Nanostructured Anodic Oxides: Fabrication & Applications

Author(s): Wojciech J. Stępniowski.

Journal Name: Current Nanoscience

Volume 15 , Issue 1 , 2019

Become EABM
Become Reviewer

[1]
Kim, M.; Yoo, H.; Choi, J. Non-nickel-based sealing of anodic porous aluminum oxide in NaAlO2. Surf. Coat. Technol., 2017, 310, 106-112.
[2]
Kozhukharov, S.; Girginov, Ch.; Avramova, I.; Machkova, M. Anodic galvanostatic polarization of AA2024-T3 aircraft alloy in conventional mineral acids. Mater. Chem. Phys., 2016, 180, 301-313.
[3]
Priet, B.; Odemer, G.; Blanc, V.; Giffard, K.; Arurault, L. Effect of new sealing treatments on corrosion fatigue lifetime of anodized 2024 aluminium alloy. Surf. Coat. Technol., 2016, 307, 206-219.
[4]
van Put, M.A.; Abrahami, S.T.; Elisseeva, O.; de Kok, J.M.M.; Mola, J.M.C.; Terryn, H. Potentiodynamic anodizing of aluminum alloys in Cr(VI)-free electrolytes. Surf. Interface Anal., 2016, 48, 946-952.
[5]
Girginov, Ch.; Kozhukharov, S.; Milanes, M.; Machkova, M. Impact of the anodizing duration on the surface morphology and performance of A2024-T3 in a model corrosive medium. Mater. Chem. Phys., 2017, 198, 137-144.
[6]
Abrahami, S.T.; Hauffman, T.; de Kok, J.M.M.; Mol, J.M.C.; Terryn, H. Effect of anodic aluminum oxide chemistry on adhesive bonding of epoxy. J. Phys. Chem. C, 2016, 120, 19670-19677.
[7]
Lee, C.; Oh, K.; Lee, D.; Kim, Y.; Yoon, H.; Park, D.W.; Kim, M.G.; Lee, K.; Choi, J. Self-sealing anodization approach to enhance micro-Vickers hardness and corrosion protection of a die cast Al alloy. J. Phys. Chem. Solids, 2017, 103, 87-94.
[8]
Tsyntsaru, N.; Kavas, B.; Sort, J.; Urgen, M.; Celis, J.P. Mechanical and frictional behaviour of nano-porous anodized aluminium. Mater. Chem. Phys., 2014, 148, 887-895.
[9]
Kikuchi, T.; Takenaga, A.; Natsui, S.; Suzuki, R.O. Advanced hard anodic alumina coatings via etidronic acid anodizing. Surf. Coat. Technol., 2017, 326, 72-78.
[10]
Ramana Reddy, P.; Ajith, K.M.; Udayashankar, N.K. Micro and nano indentation analysis of porous anodic alumina prepared in oxalic and sulphuric acid. Ceram. Int., 2016, 42, 17806-17813.
[11]
Kikuchi, T.; Nakajima, D.; Nishinaga, O.; Natsui, S.; Suzuki, R.O. Porous aluminum oxide formed by anodizing in various electrolyte species. Curr. Nanosci., 2015, 11, 560-571.
[12]
Nowak-Stępniowska, A. A review of quantitative arrangement analysis methods applied to nanostructured anodic oxides characterization. Curr. Nanosci., 2015, 11, 581-592.
[13]
Belwalkar, A.; Grasing, E.; Van Geertruyden, W.; Huang, Z.; Misiolek, W.Z. Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. J. Membr. Sci., 2008, 319, 192-198.
[14]
Sepúlveda, M.; Castaño, J.G.; Echeverría, F. Influence of temperature and time on the fabrication of self-ordering porous alumina by anodizing in etidronic acid. Appl. Surf. Sci., 2018, 454, 210-217.
[15]
Choudhari, K.S.; Kulkarni, S.D.; Santhosh, C.; George, S.D. Photoluminescence enhancement and morphological properties of nanoporous anodic alumina prepared in oxalic acid with varying time and temperature. Microporous Mesoporous Mater., 2018, 271, 138-145.
