Prevalence of Extended-Spectrum β-Lactamases in Multi-drug Resistant Pseudomonas aeruginosa from Diabetic Foot Patients

Author(s): Faaiz ul Hassan, Muhammad Suhaib Qudus, Sheikh Arslan Sehgal, Jawad Ahmed, Momin Khan, Khayam ul Haq, Shahina Mumtaz, Muhammad Arshad, Sami Siraj*.

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
(Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders)

Volume 19 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Introduction: Pseudomonas aeruginosa is one of the major pathogens associated with the acute tissue damage in patients having Diabetic Foot Ulcer (DFU). The treatment of such infections can be an uphill battle due to the serious resistance to all the mainstay antibiotics, owing to overzealous production of Extended-Spectrum Beta-Lactamases (ESBLs). Pakistan also has a high prevalence of diabetes and complications related to it, however genetic disposition of the pathogens remains underinvestigated.

Aim: The main objective of the study was to determine the frequency of ESBLs in Multi-drug resistant P. aeruginosa from diabetic foot patients.

Methods: The duration of the present study was one year and 100 patients having DFU were enrolled. All the pus samples were subjected to the bacterial culture, gram staining, catalase test, oxidase test and antimicrobial susceptibility pattern to various antibiotics for the confirmation of P. aeruginosa. Of 23 positive isolates of P. aeruginosa, 10 were ESBLs positive as detected by double disk diffusion test. The positive ESBL strain shows an increase of ≥5mm in the zone of inhibition of the combination discs in comparison to the alone ceftazidime disc.

Results: The ESBLs positive strains were also tested for TEM-1, SHV-1, PER-1, and VEB-1, where: (07/10) strains carried SHV-1, (05/10) strains were positive for TEM-1, while none of the isolates were PCR-positive for PER-1 and VEB-1.

Conclusion: The findings of the current study show a difference in the pattern of ESBL genes compared to that of other such endeavors. The present study also warrants the PCR-based detection of the type of ESBL as a potential factor to consider in deciding the therapeutic strategy at any point during the treatment.

Keywords: Diabetic foot infection, Pseudomonas aeruginosa, resistance genes, beta-lactamases, ESBL, MDR.

