Synthesis of Benzo[d]imidazo[2,1-b]thiazole-Propenone Conjugates as Cytotoxic and Apoptotic Inducing Agents

Author(s): Siddiq P. Shaik, Telukutta S. Reddy, Satish Sunkari, Ayinampudi V.S. Rao, Korrapati S. Babu, Suresh K. Bhargava, Ahmed Kamal*.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry

