Green Silver Nanoparticles Confined in Monolithic Silica Disk-packed Spin Column for Human Serum Albumin Preconcentration

Author(s): Eman Alzahrani*.

Journal Name: Current Analytical Chemistry

Volume 15 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: In recent times many new uses have been found for nanomaterials that have undergone homogenous immobilization within porous supports. For this paper, immobilization of SNPs on a thiol-functionalized silica monolith using a fast, easy, environmentally friendly and costeffective process was performed. This was achieved by modifying the surface of a silica-based monolith using thiol groups, and then we fabricated green SNPs in situ, reducing an inorganic precursor silver nitrate solution (AgNO3) by employing tangerine peel extract as a reducing reagent, with Ag-thiol bonds forming along the monument. Doing this allows monoliths to be prepared in such a way that, as TEM analysis demonstrated, SNPs are evenly distributed along the rod's length. Once the materials had been fabricated, they were employed as a sorbent by being placed in a centrifuge. The SNP-thiol functionalized silica monolith was then tested using a standard protein (HSA).

Methods: The process involves creating monolithic materials by employing a two-part sol-gel technique before modifying the surface of the silica-based monolith using thiol groups for hosting purposes. Homogenous surface coverage was achieved through the use of a non-toxic "green" reducing reagent (tangerine peel extract) to reduce a silver nitrate solution in place to create SNPs joined to the pore surface of a thiol-functionalized silica monolith, employing bonds of Ag-thiol. Once these materials were synthesized, they were classified by utilizing a number of methods based on SEM coupled with EDAX, TEM, AFM and BET analysis. The silica-based monolith, embedded with constructed SNPs, was employed as a sorbent in the preconcentration of human serum albumin (HSA).

Results: The performance of the fabricated materials was measured against a silica-based monolith with no SNPs. Also, a silica monolith with constructed SNPs embedded was employed to capture HSA within a sample of human urine mixed with a double detergent concentrate (SDS). Such a monolith containing functionalized SNPs can be a highly effective sorbent for preconcentration of proteins in complex samples.

Conclusion: It was shown to have superior performance compared to a bare silica-based monolith. Additionally, it was shown that a monolithic column modified by SNPs could preconcentrate spiked HSA in urine samples.

Keywords: Green silver nanoparticles, HSA, preconcentration, silica monolith, sorbent media, urine samples.

