad. Sci., 1955, 62, 247-276.
[http://dx.doi.org/10.1111/j.1749-6632.1955.tb35354.x]
[191]
Amoore, J.E. Stereochemical theory of olfaction. Nature, 1963, 198, 271-272.
[http://dx.doi.org/10.1038/198271a0] [PMID: 14012641]
[192]
Topiol, S.; Sabio, M. X-ray structure breakthroughs in the GPCR transmembrane region. Biochem. Pharmacol., 2009, 78(1), 11-20.
[http://dx.doi.org/10.1016/j.bcp.2009.02.012] [PMID: 19447219]
[193]
Crasto, C.J. Computational Biology of Olfactory Receptors. Curr. Bioinform., 2009, 4(1), 8-15.
[http://dx.doi.org/10.2174/157489309787158143] [PMID: 21984880]
[194]
Peng, Y.; McCorvy, J.D.; Harpsøe, K.; Lansu, K.; Yuan, S.; Popov, P.; Qu, L.; Pu, M.; Che, T.; Nikolajsen, L.F.; Huang, X.P.; Wu, Y.; Shen, L.; Bjørn-Yoshimoto, W.E.; Ding, K.; Wacker, D.; Han, G.W.; Cheng, J.; Katritch, V.; Jensen, A.A.; Hanson, M.A.; Zhao, S.; Gloriam, D.E.; Roth, B.L.; Stevens, R.C.; Liu, Z.J. 5-HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell, 2018, 172(4), 719-730.e14.
[http://dx.doi.org/ 10.1016/j.cell.2018.01.001] [PMID: 29398112]
[195]
Wang, S.; Che, T.; Levit, A.; Shoichet, B.K.; Wacker, D.; Roth, B.L. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 2018, 555(7695), 269-273.
[http://dx.doi.org/10.1038/nature25758] [PMID: 29466326]
[196]
Yang, Z.; Han, S.; Keller, M.; Kaiser, A.; Bender, B.J.; Bosse, M.; Burkert, K.; Kögler, L.M.; Wifling, D.; Bernhardt, G.; Plank, N.; Littmann, T.; Schmidt, P.; Yi, C.; Li, B.; Ye, S.; Zhang, R.; Xu, B.; Larhammar, D.; Stevens, R.C.; Huster, D.; Meiler, J.; Zhao, Q.; Beck-Sickinger, A.G.; Buschauer, A.; Wu, B. Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor. Nature, 2018, 556(7702), 520-524.
[http://dx.doi.org/10.1038/s41586-018-0046-x] [PMID: 29670288]
[197]
Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C.A.; Motoshima, H.; Fox, B.A.; Le Trong, I.; Teller, D.C.; Okada, T.; Stenkamp, R.E.; Yamamoto, M.; Miyano, M. Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 2000, 289(5480), 739-745.
[http://dx.doi.org/10.1126/science.289.5480.739] [PMID: 10926528]
[198]
Teller, D.C.; Okada, T.; Behnke, C.A.; Palczewski, K.; Stenkamp, R.E. Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry, 2001, 40(26), 7761-7772.
[http://dx.doi.org/10.1021/bi0155091] [PMID: 11425302]
[199]
Cherezov, V.; Rosenbaum, D.M.; Hanson, M.A.; Rasmussen, S.G.; Thian, F.S.; Kobilka, T.S.; Choi, H.J.; Kuhn, P.; Weis, W.I.; Kobilka, B.K.; Stevens, R.C. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science, 2007, 318(5854), 1258-1265.
[http://dx.doi.org/10.1126/science.1150577] [PMID: 17962520]
[200]
Rasmussen, S.G.; Choi, H.J.; Rosenbaum, D.M.; Kobilka, T.S.; Thian, F.S.; Edwards, P.C.; Burghammer, M.; Ratnala, V.R.; Sanishvili, R.; Fischetti, R.F.; Schertler, G.F.; Weis, W.I.; Kobilka, B.K. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature, 2007, 450(7168), 383-387.
[http://dx.doi.org/10.1038/nature06325] [PMID: 17952055]
[201]
Strader, C.D.; Fong, T.M.; Tota, M.R.; Underwood, D.; Dixon, R.A.F. Structure and function of G protein-coupled receptors. Annu. Rev. Biochem., 1994, 63, 101-132.
[http://dx.doi.org/10. 1146/annurev.bi.63.070194.000533] [PMID: 7979235]
[202]
Shacham, S.; Topf, M.; Avisar, N.; Glaser, F.; Marantz, Y.; Bar-Haim, S.; Noiman, S.; Naor, Z.; Becker, O.M. Modeling the 3D structure of GPCRs from sequence. Med. Res. Rev., 2001, 21(5), 472-483.
