Role of Muscarinic Acetylcholine Receptors in Breast Cancer: Design of Metronomic Chemotherapy

Author(s): María E. Sales*, Alejandro J. Español, Agustina R. Salem, Paola M. Pulido, Y. Sanchez, Francisco Sanchez.

Journal Name: Current Clinical Pharmacology

Volume 14 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: muscarinic acetylcholine receptors (mAChRs) have attracted interest as targets for therapeutic interventions in different illnesses like Alzheimer´s disease, viral infections and different tumors. Regarding the latter, many authors have studied each subtype of mAChRs, which seem to be involved in the progression of distinct types of malignancies.

Methods: We carefully revised research literature focused on mAChRs expression and signaling as well as in their involvement in cancer progression and treatment. The characteristics of screened papers were described using the mentioned conceptual framework.

Results: Muscarinic antagonists and agonists have been assayed for the treatment of tumors established in lung, brain and breast with beneficial effects. We described an up-regulation of mAChRs in mammary tumors and the lack of expression in non-tumorigenic breast cells and normal mammary tissues. We and others demonstrated that muscarinic agonists can trigger anti-tumor actions in a dose-dependent manner on tumors originated in different organs like brain or breast. At pharmacological concentrations, they exert similar effects to traditional chemotherapeutic agents. Metronomic chemotherapy refers to the administration of anti-cancer drugs at low doses with short intervals among them, and it is a different regimen applied in cancer treatment reducing malignant growth and angiogenesis, and very low incidence of adverse effects.

Conclusion: The usage of subthreshold concentrations of muscarinic agonists combined with conventional chemotherapeutic agents could be a promising tool for breast cancer therapy.

Keywords: Muscarinic acetylcholine receptors, signal metabolic pathway, breast tumors, metronomic chemotherapy, repurposing drugs, acetylcholine (ACh).