[1]
Gaweł, B.; Gaweł, K.; Øye, G. Sol-gel synthesis of non-silica monolithic materials. Materials, 2010, 3(4), 2815-2833.
[2]
Svec, F.; Huber, C.G. Monolithic materials: promises, challenges, achievements; ACS Publications: Washington, 2006.
[3]
González, M.G.; Valdez, J.G. Deloisa, K.M.; Palomares, M.R. Monolithic chromatography: Insights and practical perspectives. J. Chem. Technol. and Biotechnol., 2017, 92(1), 9-13.
[4]
Wu, M.; Wu, R.; Zhang, Z.; Zou, H. Preparation and application of organic silica hybrid monolithic capillary columns. Electrophoresis, 2011, 32(1), 105-115.
[5]
Wu, R.; Hu, L.; Wang, F.; Ye, M.; Zou, H. Recent development of monolithic stationary phases with emphasis on microscale chromatographic separation. J. Chromatogr. A, 2008, 1184(1-2), 369-392.
[6]
Mallik, R.; Hage, D.S. Development of an affinity silica monolith containing human serum albumin for chiral separations. J. Pharm. Biomed. Anal., 2008, 46(5), 820-830.
[7]
Pfaunmiller, E.L.; Paulemond, M.L.; Dupper, C.M.; Hage, D.S. Affinity monolith chromatography: a review of principles and recent analytical applications. Anal. Bioanal. Chem., 2013, 405(7), 2133-2145.
[8]
Nema, T.; Chan, E.; Ho, P. Application of silica-based monolith as solid phase extraction cartridge for extracting polar compounds from urine. Talanta, 2010, 82(2), 488-494.
[9]
Mendil, D.; Bardak, H.; Tuzen, M.; Soylak, M. Selective speciation of inorganic antimony on tetraethylenepentamine bonded silica gel column and its determination by graphite furnace atomic absorption spectrometry. Talanta, 2013, 107, 162-166.
[10]
Fan, H.T.; Sun, Y.; Tang, Q.; Li, W.L.; Sun, T. Selective adsorption of antimony (III) from aqueous solution by ion-imprinted organic-inorganic hybrid sorbent: kinetics, isotherms and thermodynamics. J. Taiwan Inst. Chem. Eng., 2014, 45(5), 2640-2648.
[11]
Fan, H.T.; Tang, Q.; Sun, Y.; Zhang, Z.G.; Li, W.X. Selective removal of antimony (III) from aqueous solution using antimony (III)-imprinted organic-inorganic hybrid sorbents by combination of surface imprinting technique with sol-gel process. Chem. Eng. J., 2014, 258, 146-156.
[12]
Fan, H.T.; Sun, W.; Jiang, B.; Wang, Q.J.; Li, D.W.; Huang, C.C.; Wang, K.J.; Zhang, Z.G. Li, W.X. Adsorption of antimony (III) from aqueous solution by mercapto-functionalized silica-supported organic-inorganic hybrid sorbent: Mechanism insights. Chem. Eng. J., 2016, 286, 128-138.
[13]
Ou, J.; Liu, Z.; Wang, H.; Lin, H.; Dong, J.; Zou, H. Recent development of hybrid organic‐silica monolithic columns in CEC and capillary LC. Electrophoresis, 2015, 36(1), 62-75.
[14]
Park, C.; La, Y.; An, T.H.; Jeong, H.Y.; Kang, S.; Joo, S.H.; Ahn, H.; Shin, T.J.; Kim, K.T. Mesoporous monoliths of inverse bicontinuous cubic phases of block copolymer bilayers. Nat. Comm., 2015, 6, 1-9.
[15]
Xu, S.; Mo, R.; Jin, C.; Cui, X.; Bai, R.; Ji, Y. Mesoporous silica nanoparticles incorporated hybrid monolithic stationary phase immobilized with pepsin for enantioseparation by capillary electrochromatography. J. Pharma. Biomed. Anal., 2017, 140, 190-198.
[16]
Cerretani, L.; Lerma-García, M.J.; Herrero-Martínez, J.M.; Gallina-Toschi, T.; Simó-Alfonso, E.F. Determination of tocopherols and tocotrienols in vegetable oils by nanoliquid chromatography with ultraviolet- visible detection using a silica monolithic column. J. Agricul. Food Chem., 2009, 58(2), 757-761.
[17]
Puy, G.; Roux, R.; Demesmay, C.; Rocca, J.L.; Iapichella, J.; Galarneau, A.; Brunel, D. Influence of the hydrothermal treatment on the chromatographic properties of monolithic silica capillaries for nano-liquid chromatography or capillary electrochromatography. J. Chromatogr. A, 2007, 1160(1-2), 150-159.
[18]
Acquah, C.; Obeng, E.M.; Agyei, D.; Orc, I.D.; Ongkudon, C.M.; Moy, C.M.; Danquah, M.K. Nano-doped monolithic materials for molecular separation. Separations, 2017, 4(1), 2-22.
[19]
