Inhibition of the ATPase Domain of Human Topoisomerase IIa on HepG2 Cells by 1, 2-benzenedicarboxylic Acid, Mono (2-ethylhexyl) Ester: Molecular Docking and Dynamics Simulations

Author(s): Jemimah Naine Selvakumar, Subathra Devi Chandrasekaran*, George Priya C. Doss, Thirumal D. Kumar.

Journal Name: Current Cancer Drug Targets

Volume 19 , Issue 6 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: The major attention has been received by the natural products in the prevention of diseases due to their pharmacological role.

Objective: The major focus of the study was to search for highly potential anti-cancer compounds from marine Streptomyces sp. VITJS4 (NCIM No. 5574).

Methods: Cytotoxic assay was examined by MTT assay on HepG2 cells. Bioassay-guided fractionation of the ethyl acetate extract from the fermented broth led to the isolation of the compound. The lead compound structure was elucidated by combined NMR and MS analysis, and the absolute configuration was assigned by extensive spectroscopic analysis.

Results: On the basis of spectroscopic data, the compound was identified as 1, 2 benzenedicarboxylic acid, mono 2-ethylhexyl (BMEH). The compound exhibited in vitro anticancer potential against liver (HepG2) cancer cells. Based on the flow cytometric analysis, it was evident that the BMEH was also effective in arresting the cell cycle at G1 phase. Further, the Western blotting analysis confirmed the down-regulation of Bcl-2 family proteins, and activation of caspase-9 and 3. The molecular docking and dynamics simulation were performed to reveal the activity of the compound over a time period of 10ns. From the molecular dynamics studies, it was found that the stability and compactness were attained by the protein by means of the compound interaction.

Conclusion: This study highlights our collaborative efforts to ascertain lead molecules from marine actinomycete. This is the first and foremost report to prove the mechanistic studies of the purified compound 1, 2-benzene dicarboxylic acid, mono(2-ethylhexyl) ester isolated from marine Streptomyces sp.VITJS4 against HepG2 cells.

Keywords: Marine actinomycetes, biomedicine, anti-cancer, caspase, apoptosis, human topoisomerase.