[1]
Wessler I, Kirkpatrick CJ, Racké K. The cholinergic ‘pitfall’: acetylcholine, a universal cell molecule in biological systems, including humans. Clin Exp Pharmacol Physiol 1999; 26(3): 198-205.
[http://dx.doi.org/10.1046/j.1440-1681.1999.03016.x] [PMID: 10081614]
[2]
Racké K, Matthiesen S. The airway cholinergic system: physiology and pharmacology. Pulm Pharmacol Ther 2004; 17(4): 181-98.
[http://dx.doi.org/10.1016/j.pupt.2004.03.001] [PMID: 15219263]
[3]
Beckmann J, Lips KS. The non-neuronal cholinergic system in health and disease. Pharmacology 2013; 92(5-6): 286-302.
[http://dx.doi.org/10.1159/000355835] [PMID: 24296914]
[4]
Kawashima K, Fujii T, Watanabe Y, Misawa H. Acetylcholine synthesis and muscarinic receptor subtype mRNA expression in T-lymphocytes. Life Sci 1998; 62(17-18): 1701-5.
[http://dx.doi.org/10.1016/S0024-3205(98)00131-3] [PMID: 9585160]
[5]
Rowell PP, Sastry BV. Human placental cholinergic system: depression of the uptake of alpha-aminoisobutyric acid in isolated human placental villi by choline acetyltransferase inhibitors. J Pharmacol Exp Ther 1981; 216(2): 232-8.
[PMID: 7463346]
[6]
Klapproth H, Reinheimer T, Metzen J, et al. Non-neuronal acetylcholine, a signalling molecule synthezised by surface cells of rat and man. Naunyn Schmiedebergs Arch Pharmacol 1997; 355(4): 515-23.
[http://dx.doi.org/10.1007/PL00004977] [PMID: 9109369]
[7]
Grando SA. Biological functions of keratinocyte cholinergic receptors. J Investig Dermatol Symp Proc 1997; 2(1): 41-8.
[http://dx.doi.org/10.1038/jidsymp.1997.10] [PMID: 9487015]
[8]
Haberberger RV, Bodenbenner M. Immunohistochemical localization of muscarinic receptors (M2) in the rat skin. Cell Tissue Res 2000; 300(3): 389-96.
[http://dx.doi.org/10.1007/s004410000214] [PMID: 10928269]
[9]
Kirkpatrick CJ, Bittinger F, Nozadze K, Wessler I. Expression and function of the non-neuronal cholinergic system in endothelial cells. Life Sci 2003; 72(18-19): 2111-6.
[http://dx.doi.org/10.1016/S0024-3205(03)00069-9] [PMID: 12628465]
[10]
Wessler I, Kirkpatrick CJ, Racké K. Non-neuronal ACh, a locally acting molecule, widely distributed in biological sys-tems: expression and function in humans. Pharmacol. Thera-peut 1998; 77: 59-79.
[PMID: 9500159]
[11]
Racké K, Juergens UR, Matthiesen S. Control by cholinergic mechanisms. Eur J Pharmacol 2006; 533(1-3): 57-68.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.050] [PMID: 16458288]
[12]
Wessler I, Roth E, Deutsch C, et al. Release of non-neuronal acetylcholine from the isolated human placenta is mediated by organic cation transporters. Br J Pharmacol 2001; 134(5): 951-6.
[http://dx.doi.org/10.1038/sj.bjp.0704335] [PMID: 11682442]
[13]
Lips KS, Volk C, Schmitt BM, et al. Polyspecific cation transporters mediate luminal release of acetylcholine from bronchial epithelium. Am J Respir Cell Mol Biol 2005; 33(1): 79-88.
[http://dx.doi.org/10.1165/rcmb.2004-0363OC] [PMID: 15817714]
[14]
Koelle GB, Volle RL, Holmstedt B, Karczmar AG, O’brien RD. Anticholinesterase Agents. Science 1963; 141(3575): 63-5.
[http://dx.doi.org/10.1126/science.141.3575.63] [PMID: 17742888]
[15]
Sastry BV, Sadavongvivad C. Cholinergic systems in non-nervous tissues. Pharmacol Rev 1978; 30(1): 65-132.
[PMID: 377313]
[16]
Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 2009; 8(9): 733-50.
[http://dx.doi.org/10.1038/nrd2927] [PMID: 19721446]
[17]
Sales ME. Muscarinic Receptors as Targets for Metronomic Therapy in Breast Cancer. Curr Pharm Des 2016; 22(14): 2170-7.
[http://dx.doi.org/10.2174/1381612822666160229115317] [PMID: 26924207]
[18]
Eglen RM. Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 2006; 26(3): 219-33.
[http://dx.doi.org/10.1111/j.1474-8673.2006.00368.x] [PMID: 16879488]
[19]
Wessler I, Kirkpatrick CJ. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 2008; 154(8): 1558-71.
[http://dx.doi.org/10.1038/bjp.2008.185] [PMID: 18500366]
[20]
Tang M, Luo L, Zhu D, et al. Muscarinic cholinergic modulation of synaptic transmission and plasticity in rat hippocampus following chronic lead exposure. Naunyn Schmiedebergs Arch Pharmacol 2009; 379(1): 37-45.
[http://dx.doi.org/10.1007/s00210-008-0344-1] [PMID: 18716758]
[21]
Oldham WM, Hamm HE. Structural basis of function in heterotrimeric G proteins. Q Rev Biophys 2006; 39(2): 117-66.
[http://dx.doi.org/10.1017/S0033583506004306] [PMID: 16923326]
[22]
Lanzafame AA, Christopoulos A, Mitchelson F. Cellular signaling mechanisms for muscarinic acetylcholine receptors. Receptors Channels 2003; 9(4): 241-60.
[http://dx.doi.org/10.1080/10606820308263] [PMID: 12893537]
[23]
Burstein ES, Spalding TA, Brann MR. Pharmacology of muscarinic receptor subtypes constitutively activated by G proteins. Mol Pharmacol 1997; 51(2): 312-9.
[http://dx.doi.org/10.1124/mol.51.2.312] [PMID: 9203637]
[24]
Burstein ES1. Spalding TA, Braüner-Osborne H, Brann MR. Constitutive activation of muscarinic receptors by the G-protein Gq. FEBS Lett 1995; 363: 261-3.
[http://dx.doi.org/10.1016/0014-5793(95)00323-2]
[25]
Köse M. GPCRs and EGFR - Cross-talk of membrane receptors in cancer. Bioorg Med Chem Lett 2017; 27(16): 3611-20.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.002] [PMID: 28705643]
[26]
Syrovatkina V, Alegre KO, Dey R, Huang XY. Regulation, Signaling, and Physiological Functions of G-Proteins. J Mol Biol 2016; 428(19): 3850-68.
[http://dx.doi.org/10.1016/j.jmb.2016.08.002] [PMID: 27515397]
[27]
Pera T, Hegde A, Deshpande DA, et al. Specificity of arrestin subtypes in regulating airway smooth muscle G protein-coupled receptor signaling and function. FASEB J 2015; 29(10): 4227-35.
[http://dx.doi.org/10.1096/fj.15-273094] [PMID: 26103985]
[28]
Watari K, Nakaya M, Kurose H. Multiple functions of G protein-coupled receptor kinases. J Mol Signal 2014; 9(1): 1-9.
[http://dx.doi.org/10.1186/1750-2187-9-1] [PMID: 24597858]
[29]
Luo J, Busillo JM, Benovic JL. M3 muscarinic acetylcholine receptor-mediated signaling is regulated by distinct mechanisms. Mol Pharmacol 2008; 74(2): 338-47.
[http://dx.doi.org/10.1124/mol.107.044750] [PMID: 18388243]
[30]
van Koppen CJ, Kaiser B. Regulation of muscarinic acetylcholine receptor signaling. Pharmacol Ther 2003; 98(2): 197-220.
[http://dx.doi.org/10.1016/S0163-7258(03)00032-9] [PMID: 12725869]
[31]
Wan M, Zhang W, Tian Y, et al. Unraveling a molecular determinant for clathrin-independent internalization of the M2 muscarinic acetylcholine receptor. Sci Rep 2015; 5: 11408.
[http://dx.doi.org/10.1038/srep11408] [PMID: 26094760]
[32]
Paleari L, Grozio A, Cesario A, Russo P. The cholinergic system and cancer. Semin Cancer Biol 2008; 18(3): 211-7.
[http://dx.doi.org/10.1016/j.semcancer.2007.12.009] [PMID: 18262434]
[33]
Fiszman GL, Sales ME. Antibodies against muscarinic recep-tors in breast cancer: agonizing tumor growth. Curr Immunol Rev 2008; 4: 176-82.
[http://dx.doi.org/10.2174/157339508785160732]
[34]
Alessandrini F, Cristofaro I, Di Bari M, Zasso J, Conti L, Tata AM. The activation of M2 muscarinic receptor inhibits cell growth and survival in human glioblastoma cancer stem cells. Int Immunopharmacol 2015; 29(1): 105-9.
[http://dx.doi.org/10.1016/j.intimp.2015.05.032] [PMID: 26033491]
[35]
Castillo-González AC, Pelegrín-Hernández JP, Nieto-Cerón S, et al. Unbalanced acetylcholinesterase activity in larynx squamous cell carcinoma. Int Immunopharmacol 2015; 29(1): 81-6.
[http://dx.doi.org/10.1016/j.intimp.2015.05.011] [PMID: 26002584]
[36]