[http://dx.doi.org/10.1002/med.1019] [PMID: 11579443]
[203]
Vaidehi, N.; Floriano, W.B.; Trabanino, R.; Hall, S.E.; Freddolino, P.; Choi, E.J.; Zamanakos, G.; Goddard, W.A., III Prediction of structure and function of G protein-coupled receptors. Proc. Natl. Acad. Sci. USA, 2002, 99(20), 12622-12627.
[http://dx.doi.org/ 10.1073/pnas.122357199] [PMID: 12351677]
[204]
Eisenberg, D.; Weiss, R.M.; Terwilliger, T.C. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc. Natl. Acad. Sci. USA, 1984, 81(1), 140-144.
[http://dx.doi.org/10.1073/pnas.81.1.140] [PMID: 6582470]
[205]
Floriano, W.B.; Vaidehi, N.; Goddard, W.A., III; Singer, M.S.; Shepherd, G.M. Molecular mechanisms underlying differential odor responses of a mouse olfactory receptor. Proc. Natl. Acad. Sci. USA, 2000, 97(20), 10712-10716.
[http://dx.doi.org/10.1073/pnas.97.20.10712] [PMID: 11005853]
[206]
Floriano, W.B.; Nagarajan, V.; Goddard, W.A., III Methods and apparatus for predicting ligand binding interactions. U.S. Patent Application (California Institute of Technology reference number CIT 3192), November 30, 2001
[207]
Datta, D.; Vaidehi, N.; Xu, X.; Goddard, W.A., III Mechanism for antibody catalysis of the oxidation of water by singlet dioxygen. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 2636-2641.
[http://dx.doi.org/10.1073/pnas.052709399] [PMID: 11880618]
[208]
Anselmi, C.; Buonocore, A.; Centini, M.; Facino, R.M.; Hatt, H. The human olfactory receptor 17-40: requisites for fitting into the binding pocket. Comput. Biol. Chem., 2011, 35(3), 159-168.
[http://dx.doi.org/10.1016/j.compbiolchem.2011.04.011] [PMID: 21704262]
[209]
Lai, P.C.; Singer, M.S.; Crasto, C.J. Structural activation pathways from dynamic olfactory receptor-odorant interactions. Chem. Senses, 2005, 30(9), 781-792.
[http://dx.doi.org/10.1093/chemse/bji070] [PMID: 16243965]
[210]
Lai, P.C.; Crasto, C.J. Beyond modeling: all-atom olfactory receptor model simulations. Front. Genet., 2012, 3, 61.
[http://dx.doi.org/10.3389/fgene.2012.00061] [PMID: 22563330]
[211]
Lai, P.C.; Guida, B.; Shi, J.; Crasto, C.J. Preferential binding of an odor within olfactory receptors: a precursor to receptor activation. Chem. Senses, 2014, 39(2), 107-123.
[http://dx.doi.org/10.1093/chemse/bjt060] [PMID: 24398973]
[212]
Liu, N.; Crasto, C.J.; Ma, M. Integrated olfactory receptor and microarray gene expression databases. BMC Bioinformatics, 2007, 8, 231.
[http://dx.doi.org/10.1186/1471-2105-8-231] [PMID: 17603910]
[213]
mdl.shsmu.edu.cn/ODORactor (Accessed on July 30, 2018)
[214]
Modena, D. Trentini, M.; Corsini, M.; Bombaci, A.; Giorgetti, A. Olfaction D.B: A database of olfactory receptors and their ligands. Adv. Life Sci., 2011, 1, 1-5.
[http://dx.doi.org/10.5923/j.als. 20110101.01]
[215]
Olender, T.; Nativ, N.; Lancet, D. HORDE: Comprehensive resource for olfactory receptor genomics. Methods Mol. Biol., 2013, 1003, 23-38.
[http://dx.doi.org/10.1007/978-1-62703-377-0_2] [PMID: 23585031]
[216]
Liu, X.; Su, X.; Wang, F.; Huang, Z.; Wang, Q.; Li, Z.; Zhang, R.; Wu, L.; Pan, Y.; Chen, Y.; Zhuang, H.; Chen, G.; Shi, T.; Zhang, J. ODO Ractor: a web server for deciphering olfactory coding. Bioinformatics, 2011, 27(16), 2302-2303.
[http://dx.doi.org/10.1093/bioinformatics/btr385] [PMID: 21700676]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 9
Year: 2019
Page: [891 - 911]
Pages: 21
DOI: 10.2174/1570159X17666181206095626
Price: $58

Article Metrics

PDF: 22
HTML: 2