[16]
Vrublevsky, I.; Ispas, A.; Chernyakova, K.; Bund, A. Effect of continuous magnetic field on the growth mechanism of nanoporous anodic alumina films on different substrates. J. Solid State Electrochem., 2016, 20, 2765-2772.
[17]
Stȩpniowski, W.J.; Moneta, M.; Norek, M.; Michalska-Domańska, M.; Scarpellini, A.; Salerno, M. The influence of electrolyte composition on the growth of nanoporous anodic alumina. Electrochim. Acta, 2016, 211, 453-460.
[18]
Mebed, A.M.; Abd-Elnaiem, A.M.; Al-Hosiny, N.M. Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates. Appl. Phys., A Mater. Sci. Process., 2016, 122, 565.
[19]
Mezni, A.; Altalhi, T.; Saber, N.B.; Aldalbahi, A.; Boulehmi, S.; Santos, A.; Losic, D. Size- and shape-controlled synthesis of well-organised carbon nanotubes using nanoporous anodic alumina with different pore diameters. J. Colloid Interface Sci., 2017, 491, 375-389.
[20]
Tsyntsaru, N.; Silkin, S.; Cesiulis, H.; Guerrero, M.; Pellicer, E.; Sort, J. Toward uniform electrodeposition of magnetic Co-W mesowires arrays: Direct versus pulse current deposition. Electrochim. Acta, 2016, 188, 589-601.
[21]
Stepniowski, W.J.; Moneta, M.; Karczewski, K.; Michalska-Domanska, M.; Czujko, T.; Mol, J.M.C.; Buijnsters, J.G. Fabrication of copper nanowires via electrodeposition in anodic aluminum oxide templates formed by combined hard anodizing and electrochemical barrier layer thinning. J. Electroanal. Chem., 2018, 809, 59-66.
[22]
Norek, M.; Putkonen, M.; Zaleszczyk, W.; Budner, B.; Bojar, Z. Morphological, structural and optical characterization of SnO2 nanotube arrays fabricated using anodic alumina (AAO) template-assisted atomic layer deposition. Mater. Charact., 2018, 136, 52-59.
[23]
Norek, M.; Krasiński, A. Controlling of water wettability by structural and chemical modification of porous anodic alumina (PAA): Towards super-hydrophobic surfaces. Surf. Coat. Technol., 2014, 276, 464-470.
[24]
Suchitra, S.M.; Ramana Reddy, P.; Udayashankar, N.K. Structural and wetting properties of porous anodic alumina templates prepared by different electrolytes. AIP Conf. Proc., 2016, 1728, 020407.
[25]
Giffard, K.; Arurault, L.; Blanc, C. Dynamic measurements and wettability phenomena in mesoporous anodic films prepared on 1050 and 2024T3 aluminium alloys. Microporous Mesoporous Mater., 2016, 235, 32-41.
[26]
Kondo, R.; Nakajima, D.; Kikuchi, T.; Natsui, S.; Suzuki, R.O. Superhydrophilic and superhydrophobic aluminum alloys fabricated via pyrophosphoric acid anodizing and fluorinated SAM modification. J. Alloys Compd., 2017, 725, 379-387.
[27]
Nakajima, D.; Kikuchi, T.; Natsui, S.; Suzuki, R.O. Mirror-finished superhydrophobic aluminum surfaces modified by anodic alumina nanofibers and self-assembled monolayers. Appl. Surf. Sci., 2018, 440, 506-513.
[28]
Casey, M.E.; Ventura, A.P.; Misiolek, W.Z.; Jedlicka, S. Anodic Aluminum Oxide (AAO) membranes for neurite outgrowth. Mater. Res. Soc. Symp. Proc., 2012, 1498, 97-102.
[29]
Toccafondi, C.; Dante, S.; Reverberi, A.P.; Salerno, M. Biomedical applications of anodic porous alumina. Curr. Nanosci., 2015, 11, 572-580.