Song P, Sekhon HS, Lu A, et al. M3 muscarinic receptor antagonists inhibit small cell lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Cancer Res 2007; 67(8): 3936-44.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2484] [PMID: 17440109]
[37]
Xu R, Shang C, Zhao J, et al. Activation of M3 muscarinic receptor by acetylcholine promotes non-small cell lung cancer cell proliferation and invasion via EGFR/PI3K/AKT pathway. Tumour Biol 2015; 36(6): 4091-100.
[http://dx.doi.org/10.1007/s13277-014-2911-z] [PMID: 25964092]
[38]
Yang K, Song Y, Tang YB, et al. mAChRs activation induces epithelial-mesenchymal transition on lung epithelial cells. BMC Pulm Med 2014; 14: 53.
[http://dx.doi.org/10.1186/1471-2466-14-53] [PMID: 24678619]
[39]
Kodaira M, Kajimura M, Takeuchi K, Lin S, Hanai H, Kaneko E. Functional muscarinic m3 receptor expressed in gastric cancer cells stimulates tyrosine phosphorylation and MAP kinase. J Gastroenterol 1999; 34(2): 163-71.
[http://dx.doi.org/10.1007/s005350050238] [PMID: 10213113]
[40]
Nguyen PH, Touchefeu Y, Durand T, et al. Acetylcholine induces stem cell properties of gastric cancer cells of diffuse type. Tumour Biol 2018; 40(9)1010428318799028
[http://dx.doi.org/10.1177/1010428318799028] [PMID: 30207200]
[41]
Zhao CM, Hayakawa Y, Kodama Y, et al. Denervation suppresses gastric tumorigenesis. Sci Transl Med 2014; 6(250)250ra115
[http://dx.doi.org/10.1126/scitranslmed.3009569] [PMID: 25143365]
[42]
von Rosenvinge EC, Cheng K, Drachenberg CB, et al. Bedside to bench: role of muscarinic receptor activation in ultrarapid growth of colorectal cancer in a patient with pheochromocytoma. Mayo Clin Proc 2013; 88(11): 1340-6.
[http://dx.doi.org/10.1016/j.mayocp.2013.06.023] [PMID: 24100192]
[43]
Patanè S. M3 muscarinic acetylcholine receptor in cardiology and oncology. Int J Cardiol 2014; 177(2): 646-9.
[http://dx.doi.org/10.1016/j.ijcard.2014.09.178] [PMID: 25449471]
[44]
Von Rosenvinge EC, Raufman JP. Muscarinic receptor signaling in colon cancer. Cancers (Basel) 2011; 3(1): 971-81.
[http://dx.doi.org/10.3390/cancers3010971] [PMID: 24212649]
[45]
Boss A, Oppitz M, Lippert G, Drews U. Muscarinic cholinergic receptors in the human melanoma cell line SK-Mel 28: modulation of chemotaxis. Clin Exp Dermatol 2005; 30(5): 557-64.
[http://dx.doi.org/10.1111/j.1365-2230.2005.01865.x] [PMID: 16045692]
[46]
Nagy D, Kosztka L, Pap P, et al. Cytoplasmic Ca2+ concentration changes evoked by muscarinic cholinergic stimulation in primary and metastatic melanoma cell lines. Melanoma Res 2011; 21(1): 12-23.
[http://dx.doi.org/10.1097/CMR.0b013e3283414477] [PMID: 21102359]
[47]
Guizzetti M, Costa P, Peters J, Costa LG. Acetylcholine as a mitogen: muscarinic receptor-mediated proliferation of rat astrocytes and human astrocytoma cells. Eur J Pharmacol 1996; 297(3): 265-73.
[http://dx.doi.org/10.1016/0014-2999(95)00746-6] [PMID: 8666059]
[48]
Yagle K, Lu H, Guizzetti M, Möller T, Costa LG. Activation of mitogen-activated protein kinase by muscarinic receptors in astroglial cells: role in DNA synthesis and effect of ethanol. Glia 2001; 35(2): 111-20.
[http://dx.doi.org/10.1002/glia.1076] [PMID: 11460267]
[49]
Song W, Yuan M, Zhao S. Variation of M3 muscarinic receptor expression in different prostate tissues and its significance. Saudi Med J 2009; 30(8): 1010-6.
[PMID: 19668880]
[50]
Parnell EA, Calleja-Macias IE, Kalantari M, Grando SA, Bernard HU. Muscarinic cholinergic signaling in cervical cancer cells affects cell motility via ERK1/2 signaling. Life Sci 2012; 91(21-22): 1093-8.
[http://dx.doi.org/10.1016/j.lfs.2012.02.020] [PMID: 22406505]
[51]
Español A, Eiján AM, Mazzoni E, et al. Nitric oxide synthase, arginase and cyclooxygenase are involved in muscarinic receptor activation in different murine mammary adenocarcinoma cell lines. Int J Mol Med 2002; 9(6): 651-7.
