Hypoglycemic and Hypolipemic Effects of a New Lecithin Formulation of Bergamot Polyphenolic Fraction: A Double Blind, Randomized, Placebo- Controlled Study

Author(s): Vincenzo Mollace*, Miriam Scicchitano, Sara Paone, Francesca Casale, Carla Calandruccio, Micaela Gliozzi, Vincenzo Musolino, Cristina Carresi, Jessica Maiuolo, Saverio Nucera, Antonella Riva, Pietro Allegrini, Massimo Ronchi, Giovanna Petrangolini, Ezio Bombardelli.

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets

Volume 19 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: Hyperlipemia represents an independent risk factor in the development of atherosclerosis in patients undergoing type 2 diabetes mellitus (DM). Moreover, the pharmacological treatment of dyslipemia in patients undergoing type 2 DM (e.g. by means of statins), is accompanied by relevant side effects and oral supplementation with natural antioxidants, such as Citrus polyphenols, has recently been suggested to improve cardioprotection in such patients. However, due to the poor gastrointestinal absorption of polyphenols, novel formulations have recently been developed for getting a better bioavailability of polyphenolic rich fractions of citrus species extract rich in polyphenols.

Methods: Here, we investigated the effect of standard bergamot polyphenolic fraction (BPF®) as well as of its phytosomal formulation (BPF Phyto), in patients with type 2 DM and hyperlipemia. A randomized, double blind, placebo-controlled study was carried out in 60 patients suffering from type 2 DM and mixed hyperlipemia.

Patients were divided into three groups: one receiving placebo, the second receiving standard BPF and the third BPF Phyto.

Results: In the groups receiving BPF and BPF Phyto, a significant reduction of fasting plasma glucose, serum LDL cholesterol and triglycerides accompanied by increased HDL cholesterol was observed. This effect was associated with significant reduction of small dense atherogenic LDL particles, as detected by means of proton NMR Spectroscopy, thus confirming the hypolipemic and hypoglycemic effect of bergamot extract both when using standard formulation as well as BPF Phyto. No differences were seen in the therapeutic response among groups receiving BPF and BPF Phyto, thus suggesting a substantial bioequivalence in their hypoglycemic and hypolipemic profile. However, when comparing the pharmacokinetic profile of naringin (the major component of BPF) and its metabolites, in patients treated with BPF Phyto, an at least 2,5 fold increase in its absorption was found, confirming in human studies the better profile of BPF Phyto compared to standard BPF.

Conclusion: These data suggest that better absorption and tissue distribution of BPF Phyto formulation represents an innovative approach in supplementation treatments of cardiometabolic disorders.

Keywords: Type 2 diabetes mellitus, hyperlipemia, bergamot polyphenolic fraction, BPF Phytosome, bioavailability, flavonoids.

[1]
Cherniack, E.P. Polyphenols: Planting the seeds of treatment for the metabolic syndrome. Nutrition, 2011, 27, 617-623.
[2]
Fraga, C.G.; Galleano, M.; Verstraeten, S.V.; Oteiza, P.I. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Aspects Med., 2010, 31(6), 435-445.
[3]
Seeram, N.P. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem., 2008, 56(3), 627-629.
[4]
Dugo, P.; Presti, M.L.; Ohman, M.; Fazio, A.; Dugo, G.; Mondello, L. Determination of flavonoids in citrus juices by micro-HPLC-ESI/MS. J. Sep. Sci., 2005, 28(11), 1149-1156.
[5]
Nogata, Y.; Sakamoto, K.; Shiratsuchi, H.; Ishii, T.; Yano, M.; Ohta, H. Flavonoid composition of fruit tissues of citrus species. Biosci. Biotechnol. Biochem., 2006, 70(1), 178-192.
[6]
Jeong, Y.J.; Choi, Y.J.; Choi, J.S.; Kwon, H.M.; Kang, S.W.; Bae, J.Y.; Lee, S.S.; Kang, J.S.; Han, S.J.; Kang, Y.H. Attenuation of monocyte adhesion and oxidised LDL uptake in luteolin-treated human endothelial cells exposed to oxidised LDL. Br. J. Nutr., 2007, 97(3), 447-457.
[7]
Yu, J.; Wang, L.; Walzem, R.L.; Miller, E.G.; Pike, L.M.; Patil, B.S. Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J. Agric. Food Chem., 2005, 53(6), 2009-2014.
[8]
Di Donna, L.; De Luca, G.; Mazzotti, F.; Napoli, A.; Salerno, R.; Taverna, D.; Sindona, G. Statin-like principles of bergamot fruit (Citrus bergamia): Isolation of 3-hydroxymethylglutaryl flavonoid glycosides. J. Nat. Prod., 2009, 72(7), 1352-1354.
[9]
Mollace, V.; Sacco, I.; Janda, E.; Malara, C.; Ventrice, D.; Colica, C.; Visalli, V.; Muscoli, S.; Ragusa, S.; Muscoli, C.; Rotiroti, D.; Romeo, F. Hypolipemic and hypoglycaemic activity of bergamot polyphenols: From animal models to human studies. Fitoterapia, 2011, 82(3), 309-316.
[10]
Gliozzi, M.; Walker, R.; Muscoli, S.; Vitale, C.; Gratteri, S.; Carresi, C.; Musolino, V.; Russo, V.; Janda, E.; Ragusa, S.; Aloe, A.; Palma, E.; Muscoli, C.; Romeo, F.; Mollace, V. Bergamot polyphenolic fraction enhances rosuvastatin-induced effect on LDL-cholesterol, LOX-1 expression and protein kinase B phosphorylation in patients with hyperlipidemia. Int. J. Cardiol., 2013, 170(2), 140-145.
[11]
Gliozzi, M.; Carresi, C.; Musolino, V.; Palma, E.; Muscoli, C.; Gratteri, S.; Muscianisi, G.; Janda, E.; Muscoli, S.; Romeo, F.; Ragusa, S.; Mollace, R.; Walker, R.; Ehrlich, J.; Mollace, V. The effect of bergamot-derived polyphenolic fraction on LDL small dense particles and non alcoholic fatty liver disease in patients with MS. Adv. Biol. Chem., 2014, 4, 129-137.
[12]
Leighton, F.; Miranda-Rottmann, S.; Urquiaga, I. A central role of eNOS in the protective effect of wine against metabolic syndrome. Cell Biochem. Funct., 2006, 24(4), 291-298.
[13]
Mollace, V.; Ragusa, S.; Sacco, I.; Muscoli, C.; Sculco, F.; Visalli, V.; Palma, E.; Muscoli, S.; Mondello, L.; Dugo, P.; Rotiroti, D.; Romeo, F. The protective effect of bergamot oil extract on lecitine-like oxyLDL receptor-1 expression in balloon injury-related neointima formation. J. Cardiovasc. Pharmacol. Ther., 2008, 13(2), 120-129.
[14]
Gliozzi, M.; Waler, R.; Mollace, V. Bergamot polyphenols: Pleiotropic players in the treatment of metabolic syndrome. J. Metab. Syndr., 2014, 3(2), 143-147.
[15]
Choe, S.C.; Kim, H.S.; Jeong, T.S.; Bok, S.H.; Park, Y.B. Naringin has an antiatherogenic effect with the inhibition of intercellular adhesion molecule-1 in hypercholesterolemic rabbits. J. Cardiovasc. Pharmacol., 2001, 38(6), 947-955.