[30]
Wierzbicka, E.; Sulka, G.D. Fabrication of highly ordered nanoporous thin Au films and theirapplication for electrochemical determination of epinephrine. Sens. Actuators B., 2016, 222, 270-279.
[31]
Law, C.S.; Sylvia, G.M.B.; Nemati, M.; Yu, J.; Losic, D.; Abell, A.D.; Santos, A. Engineering of surface chemistry for enhanced sensitivity in nanoporous interferometric sensing platforms. ACS Appl. Mater. Interfaces, 2017, 9, 8929-8940.
[32]
Kikuchi, T.; Nishinaga, O.; Natsui, S.; Suzuki, R.O. Fabrication of self-ordered porous alumina via etidronic acid anodizing and structural color generation from submicrometer-scale dimple array. Electrochim. Acta, 2015, 156, 235-243.
[33]
Suchitra, S.M.; Udayashankar, N.K. Synthesis and photocatalytic properties of graphitic carbon nitride nanofibers using porous anodic alumina templates. Mater. Res. Express, 2017, 4, 124001.
[34]
El-Said, W.A.; Abdel-Shakour, M.; Abd-Elnaiem, A.M. An efficient and low-cost photoanode for backside illuminated dye-sensitized solar cell using 3D porous alumina. Mater. Lett., 2018, 222, 126-130.
[35]
Goszczak, A.J.; Adam, J.; Cielecki, P.P.; Fiutowski, J.; Rubahn, H-G.; Madsen, M. Nanoscale aluminum concaves for light-trapping in organic thin-films. Opt. Commun., 2016, 370, 135-139.
[36]
Bendova, M.; Gispert-Guirado, F.; Hassel, A.W.; Llobet, E.; Mozalev, A. Solar water splitting on porous-alumina-assisted TiO2-doped WOx nanorod photoanodes: Paradoxes and challenges. Nano Energy, 2017, 33, 72-87.
[37]
Lim, S.Y.; Law, C.S.; Marsal, L.F.; Santos, A. Engineering of hybrid nanoporous anodic alumina photonic crystals by heterogeneous pulse anodization. Sci. Rep., 2018, 8, 9455.
[38]
Norek, M.; Łuka, G.; Włodarski, M. Plasmonic enhancement of UV emission from ZnO thin films inducedby Al nano-concave arrays. Appl. Surf. Sci., 2016, 384, 18-26.
[39]
Mohammadpour, A.; Kar, P.; Wiltshire, B.D.; Askar, A.M.; Shankar, K. Electron transport, trapping and recombination in anodic TiO2 nano-tube arrays. Curr. Nanosci., 2015, 11, 593-614.
[40]
Stróz, A.; Dercz, G.; Chmiela, B.; Stróz, D.; Łosiewicz, B. Electrochemical formation of second generation TiO2 nanotubes on Ti13Nb13Zr alloy for biomedical applications. Acta Phys. Pol. A, 2016, 130, 1079-1080.
[41]
Pawlik, A.; Socha, R.P.; Hubalek Kalbacova, M.; Sulka, G.D. Surface modification of nanoporous anodic titanium dioxide layers for drug delivery systems and enhanced SAOS-2 cell response. Colloids Surf. B Biointerfaces, 2018, 171, 58-66.
[42]
Michalska-Domańska, M.; Nyga, P.; Czerwiński, M. Ethanol-based electrolyte for nanotubular anodic TiO2 formation. Corros. Sci., 2018, 134, 99-102.
[43]
Yoo, H.; Oh, K.; Lee, Y.R.; Row, K.H.; Lee, G.; Choi, J. Simultaneous co-doping of RuO2 and IrO2 into anodic TiO2 nanotubes: A binary catalyst for electrochemical water splitting. Int. J. Hydrogen Energy, 2017, 42, 6657-6664.
[44]
Paulose, M.; Shankar, K.; Varghese, O.K.; Mor, G.K.; Hardin, B.; Grimes, C.A. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology, 2006, 17, 1446-1448.
[45]
