The Association of Serum Vitamin D Levels with Pseudoexfoliation Glaucoma/Syndrome

Author(s): Seyhan Dikci*, Emrah Öztürk, Penpe G. Fırat, Turgut Yılmaz, Mehmet Ç. Taşkapan, Saim Yoloğlu.

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets

Volume 19 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: To investigate whether serum vitamin D levels have an effect on pseudoexfoliation (PEX) glaucoma/syndrome development and on the control of glaucoma in these cases.

Method: A total of 31 cases with PEX glaucoma, 34 cases with the PEX syndrome and 43 control subjects of similar age and sex were included in the study. Vitamin D levels were compared between the groups and also between the cases where glaucoma surgery was performed or not.

Results: PEX glaucoma group consisted of 17 males and 14 females, PEX syndrome group of 27 males and 7 females, and the control group of 27 males and 16 females. The mean age was 70.9±8.9 years, 72.1±7.3 years, and 67.9±9.1 years in PEX glaucoma, syndrome and control group, respectively. Mean vitamin D levels were 9.4±7.7 ng/mL, 7.9±6,1 ng/mL, 11.5±14.2 ng/mL in PEX glaucoma, syndrome and control group, respectively (p>0.05). The mean serum vitamin D level was 8.04±4.7 ng/mL in those who underwent glaucoma surgery and 10.1±8.7 ng/mL in those who didn't undergo glaucoma surgery in PEX glaucoma group (p>0.05). No difference was found between the PEX glaucoma subgroups in terms of the mean deviation when classified according to vitamin D levels (<10 ng/mL, ≥10 ng/mL) (p>0.05).

Conclusion: Although we found no statistically significant difference between the PEX syndrome/ glaucoma, and control group in terms of serum vitamin D levels, serum vitamin D levels were lower in PEX syndrome and glaucoma group than control group. Our results indicate that serum vitamin D levels have no effect on the development of PEX glaucoma/syndrome or the control of the disorder in cases with PEX glaucoma. However, these results need to be supported with further studies on a larger number of patients and with longer follow-up.

Keywords: Glaucoma, pseudoexfoliation, pseudoexfoliation glaucoma, pseudoexfoliation syndrome, vitamin D, 1, 25 dihydroxyvitamin D.