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65, 87-108.
[2]
Grabley, S.; Thiericke, R. Bioactive agents from natural sources: trends in discovery and application. Adv. Biochem. Eng. Biotechnol., 1999, 64, 101-154.
[3]
Maluccio, M.; Covey, A. Recent progress in understanding, diagnosing, and treating hepatocellular carcinoma. Cancer J. Clin, 2012, 62, 394-399.
[4]
Jemal, A.F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin., 2011, 61, 69-90.
[5]
Newman, D.J.; Cragg, G.M. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod., 2004, 67(8), 1216-1238.
[6]
Al-Bari, M.A.A.; Bhuiyan, M.S.A.; Flores, M.E.; Petrosyan, P.; Garcia-Varela, M.; Islam, M.A. Streptomyces bangladeshensis sp. nov., isolated from soil, which produces bis-(2- ethylhexyl) phthalate. Int. J. Syst. Evol. Microbiol., 2005, 55, 1973-1977.
[7]
Choudury, M.A.; Rahman, M.A.A.; Gafur, M.A. In vitro Antibacterial and Cytotoxic Activities of a Brown Antibiotic Metabolite from a Strain of Actinomycetes. J. Med. Sci, 2001, 1, 206-208.
[8]
Jemimah Naine, S.; Mohanasrinivasan, V.; Subathra Devi, C. Novel anticancer compounds from marine actinomycetes. J. Pharm. Res., 2011, 4(4), 1285-1287.
[9]
Zhang, L.; An, R.; Wang, J.; Sun, N.; Zhang, S.; Hu, J.; Kuai, J. Exploring novel bioactive compounds from marine microbes. Curr. Opin. Microbiol., 2005, 8(3), 276-281.
[10]
Kwon, H.C.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Marinomycins A-D. Antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus Marinispora. J. Am. Chem. Soc., 2006, 128, 1622-1632.
[11]
McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol., 2013, 5(4)a008656
[12]
Wang, G.H.; Chou, T.H.; Lin, R.J.; Sheu, J.H.; Wang, S.H.; Liang, C.H. Cytotoxic effect of the genus Sinularia extracts on human SCC25 and HaCaT cells. J. Toxicol., 2009, 2019(1), 634-868.
[13]
Syed Abdul Rahman, S.N.; Abdul Wahab, N. AbdMalek, S.N. In Vitro morphological assessment of apoptosis induced by antiproliferative constituents from the rhizomes of curcuma zedoaria. Evid. Based Complement. Alternat. Med., 2013, 25, 7108.
[14]
Ehsani, M.; Zabihi, E.; Gharouee, H. A comparison between cytotoxicity induced by two resin based sealers (2Seal and AH Plus) in Saos-2 and MG-63 cell lines. Int. J. Mol. Cell. Med., 2012, 1, 197-202.
[15]
Sumitha, G.; Rosamma, P. Antagonistic activity of marine actinomycetes collected from India EEZ. 7th. Asia. Pacific Marine Biotechnology Conference, Kochi, India2006, pp. 77-78.
[16]
Duraipandiyan, V.; Sasi, A.H.; Islam, V.H.; Valanarasu, M.; Ignacimuthu, S. Antimicrobial properties of actinomycetes from the soil of Himalaya. J. Med. Mycol, 2010, 2, 15-20.
[17]
Kalinina, N.; Agrotis, A.; Antropova, Y.; Ilyinskaya, O.; Smirnov, V.; Tararak, E.; Bobik, A. Smad expression in human atherosclerotic lesions: evidence for impaired TGF-beta/Smadsignaling in smooth muscle cells of fibrofatty lesions. Arterioscler. Thromb. Vasc. Biol., 2004, 24(8), 1391-1396.
[18]
Pozarowski, P.; Huang, X.; Halicka, D.H.; Lee, B.; Johnson, G.; Darzynkiewicz, Z. Interactions of fluorochrome-labeled caspase inhibitors with apoptotic cells: a caution in data interpretation. Cytometry A, 2003, 55, 50-60.
[19]
Sandra, F.; Degli Esposti, M.; Ndebele, K.; Gona, P.; Knight, D.; Rosenquist, M.; Khosravi-Far, R. Tumor necrosis factorrelatedapoptosis-inducing ligand alters mitochondrial membrane lipids. Cancer Res., 2005, 65(18), 8286-8297.
[20]
Cavalieri, E.; Mariotto, S.; Fabrizi, C.; de Prati, A.C.; Gottardo, R.; Leone, S.; Berra, L.V.; Lauro, G.M.; Ciampa, A.R.; Suzuki, H. Alpha- Bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells. Biochem. Biophys, 2012, 315(3), 589-594.
[21]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[22]
Naine, S.J.; Devi, C.S.; Mohanasrinivasan, V.; George Priya Doss, C. Thirumal kumar, D. Binding and molecular dynamic studies of sesquiterpenes (2R-acetomethyl-1,3,3-trimethyl-4t-(3-methyl-2- butten-1-yl)-1t-cyclohexanol) derived from marine Streptomyces sp.VITJS8 as potential anticancer agent. Appl. Microbiol. Biotechnol., 2016, 100(6), 2869-2882.
[23]
Kumari, R.; Kumar, R. Open source drug discovery consortium, A. Lynn g_MM-PBSA - A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54, 1951-1962.
[24]
Drwal, M.N.; Banerjee, P.; Dunkel, M.; Wettig, M.R.; Preissner, R. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res., 2014, 42, 53-58.
[25]
Kannabiran, K.; Mani, A.; Jasmine, S. Cytotoxic activity of bioactive compound 1, 2- benzene dicarboxylic acid, mono 2- ethylhexyl ester extracted from a marine derived Streptomyces sp. VITSJK8. Int. J. Mol. Cell. Med., 2014, 3(4), 246-254.
[26]
Suzuki, H.; Ohnishi, Y.; Furusho, Y.; Sakuda, S.; Horinouchi, S. Novel benzene ring biosynthesis from C(3) and C(4) primary metabolites by two enzymes. J. Biol. Chem., 2006, 281(48), 36944-36951.
[27]
Sultan, M.Z; Khatune, N.A.; Sathi, Z.S.; Bhuiyan, S.A.M.D.; Sadik, G.M.; Choudury, M.A.; Gafur, M.A.; Rahman, A.A.M.D. In vitro antibacterial activity of an active metabolite isolated from streptomyces species. Biotechnol. J, 2002, 1(2 SPPL 4). , 100-107.
[28]
Sivasubramaniani, R.; Brindha, P. In- vitro cytotoxic, antioxidant and GC-MS studies on centratherumpunctatumcass. Int. J. Pharma Sci., 2011, 5(3), 364-367.
[29]
Mavar, M.H.; Haddad Pieters, M.; Bacceli, C.; Penge, A.; Quetin, L.J. Anti-inflammatory compounds from leaves and root bark of Alchorneacordifolia (Schum and Thonn.) Muell. Arg. J. Ethnopharmacol, 2008, 115, 25-29.
[30]
Syeda, F.A. Habib Ur Rehman.; Choudahry, M.I.; Atta Ur, Rahman. Gas chromatography-mass spectrometry (GC-MS) analysis of petroleum ether extract (oil) and bioassays of crude extract of Iris Germanica. Int. J. Genet. Mol. Biol., 2011, 3(7), 95-100.
[31]
Balachandran, C.; Lakshmi, R.S.; Duraipandiyan, V.; Ignacimuthu, S. Antimicrobial activity of Streptomyces sp. (ERI-CPDA-1) isolated from oil contaminated soil from Chennai, India. Bioresour. Technol., 2012, 129.
[32]
Velmurugan, P.; Kamaraj, M.; Prema, D. Phytochemical constituents of CadabaTrifoliata Roxb. root extract. Int. J. Phytomed., 2010, 2, 379-384.
[33]
Li, Y.; Lin, Z.; Zhao, M.; Xu, T.; Wang, C.; Xia, H.; Wang, H.; Zhu, B. Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells. Int. J. Nanomed, 2016, 11, 3065-3076.
[34]
Guo, M.; Li, Y.; Lin, Z. Surface decoration of selenium nanoparticles with curcumin induced HepG2 cell apoptosis through ROS mediated p53 and AKT signaling pathways. RSC Advances, 2017, 7, 52456-52464.
[35]
Zhu, B.; Li, Y.; Lin, Z.; Zhao, M.; Xu, T.; Wang, C.; Deng, N. Silver nanoparticles induce HePG-2 Cells apoptosis through ROSmediated signaling pathways. Nanoscale Res. Lett., 2016, 11(1), 198.
[36]
Krishnan, K.; Mani, A.; Jasmine, S. Cytotoxic activity of bioactive compound 1, 2- benzene dicarboxylic acid, mono 2- ethylhexyl ester extracted from a marine derived streptomyces sp. VITSJK8. Int. J. Mol. Cell. Meds., 2014, 3(4), 246-254.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 6
Year: 2019
Page: [495 - 503]
Pages: 9
DOI: 10.2174/1568009619666181127122230
Price: $58

Article Metrics

PDF: 26
HTML: 2
EPUB: 1
PRC: 1