Kar, P.; Farsinezhad, S.; Mahdi, N.; Zhang, Y.; Obuekwe, U.; Sharma, H.; Shen, J.; Semagina, N.; Shankar, K. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Res., 2016, 9, 3478-3493.
[46]
Kikuchi, T.; Kawashima, J.; Natsui, S.; Suzuki, R.O. Fabrication of porous tungsten oxide via anodizing in an ammonium nitrate/ethylene glycol/water mixture for visible light-driven photocatalyst. Appl. Surf. Sci., 2017, 422, 130-137.
[47]
Trivinho-Strixino, F.; Da Silva, D.X.; Paiva-Santos, C.O.; Pereira, E.C. Tetragonal to monoclinic phase transition observed during Zr anodization. J. Solid State Electrochem., 2013, 17, 191-199.
[48]
Wierzbicka, E.; Syrek, K.; Sulka, G.D.; Pisarek, M.; Janik-Czachor, M. The effect of foil purity on morphology of anodized nanoporous. Appl. Surf. Sci., 2016, 388, 799-804.
[49]
Stępniowski, W.J.; Misiołek, W.Z. Review of fabrication methods, physical properties, and applications of nanostructured copper oxides formed via electrochemical oxidation. Nanomaterials., 2018, 8(6), 379.
[50]
Stepniowski, W.J.; Stojadinović, S.; Vasilić, R.; Tadić, N.; Karczewski, K.; Abrahami, S.T.; Buijnsters, J.G.; Mol, J.M.C. Morphology and photoluminescence of nanostructured oxides grown by copper passivation in aqueous potassium hydroxide solution. Mater. Lett., 2017, 198, 89-92.
[51]
Zhang, Z.; Wang, P. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem., 2012, 22, 2456-2464.
[52]
Pawlik, A.; Hnida, K.; Socha, R.P.; Wiercigroch, E.; Małek, K.; Sulka, G.D. Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron. Appl. Surf. Sci., 2017, 426, 1084-1093.
[53]
Zaraska, L.; Gawlak, K.; Gilek, D.; Sulka, G.D. Electrochemical growth of multisegment nanoporous tin oxide layers by applying periodically changed anodizing potential. Appl. Surf. Sci., 2018, 455, 1005-1009.
[54]
Zaraska, L.; Mika, K.; Syrek, K.; Sulka, G.D. Formation of ZnO nanowires during anodic oxidation of zinc in bicarbonate electrolytes. J. Electroanal. Chem., 2017, 801, 511-520.
[55]
Klimas, V.; Pakštas, V.; Vrublevsky, I.; Chernyakova, K.; Jagminas, A. Fabrication and characterization of anodic films onto the type-304 stainless steel in glycerol electrolyte. J. Phys. Chem. C, 2013, 117, 20730-20737.
[56]
Chilimoniuk, P.; Michalska-Domańska, M.; Stępniowski, W.J.; Czujko, T. Formation of nanoporous oxide by self-organized anodizing of FeAl intermetallic alloy in oxalic acid solution containing glycol. Mater. Lett., 2018, 224, 9-12.
[57]
Stepniowski, W.J.; Choi, J.; Yoo, H.; Oh, K.; Michalska-Domańska, M.; Chilimoniuk, P.; Czujko, T.; Łyszkowski, R.; Jóźwiak, S.; Bojar, Z.; Losic, D. Anodization of FeAl intermetallic alloys for bandgap tunable nanoporous mixed aluminum-iron oxide. J. Electroanal. Chem., 2016, 771, 37-44.
[58]
Sepúlveda, M.; Castaño, J.G.; Echeverría, F. Fabrication of highly-ordered TiO2 nanocolumns by two-step anodizing of an Al/Ti layer in etidronic acid. Mater. Chem. Phys., 2018, 216, 51-57.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 1
Year: 2019
Page: [3 - 5]
Pages: 3
DOI: 10.2174/157341371501181205103558

Article Metrics

PDF: 24
HTML: 3