[1]
Nebbioso, M.; Buomprisco, G.; Pascarella, A.; Pescosolido, N. Modulatory effects of 1, 25-dihidroxyvitamin D3 on eye disorders: Critical review. Crit. Rev. Food Sci. Nutr., 2017, 57, 559-565.
[2]
Nikooyeh, B.; Neyestani, T.R. Oxidative stress, type 2 diabetes and vitamin D: Past, present and future. Diabetes Metab. Res. Rev., 2016, 32, 260-267.
[3]
Rosen, P.; Nawroth, P.P.; King, G.; Möller, W.; Tritschler, H.J.; Packer, L. The role of oxidative stress in the onset and progression of diabetes and its complications: A summary of a congress series sponsored by UNESCO-MCBN, the american diabetes association and the german diabetes society. Diabetes Metab. Res. Rev., 2001, 17, 189-195.
[4]
Tuohimaa, P.; Pukkala, E.; Scélo, G.; Olsen, J.H.; Brewster, D.H.; Hemminki, K.; Tracey, E.; Weiderpass, E.; Kliewer, E.V.; Pompe-Kirn, V.; McBride, M.L.; Martos, C.; Chia, K.S.; Tonita, J.M. Jonasson. J.G.; Boffetta, P.; Brennan, P. Does solar exposure, as indicated by the non-melanoma skin cancers: Vitamin D as a possible explanation. Eur. J. Cancer, 2007, 43, 1701-1712.
[5]
Smyk, D.S.; Orfanidou, T.; Invernizzi, P.; Bogdanos, D.P.; Lenzi, M. Vitamin D in autoimmune liver disease. Clin. Res. Hepatol. Gastroenterol., 2013, 37, 535-545.
[6]
Prietl, B.; Treiber, G.; Pieber, T.R.; Amrein, K. Vitamin D and immune function. Nutrients, 2013, 5, 2502-2521.
[7]
Kutuzova, G.D.; Gabelt, B.T.; Kiland, J.A.; Hennes-Beann, E.A.; Kaufman, P.L.; DeLuca, H.F. 1α, 25-Dihydroxyvitamin D(3) and its analog, 2-methylene-19-nor-(20S)-1α, 25-dihydroxyvitamin D(3) (2MD), supress intraocular pressure in non-human primates. Arch. Biochem. Biophys., 2012, 518, 53-60.
[8]
Anastasopoulos, E.; Founti, P.; Topouzis, F. Update on pseudoexfoliation syndrome pathogenesis and associations with intraocular pressure, glaucoma and systemic diseases. Curr. Opin. Ophthalmol., 2015, 26, 82-89.
[9]
Schlötzer-Schrehardt, U.; Naumann, G.O. Ocular and systemic pseudoexfoliation syndrome. Am. J. Ophthalmol., 2006, 141, 921-937.
[10]
Scharfenberg, E.; Schlötzer-Schrehardt, U. PEX syndrome: Clinical diagnosis and systemic manifestations. Ophthalmologe, 2012, 109, 952-961.
[11]
Faschinger, C.; Schmut, O.; Wachswender, C.; Mossböck, G. Glaucoma and oxidative stress. Determination of malondialdehyde: A product of lipid peroxidation. Ophthalmologe, 2006, 103, 953-959.
[12]
Gartaganis, S.P.; Georgakopoulos, C.D.; Patsoukis, N.E.; Gotsis, S.S.; Gartaganis, V.S.; Georgiou, C.D. Glutathione and lipid peroxide changes in pseudoexfoliation syndrome. Curr. Eye Res., 2005, 30, 647-651.
[13]
Itty, S.; Day, S.; Lyles, K.W.; Stinnett, S.S.; Vajzovic, L.M.; Mruthyunjaya, P. Vitamin D deficiency in neovascular versus nonneovascular age-related macular degeneration. Retina, 2014, 34, 1779-1786.
[14]
Zenkel, M.; Lewczuk, P.; Jünemann, A.; Kruse, F.E.; Naumann, G.O.; Schlötzer-Schrehardt, U. Proinflammatory cytokines are involved in the initation of the abnormal matrix process in pseudoexfoliation syndrome/glaucoma. Am. J. Pathol., 2010, 176, 2868-2879.
[15]
Sein, J.; Galor, A.; Sheth, A.; Kruh, J.; Pasquale, L.R.; Karp, C.L. Exfoliation syndrome: New genetic and pathophysiologic insights. Curr. Opin. Ophthalmol., 2013, 24, 167-174.
[16]
Beyazyıldız, E.; Cankaya, A.B.; Beyazyıldız, O.; Ergan, E.; Celik, H.T.; Yılmazbaş, P.; Oztürk, F. Disturbed oxidant/antioxidant balance in aqueous humour of patients with exfoliation syndrome. Jpn. J. Ophthalmol., 2014, 58, 353-358.