[http://dx.doi.org/10.3892/ijmm.9.6.651] [PMID: 12011984]
[52]
Español AJ, Sales ME. Different muscarinc receptors are involved in the proliferation of murine mammary adenocarcinoma cell lines. Int J Mol Med 2004; 13(2): 311-7.
[http://dx.doi.org/10.3892/ijmm.13.2.311] [PMID: 14719140]
[53]
Rimmaudo L, de la Torre E, Sacerdote de Lustig E, Sales ME. mAChR are involved in murine mammary adenocarcinoma cells LMM3 proliferation and angiogenesis. Biochem Biophys Res Commun 2005; 334: 1360-5.
[http://dx.doi.org/10.1016/j.bbrc.2005.07.031]
[54]
Patanè S. Cancer multidrug resistance-targeted therapy in both cancer and cardiovascular system with cardiovascular drugs. Int J Cardiol 2014; 176(3): 1306-8.
[http://dx.doi.org/10.1016/j.ijcard.2014.07.158] [PMID: 25131921]
[55]
Song P, Olivas AS, Spindel ER. Tiotropium inhibits growth of squamous cell lung carcinoma (SCC) cell lines in vitro and al-so inhibits SCC growth in vivo in nude mice by inhalation. Eur Respir J 2010; 36: 946S.
[56]
Patanè S. ERBB1/EGFR and ERBB2 (HER2/neu)--targeted therapies in cancer and cardiovascular system with cardiovascular drugs. Int J Cardiol 2014; 176(3): 1301-3.
[http://dx.doi.org/10.1016/j.ijcard.2014.07.161] [PMID: 25131912]
[57]
Wang L, Zhi X, Zhang Q, et al. Muscarinic receptor M3 mediates cell proliferation induced by acetylcholine and contributes to apoptosis in gastric cancer. Tumour Biol 2016; 37(2): 2105-17.
[http://dx.doi.org/10.1007/s13277-015-4011-0] [PMID: 26346168]
[58]
Andersson KE, Campeau L, Olshansky B. Cardiac effects of muscarinic receptor antagonists used for voiding dysfunction. Br J Clin Pharmacol 2011; 72(2): 186-96.
[http://dx.doi.org/10.1111/j.1365-2125.2010.03813.x] [PMID: 21595741]
[59]
Fiszman GL, Middonno MC, de la Torre E, Farina M, Español AJ, Sales ME. Activation of muscarinic cholinergic receptors induces MCF-7 cells proliferation and angiogenesis by stimulating nitric oxide synthase activity. Cancer Biol Ther 2007; 6(7): 1106-13.
[http://dx.doi.org/10.4161/cbt.6.7.4330] [PMID: 17611397]
[60]
Negroni MP, Fiszman GL, Azar ME, et al. mAChR activity is modulated by auto-antibodies from breast cancer patients in MCF-7 cells. J Clin Immunol 2010; 30: 474-84.
[http://dx.doi.org/10.1007/s10875-010-9370-0] [PMID: 20157846]
[61]
Pelegrina LT, Lombardi MG, Fiszman GL, Azar ME, Mor-gado CC, Sales ME. Autoantibodies against mAChR modulate tumor cells migration and adhesion in breast cancer patients. J Clin Immunol 2013; 33: 427-35.
[http://dx.doi.org/10.1007/s10875-012-9804-y] [PMID: 23007238]
[62]
Español AJ, Jacob G, Dmytrenko G, Sales ME. Muscarinic activation enhances the anti-proliferative effect of paclitaxel in murine breast tumor cells. Anticancer Agents Med Chem 2013; 13(8): 1273-9.
[http://dx.doi.org/10.2174/18715206113139990136] [PMID: 23293886]
[63]
Pacini L, De Falco E, Di Bari M, et al. M2muscarinic receptors inhibit cell proliferation and migration in urothelial bladder cancer cells. Cancer Biol Ther 2014; 15(11): 1489-98.
[http://dx.doi.org/10.4161/15384047.2014.955740] [PMID: 25482946]
[64]
Alessandrini F, Cristofaro I, Di Bari M, Zasso J, Conti L, Tata AM. The activation of M2 muscarinic receptor inhibits cell growth and survival in human glioblastoma cancer stem cells. Int Immunopharmacol 2015; 29(1): 105-9.
[http://dx.doi.org/10.1016/j.intimp.2015.05.032] [PMID: 26033491]
[65]
Gasparini G. Metronomic scheduling: the future of chemotherapy? Lancet Oncol 2001; 2(12): 733-40.
[http://dx.doi.org/10.1016/S1470-2045(01)00587-3] [PMID: 11902515]
[66]
Skipper HE, Schabel FM Jr, Wilcox WS. Experimental evalua-tion of potential anti-cancer agents. XIII. On the criteria and kinetics associated with “curability” of experimental leuke-mia. Cancer Chemother Rep 1964; 35: 1-111.
