Frontiers in Ceramic Science

Frontiers in Ceramic Science

Volume: 2

Catalytic Materials for Hydrogen Production and Electro-oxidation Reactions

The implementation of hydrogen production processes on an industrial scale requires a comprehensive understanding of the chemical proprieties of catalytic materials and the applications such ...
[view complete introduction]

US $
30

*(Excluding Mailing and Handling)



Impact of Molybdena and Vanadia Mixed Based Oxides on Hydrogen Production by Steam Reforming

Pp. 1-32 (32)

Gheorghita Mitran, Dong-Kyun Seo and Octavian-Dumitru Pavel

Abstract

Hydrogen seems to be the fuel of the future since it is clean-burning and its only by-product is water. Currently, around 95% of the hydrogen global production is accomplished by non-renewable energy sources, 4% is obtained from water and only 1% from biomass. Hydrogen production from renewable energy sources such as biomass represents an important challenge for the future. Nowadays, steam reforming is the cheapest way to produce hydrogen. This chapter summarizes data regarding hydrogen production by steam reforming of biomass renewable sources and biomass tar, emphasizing the catalysts development for this process. The development of high active catalysts with good stability and selectivity continues to be a challenge. For this purpose, the reactivity of different catalytic systems as well as their advantages and disadvantages will be discussed.

Keywords:

Biomass, Biogas, Bio-oil, Hydrogen, Mixed Oxides, Molybdena, Nickel, Noble Metals, Steam Reforming, Vanadia.

Affiliation:

Laboratory of Chemical Technology and Catalysis, Department of Organic Chemistry, Biochemistry & Catalysis, Faculty of Chemistry, University of Bucharest, 4-12, Blv. Regina Elisabeta, 030018 Bucharest, Romania.