[17]
Strzalka-Mrozik, B.; Prudlo, L.; Kimsa, M.W.; Kimsa, M.C.; Kapral, M.; Nita, M.; Mazurek, U. Quantitative analysis of SOD2, ALDH1A1 and MGST1 messenger ribonucleic acid in anterior lens epithelium of patients with pseudoexfoliation syndrome. Mol. Vis., 2013, 19, 1341-1349.
[18]
Türkyılmaz, K.; Öner, V.; Kırbas, A.; Sevim, M.S.; Sekeryapan, B.; Özgür, G.; Durmus, M. Serum YKL-40 levels as a novel marker of inflammation and endothelial dysfunction in patients with pseudoexfoliation syndrome. Eye (Lond.), 2013, 27, 854-859.
[19]
Erdurmuş, M.; Yağcı, R.; Atış, Ö.; Karadağ, R.; Akbaş, A.; Hepşen, I.F. Antioxidant status and oxidative stress in primary open angle glaucoma and pseudoexfoliative glaucoma. Curr. Eye Res., 2011, 36, 713-718.
[20]
Mehdizadeh, M. Oxidative stress and open angle glaucoma: Is oxidative stress a mechanism for glaucomatous damage or a by-product of topical antiglaucoma medication? J. Glaucoma, 2008, 17, 505-, 508-509.
[21]
Saccá, S.C.; Izotti, A.; Rossi, P.; Traverso, C. Glaucomatous outflow pathway and oxidative stress. Exp. Eye Res., 2007, 84, 389-399.
[22]
Majsterek, I.; Malinowska, K.; Stanczyk, M.; Kowalski, M.; Blaszczyk, J.; Kurowska, A.K.; Kaminska, A.; Szaflik, J.; Szaflik, J.P. Evaluation of oxidative stress markers in pathogenesis of primary open-angle glaucoma. Exp. Mol. Pathol., 2011, 90, 231-237.
[23]
Anastasopoulos, E.; Topouzis, F.; Wilson, M.R.; Harris, A.; Pappas, T.; Yu, F.; Koskosas, A.; Founti, P.; Coleman, A.L. Characteristics of pseudoexfoliation in the thessaloniki eye study. J. Glaucoma, 2011, 20, 160-166.
[24]
Arnarsson, A.; Damji, K.F.; Sverrisson, T.; Sasaki, H.; Jonasson, F. Pseudoexfoliation in the reykjavik eye study: Prevalance and related ophthalmological variables. Acta Ophthalmol. Scand., 2007, 85, 822-827.
[25]
Adams, J.S.; Hewison, M. Update in vitamin D. J. Clin. Endocrinol. Metab., 2010, 95, 471-478.
[26]
Lee, V.; Rekhi, E.; Hoh Kam, J.; Jeffery, G. Vitamin D rejuvenates aging eyes by reducing inflammation, clearing amyloid beta and improving visual function. Neurobiol. Aging, 2012, 33, 2382-2389.
[27]
Ben-Shoshan, M.; Amir, S.; Dang, D.T.; Weisman, Y.; Mabjeesh, N.J. 1alpha, 25-dihydroxyvitamin D3 (Calcitriol) inhibits hypoxia-inducible factor-1/vascular endothelial growth factor pathway in human cancer cells. Mol. Cancer Ther., 2007, 6, 1433-1439.
[28]
Bao, B.Y.; Thing, H.J.; Hsu, J.W.; Lee, Y.F. Protective role of 1 alpha, 25-dihydroxyvitamin D3 against oxidative stress in nonmalignant human prostate epithelial cells. Int. J. Cancer, 2008, 122, 2699-2706.
[29]
Tian, B.; Gabelt, B.; Geiger, B.; Kaufman, P.L. The role of the actomyosin system in regulating trabecular fluid flow out. Exp. Eye Res., 2009, 88, 713-717.
[30]
Pescosolido, N.; Cavallotti, C.; Rusciano, D.; Nebbioso, M. Trabecular meshwork in normal and pathological eyes. Ultrastruct. Pathol., 2012, 36, 102-107.
[31]
Faralli, J.; Schwinn, M.; Gonzales, J.R.; Filla, M.S.; Peters, D.M. Functional properties of fibronectin in the trabecular meshwork. Exp. Eye Res., 2009, 88, 689-693.
[32]
Vaajanen, A.; Vapaatalo, H. Local ocular renin-angiotensin system: a target for glaucoma therapy? Basic Clin. Pharmacol. Toxicol., 2011, 109, 217-224.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 2
Year: 2019
Page: [166 - 170]
Pages: 5
DOI: 10.2174/1871530319666181128105911
Price: $58

Article Metrics

PDF: 18
HTML: 1