[1]
a)Viswanathan, V.; Jasmine, J.J.; Snehalatha, C.; Ramachandran, A. Prevalence of pathogens in diabetic foot infection in South Indian type 2 diabetic patients. J. Assoc. Physicians India, 2002, 50, 1013-1016.
b)Dowd, S.E.; Wolcott, R.D.; Sun, Y.; McKeehan, T.; Smith, E.; Rhoads, D. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One, 2008, 3(10), e3326.
[2]
Aloush, V.; Navon-Venezia, S.; Seigman-Igra, Y.; Cabili, S.; Carmeli, Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob. Agents Chemother., 2006, 50(1), 43-48.
[3]
Falagas, M.E.; Kopterides, P. Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: a systematic review of the literature. J. Hosp. Infect., 2006, 64(1), 7-15.
[4]
a)Moya, B.; Dötsch, A.; Juan, C.; Blázquez, J.; Zamorano, L.; Haussler, S.; Oliver, A. β-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog., 2009, 5(3), e1000353.
b)Borgianni, L.; Prandi, S.; Salden, L.; Santella, G.; Hanson, N.D.; Rossolini, G.M.; Docquier, J-D. Genetic context and biochemical characterization of the IMP-18 metallo-β-lactamase identified in a Pseudomonas aeruginosa isolate from the United States. Antimicrob. Agents Chemother., 2011, 55(1), 140-145.
[5]
Jabeen, K.; Zafar, A.; Hasan, R. Frequency and sensitivity pattern of Extended Spectrum beta Lactamase producing isolates in a tertiary care hospital laboratory of Pakistan. J. Pak. Med. Assoc., 2005, 55(10), 436-439.
[6]
a)Bush, K.; Jacoby, G.A.; Medeiros, A.A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother., 1995, 39(6), 1211-1233.
b)Jacoby, G.A.; Medeiros, A.A. More extended-spectrum beta-lactamases. Antimicrob. Agents Chemother., 1991, 35(9), 1697-1704.
[7]
Aamir, A.H.; Nasir, A.; Jadoon, M.Z.; Mehmood, K.; Ali, S.S. Diabetic foot infections and their management in a tertiary care hospital. J. Ayub Med. Coll. Abbottabad, 2011, 23(1), 58-62.
[8]
Wikler, M.A. Performance standards for antimicrobial susceptibility testing: Sixteenth informational supplement; Clinical and Laboratory Standards Institute, Vol. 26, 2006.
[9]
a)Vahdani, M.; Azimi, L.; Asghari, B.; Bazmi, F.; Rastegar Lari, A. Phenotypic screening of extended-spectrum ß-lactamase and metallo-ß-lactamase in multidrug-resistant Pseudomonas aeruginosa from infected burns. Ann. Burns Fire Disasters, 2012, 25(2), 78-81.
b)Dalela, G. Prevalence of extended spectrum beta lactamase (ESBL) producers among gram negative bacilli from various clinical isolates in a tertiary care hospital at Jhalawar, Rajasthan, India. J. Clin. Diagn. Res., 2012, 6(2), 182-187.
[10]
Alikhani, M.Y.; Karimi Tabar, Z.; Mihani, F.; Kalantar, E.; Karami, P.; Sadeghi, M.; Ahdi Khosroshahi, S.; Farajnia, S. Antimicrobial resistance patterns and prevalence of blaPER-1 and blaVEB-1 genes among ESBL-producing Pseudomonas aeruginosa isolates in West of Iran. Jundishapur J. Microbiol., 2014, 7(1), e8888.
[11]
Ferreira, C.M.; Ferreira, W.A.; Almeida, N.C.O.S.; Naveca, F.G.; Barbosa, Md. Extended-spectrum beta-lactamase-producing bacteria isolated from hematologic patients in Manaus, State of Amazonas, Brazil. Braz. J. Microbiol., 2011, 42(3), 1076-1084.
[12]
Yang, X.; Xing, B.; Liang, C.; Ye, Z.; Zhang, Y. Prevalence and fluoroquinolone resistance of pseudomonas aeruginosa in a hospital of South China. Int. J. Clin. Exp. Med., 2015, 8(1), 1386-1390.
[13]
Sivanmaliappan, T.S.; Sevanan, M. Antimicrobial susceptibility patterns of Pseudomonas aeruginosa from diabetes patients with foot ulcers. Int. J. Food Microbiol., 2011, 2011, 605195.
[14]
Shanmugam, P.M.J.; Susan, S.L. The bacteriology of diabetic foot ulcers, with a special reference to multidrug resistant strains. J. Clin. Diagn. Res., 2013, 7(3), 441-445.
[15]
a)Zowawi, H.M.; Balkhy, H.H.; Walsh, T.R.; Paterson, D.L. β-Lactamase production in key gram-negative pathogen isolates from the Arabian Peninsula. Clin. Microbiol. Rev., 2013, 26(3), 361-380.
b)Lim, K-T.; Yasin, R.M.; Yeo, C-C.; Puthucheary, S-D.; Balan, G.; Maning, N.; Wahab, Z.A.; Ismail, N.; Tan, E-A.; Mustaffa, A.; Thong, K.L. Genetic fingerprinting and antimicrobial susceptibility profiles of Pseudomonas aeruginosa hospital isolates in Malaysia. J. Microbiol. Immunol. Infect., 2009, 42(3), 197-209.
c)Tavajjohi, Z.; Moniri, R.; Khorshidi, A. Detection and characterization of multidrug resistance and extended-spectrum-beta-lactamase-producing (ESBLS) Pseudomonas aeruginosa isolates in teaching hospital. Afr. J. Microbiol. Res., 2011, 5(20), 3223-3228.
d)Woodford, N.; Zhang, J.; Kaufmann, M.E.; Yarde, S. Tomas, Mdel.M.; Faris, C.; Vardhan, M.S.; Dawson, S.; Cotterill, S.L.; Livermore, D.M. Detection of Pseudomonas aeruginosa isolates producing VEB-type extended-spectrum β-lactamases in the United Kingdom. J. Antimicrob. Chemother., 2008, 62(6), 1265-1268.
[16]
Rahman, H.; Naeem, M.; Khan, I.; Khan, J.; Haroon, M.; Bari, F.; Ullah, R.; Qasim, M. Molecular prevalence and antibiotics resistance pattern of class A bla CTX-M-1 and bla TEM-1 beta lactamases in uropathogenic Escherichia coli isolates from Pakistan. Turk. J. Med. Sci., 2016, 46(3), 897-902.
[17]
Ullah, F.; Malik, S.; Ahmed, J. Antibiotic susceptibility pattern and ESBL prevalence in nosocomial Escherichia coli from urinary tract infections in Pakistan. Afr. J. Biotechnol., 2009, 8(16), 3921-3926.
[18]
Hussain, M.; Hasan, F.; Shah, A.A.; Hameed, A.; Jung, M.; Rayamajhi, N.; Cha, S-B.; Yoo, H.S. Prevalence of class A and AmpC β-lactamases in clinical Escherichia coli isolates from Pakistan Institute of Medical Science, Islamabad, Pakistan. Jpn. J. Infect. Dis., 2011, 64(3), 249-252.
[19]
Ullah, F.; Malik, S.A.; Ahmed, J. Antimicrobial susceptibility pattern and ESBL prevalence in Klebsiella pneumoniae from urinary tract infections in the North-West of Pakistan. Afr. J. Microbiol. Res., 2009, 3(11), 676-680.
[20]
Latifpour, M.; Gholipour, A.; Damavandi, M.S. Prevalence of Extended-Spectrum Beta-Lactamase-Producing Klebsiella pneumoniae Isolates in Nosocomial and Community-Acquired Urinary Tract Infections. Jundishapur J. Microbiol., 2016, 9(3), e31179.
[21]
Vahaboglu, H.; Oztürk, R.; Aygün, G.; Coşkunkan, F.; Yaman, A.; Kaygusuz, A.; Leblebicioglu, H.; Balik, I.; Aydin, K.; Otkun, M. Widespread detection of PER-1-type extended-spectrum beta-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob. Agents Chemother., 1997, 41(10), 2265-2269.
[22]
Yong, D.; Shin, J.H.; Kim, S.; Lim, Y.; Yum, J.H.; Lee, K.; Chong, Y.; Bauernfeind, A. High prevalence of PER-1 extended-spectrum β-lactamase-producing Acinetobacter spp. in Korea. Antimicrob. Agents Chemother., 2003, 47(5), 1749-1751.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 19
ISSUE: 4
Year: 2019
Page: [443 - 448]
Pages: 6
DOI: 10.2174/1871530319666181128095753
Price: $65

Article Metrics

PDF: 29
HTML: 2

Special-new-year-discount