[PMID: 14117037]
[67]
Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 2000; 105(8): 1045-7.
[http://dx.doi.org/10.1172/JCI9872] [PMID: 10772648]
[68]
Browder T, Butterfield CE, Kräling BM, et al. Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 2000; 60(7): 1878-86.
[PMID: 10766175]
[69]
Shaked Y, Emmenegger U, Man S, et al. Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 2005; 106(9): 3058-61.
[http://dx.doi.org/10.1182/blood-2005-04-1422] [PMID: 15998832]
[70]
Loven D, Hasnis E, Bertolini F, Shaked Y. Low-dose metronomic chemotherapy: from past experience to new paradigms in the treatment of cancer. Drug Discov Today 2013; 18(3-4): 193-201.
[http://dx.doi.org/10.1016/j.drudis.2012.07.015] [PMID: 22868084]
[71]
Licchetta A, Correale P, Migali C, et al. Oral metronomic chemo-hormonal-therapy of metastatic breast cancer with cyclophosphamide and megestrol acetate. J Chemother 2010; 22(3): 201-4.
[http://dx.doi.org/10.1179/joc.2010.22.3.201] [PMID: 20566427]
[72]
Pantziarka P, Bouche G, Meheus L, Sukhatme V, Sukhatme VP. Repurposing drugs in your medicine cabinet: untapped opportunities for cancer therapy? Future Oncol 2015; 11(2): 181-4.
[http://dx.doi.org/10.2217/fon.14.244] [PMID: 25591833]
[73]
Ringvold A, Reubsaet JL. The impact of high-dose acetylcholine on bovine corneal epithelium. Acta Ophthalmol 2016; 94(2): 160-4.
[http://dx.doi.org/10.1111/aos.12889] [PMID: 26448582]
[74]
André N, Banavali S, Snihur Y, Pasquier E. Has the time come for metronomics in low-income and middle-income countries? Lancet Oncol 2013; 14(6): e239-48.
[http://dx.doi.org/10.1016/S1470-2045(13)70056-1] [PMID: 23639324]
[75]
Choy C, Raytis JL, Smith DD, et al. Inhibition of β2-adrenergic receptor reduces triple-negative breast cancer brain metastases: The potential benefit of perioperative β-blockade. Oncol Rep 2016; 35(6): 3135-42.
[http://dx.doi.org/10.3892/or.2016.4710] [PMID: 27035124]
[76]
Gadducci A, Biglia N, Tana R, Cosio S, Gallo M. Metformin use and gynecological cancers: A novel treatment option emerging from drug repositioning. Crit Rev Oncol Hematol 2016; 105: 73-83.
[http://dx.doi.org/10.1016/j.critrevonc.2016.06.006] [PMID: 27378194]
[77]
Papi A, De Carolis S, Bertoni S, et al. PPARγ and RXR ligands disrupt the inflammatory cross-talk in the hypoxic breast cancer stem cells niche. J Cell Physiol 2014; 229(11): 1595-606.
[http://dx.doi.org/10.1002/jcp.24601] [PMID: 24604522]
[78]
Sun X, Li D, Yang Y, et al. Microtubule-binding protein CLIP-170 is a mediator of paclitaxel sensitivity. J Pathol 2012; 226(4): 666-73.
[http://dx.doi.org/10.1002/path.3026] [PMID: 21989536]
[79]
Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H. Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 2007; 6(5): 609-21.
[http://dx.doi.org/10.1517/14740338.6.5.609] [PMID: 17877447]
[80]
Español AJ, Salem A, Rojo D, Sales ME. Participation of non-neuronal muscarinic receptors in the effect of carbachol with paclitaxel on human breast adenocarcinoma cells. Roles of nitric oxide synthase and arginase. Int Immunopharmacol 2015; 29(1): 87-92.
[http://dx.doi.org/10.1016/j.intimp.2015.03.018] [PMID: 25812766]
[81]
Salem A, Sanchez Y, Sales ME, Español A. Anti-tumor ac-tions of paclitaxel plus carbachol on human triple negative breast cancer cells. Medicina (B Aires) 2017; 77(Suppl. I): 254.
[82]
Isakoff SJ. Triple-negative breast cancer: role of specific chemotherapy agents. Cancer J 2010; 16(1): 53-61.
[http://dx.doi.org/10.1097/PPO.0b013e3181d24ff7] [PMID: 20164691]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 14
ISSUE: 2
Year: 2019
Page: [91 - 100]
Pages: 10
DOI: 10.2174/1574884714666181203095437

Article Metrics

PDF: 20
HTML: 5

Special-new-year-discount