Tian, J.; Xu, J.; Zhu, F.; Lu, T.; Su, C.; Ouyang, G. Application of nanomaterials in sample preparation. J. Chromatogr. A, 2013, 1300, 2-16.
[20]
Liu, J.; White, I.; DeVoe, D.L. Nanoparticle-functionalized porous polymer monolith detection elements for surface-enhanced Raman scattering. Anal. Chem., 2011, 83(6), 2119-2124.
[21]
Cala, B.F.; Cárdenas, S. Potential of nanoparticle-based hybrid monoliths as sorbents in microextraction techniques. Anal. Chim. Acta, 2018, 1031, 15-27.
[22]
Lv, Y.; Alejandro, F.M.; Fréchet, J.M.; Svec, F. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles. J. Chromatogr. A, 2012, 1261, 121-128.
[23]
Yu, H.; Zhu, Y.; Yang, H.; Nakanishi, K.; Kanamori, K.; Guo, X. Facile preparation of silver nanoparticles homogeneously immobilized in hierarchically monolithic silica using ethylene glycol as reductant. Dalton Transact., 2014, 43(33), 12648-12656.
[24]
Terborg, L.; Masini, J.C.; Lin, M.; Lipponen, K.; Riekolla, M.L.; Svec, F. Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase-ion exchange mixed mode. J. Adv. Res., 2015, 6(3), 441-448.
[25]
Connolly, D.; Twamley, B.; Paull, B. High-capacity gold nanoparticle functionalised polymer monoliths. Chem. Comm., 2010, 46(12), 2109-2111.
[26]
Barberán, M.V.; García, M.J.; Alfonso, E.F.; Martínez, J.M. Polymeric sorbents modified with gold and silver nanoparticles for solid-phase extraction of proteins followed by MALDI-TOF analysis. Microchim. Acta, 2017, 184(6), 1683-1690.
[27]
Sun, J.; Ma, D.; Zhang, H.; Liu, X.; Han, X.; Bao, X.; Weinberg, G.; Pfänder, N.; Su, D. Toward monodispersed silver nanoparticles with unusual thermal stability. J. American. Chem. Soc., 2006, 128(49), 15756-15764.
[28]
Zhu, Y. Morisato, Kei.; Li, W.; Kanamori, K.; Nakanishi, K. Synthesis of silver nanoparticles confined in hierarchically porous monolithic silica: a new function in aromatic hydrocarbon separations. ACS Appl. Mat. Inter, 2013, 5(6), 2118-2125.
[29]
Poupart, R.; Droumaguet, B.; Guerrouache, M.; Grande, D.; Carbonnier, B. Gold nanoparticles immobilized on porous monoliths obtained from disulfide-based dimethacrylate: Application to supported catalysis. Polymer, 2017, 126, 455-462.
[30]
Xu, Y.; Cao, Q.; Svec, F.; Fréchet, J.M. Porous polymer monolithic column with surface-bound gold nanoparticles for the capture and separation of cysteine-containing peptides. Anal. Chem., 2010, 82(8), 3352-3358.
[31]
Jiang, Q.; Zeng, T.; Yang, S.; Chen, Q.; Chen, L.; Ye, Y.; Zhou, J.; Xu, S. On-column enrichment and surface-enhanced Raman scattering detection in nanoparticles functionalized porous capillary monolith. Spectr. Acta Part A: Mol. Bio. Spectr., 2015, 141, 244-251.
[32]
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharma. Sci., 2014, 9(6), 385-406.
[33]
Shahriary, M.; Veisi, H.; Hekmati, M.; Hemmati, S. In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Mat. Sci. Eng., 2018, 90, 57-66.
[34]
Alotaibi, M.T.; Taylor, M.J.; Liu, D.; Beaumont, S.K.; Kyriakou, G. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors. Sur. Sci., 2016, 646, 179-185.
[35]
Alzahrani, E.; Welham, K. Design and evaluation of synthetic silica-based monolithic materials in shrinkable tube for efficient protein extraction. Analyst, 2011, 136(20), 4321-4327.
[36]
Alzahrani, E.; Welham, K. Fabrication of an octadecylated silica monolith inside a glass microchip for protein enrichment. Analyst, 2012, 137(20), 4751-4759.
[37]
Alzahrani, E.; Welham, K. Preconcentration of milk proteins using octadecylated monolithic silica microchip. Anal. Chim. Acta, 2013, 798, 40-47.
[38]
Alzahrani, E. Extraction of non-steroidal anti-inflammatory drugs using an octyl-hybrid silica monolith. research J of Pharma Bio and Chem. Sci., 2016, 7(3), 158-168.
[39]
Alzahrani, E. Eco-friendly production of silver nanoparticles from peel of tangerine for degradation of dye. World J. Nano Sci. Eng., 2015, 5(01), 10-16.
[40]