[16]
Vinson, J.A.; Liang, X.; Proch, J.; Hontz, B.A.; Dancel, J.; Sandone, N. Polyphenol antioxidants in citrus juices: In vitro and in vivo studies relevant to heart disease. Adv. Exp. Med. Biol., 2002, 505, 113-122.
[17]
Cha, J.Y.; Cho, Y.S.; Kim, I.; Anno, T.; Rahman, S.M.; Yanagita, T. Effect of hesperetin, a citrus flavonoid, on the liver triacylglycerol content and phosphatidate phosphohydrolase activity in orotic acid-fed rats. Plant Foods Hum. Nutr., 2001, 56(4), 349-358.
[18]
Musolino, V.; Gliozzi, M.; Carresi, C.; Maiuolo, J.; Mollace, R.; Bosco, F.; Scarano, F.; Scicchitano, M.; Maretta, A.; Palma, E.; Iannone, M.; Morittu, V.M.; Gratteri, S.; Muscoli, C.; Fini, M.; Mollace, V. Lipid lowering effect of bergamot polyphenolic fraction: role of pancreatic cholesterol esterhydrolase. J. Biol. Regul. Homeost. Agents, 31(4), 1087-1093.
[19]
Kim, H.J.; Oh, G.T.; Park, Y.B.; Lee, M.K.; Seo, H.J.; Choi, M.S. Naringin alters the cholesterol biosynthesis and antioxidant enzyme activities in LDL receptor- knockout mice under cholesterol fed condition. Life Sci., 2004, 74(13), 1621-1634.
[20]
Mollace, V.; Muscoli, C.; Masini, E.; Cuzzocrea, S.; Salvemini, D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol. Rev., 2005, 57(2), 217-252.
[21]
Salvemini, D.; Kim, S.F.; Mollace, V. Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: Relevance and clinical implications. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2013, 304(7), R473-R487.
[22]
Jeon, S.M.; Bok, S.H.; Jang, M.K.; Lee, M.K.; Nam, K.T.; Park, Y.B.; Rhee, S.J.; Choi, M.S. Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci., 2001, 69(24), 2855-2866.
[23]
Hwang, J.T.; Kwon, D.Y.; Yoon, S.H. AMP-activated protein kinase: A potential target for the diseases prevention by natural occurring polyphenols. N. Biotechnol., 2009, 26(1-2), 17-22.
[24]
Zygmunt, K.; Faubert, B.; MacNeil, J.; Tsiani, E. Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochem. Biophys. Res. Commun., 2010, 398(2), 178-183.
[25]
Casale, F.; Calandruccio, C.; Musolino, V.; Nucera, S.; Gliozzi, M.; Carresi, C. Studies on the increased bioavailability of a new lecithin formulation of bergamot flavonoids: Pre-clinical studies. Oral communication at "ricerca, sviluppo e innovazione per una maggior competitività dei prodotti agri-food calabresi" università degli studi magna graecia di catanzaro. 2018, 3, 26-27.
[26]
Bombardelli, E.; Curri, S.B.; Della Loggia, R.; Del Negro, P.; Tubaro, A.; Gariboldi, P. Complexes between phospholipids and vegetable derivatives of biological interest. Fitoterapia, 1989, 60, 1-9.
[27]
Jain, N.; Gupta, B.P.; Takur, R.; Kain, R.; Banweer, J.; Jain, D.K. Jain, S. Phytosome. A novel drug delivery system for herbal medicine. Int. J. Pharm. Sci. Drug Discov., 2010, 2(4), 224-228.
[28]
Manach, C.; Scalbert, A.; Morand, C.; Remesy, C.; Jimenez, L. Polyphenols: food sources and bioavailability., 2004.
[29]
Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr., 2000, 130(Suppl. 8S), 2073S-2085S.
[30]
Fang, T.; Wang, Y.; Ma, Y.; Su, W.; Bai, Y.; Zhao, P. A rapid LC/ MS/MS quantitation assay for naringin and its two metabolites in rat’s plasma. J. Pharm. Biomed. Anal., 2006, 40(2), 454-459.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 2
Year: 2019
Page: [136 - 143]
Pages: 8
DOI: 10.2174/1871530319666181203151513
Price: $58

Article Metrics

PDF: 35
HTML: 1