Barberán, M.V.; García, M.J.; Alfonso, E.F.; Martínez, J.M. Solid-phase extraction based on ground methacrylate monolith modified with gold nanoparticles for isolation of proteins. Anal. Chim. Acta, 2016, 917(Supplement. C), 37-43.
[41]
Saito, T.; Yamamoto, R.; Inoue, S.; Kishiyama, I.; Miyazaki, S.; Nakamoto, A.; Nishida, M.; Namera, A.; Inokuchi, S. Simultaneous determination of amitraz and its metabolite in human serum by monolithic silica spin column extraction and liquid chromatography-mass spectrometry. J. Chromatog. B, 2008, 867(1), 99-104.
[42]
Nakamoto, A.; Nishida, M.; Saito, T.; Kishiyama, I.; Miyazaki, S.; Murakami, K.; Nagao, M.; Namura, A. Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3, 4-methylenedioxyamphetamines in human urine for gas chromatographic-mass spectrometric detection. Anal. Chim. Acta, 2010, 661(1), 42-46.
[43]
Tsunoda, M.; Aoyama, C.; Ota, S.; Tamura, T.; Funatsu, T. Extraction of catecholamines from urine using a monolithic silica disk-packed spin column and high-performance liquid chromatography-electrochemical detection. Anal. Methods, 2011, 3(3), 582-585.
[44]
Alzahrani, E. Colorimetric Detection Based on Localised Surface Plasmon Resonance Optical Characteristics for the Detection of Hydrogen Peroxide Using Acacia Gum-Stabilised Silver Nanoparticles. Anal. Chem. Insights, 2017, 12, 1-10.
[45]
Sarsar, V.; Selwal, K.K.; Selwal, M.K. Green synthesis of silver nanoparticles using leaf extract of Mangifera indica and evaluation of their antimicrobial activity. J. Micro. Biotech. Res., 2017, 3(5), 27-32.
[46]
Ding, X.; Liow, C.H.; Zhang, M.; Huang, R.; Li, C.; Shen, H.; Liu, M.; Zou, Y.; Gao, N.; Zhang, Z.; Li, Y.; Wang, Q.; Li, S.; Jiang, J. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc., 2014, 136(44), 15684-15693.
[47]
Bose, D.; Chatterjee, S. Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Appl. Nano., 2016, 6(6), 895-901.
[48]
Yadav, S.G.; Patil, S.H.; Patel, P.; Nair, V.; Khan, S.; Kakkar, S.; Gupta, A.D. Green synthesis of silver nanoparticles from plant sources and evaluation of their antimicrobial activity. Inter. J. Sci. Res. Sci. Technol., 2018, 5(4), 133-139.
[49]
Veith, G.M.; Lupini, A.R.; Rashkeev, S.; Pennycook, S.J.; Mullins, D.R.; Schwartz, V.; Bridges, C.A.; Dudney, N.J. Thermal stability and catalytic activity of gold nanoparticles supported on silica. J. Catal., 2009, 262(1), 92-101.
[50]
Xue, C.; Tu, B.; Zhao, D. Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly. Nano Res., 2009, 2(3), 242-253.
[51]
Ravikovitch, P.I.; Neimark, A.V. Characterization of micro-and mesoporosity in SBA-15 materials from adsorption data by the NLDFT method. J. Phys. Chem. B, 2001, 105(29), 6817-6823.
[52]
Guerrouache, M.; Chergui, S.M.; Chehimi, M.M.; Carbonnier, B. Site-specific immobilisation of gold nanoparticles on a porous monolith surface by using a thiol-yne click photopatterning approach. Chem. Commun., 2012, 48(60), 7486-7488.
[53]
Namera, A.; Nakamoto, A.; Nishida, M.; Saito, T.; Kishiyama, I.; Miyazaki, S.; Yahata, M.; Yashiki, M.; Nagao, M. Extraction of amphetamines and methylenedioxyamphetamines from urine using a monolithic silica disk-packed spin column and high-performance liquid chromatography-diode array detection. J. Chromatogr. A, 2008, 1208(1-2), 71-75.
[54]
Mallik, R.; Hage, D.S. Affinity monolith chromatography. J. Separation. Sci., 2006, 29(12), 1686-1704.
[55]
Varshney, A.; Sen, P.; Ahmad, E.; Rehan, M.; Subbarao, N.; Khan, R.H. Ligand binding strategies of human serum albumin: how can the cargo be utilized? Chirality, 2010, 22(1), 77-87.
[56]
Lu, L.; Hashi, Y.; Wang, Z.H.; Ma, Y.; Lin, J.M. Determination of phthalate esters in physiological saline solution by monolithic silica spin column extraction method. J. Pharma. Anal., 2011, 1(2), 92-99.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 6
Year: 2019
Page: [616 - 627]
Pages: 12
DOI: 10.2174/2210676609666181204151244
Price: $65

Article Metrics

PDF: 25
HTML: 2
EPUB: 1
PRC: 1

Special-new-year-discount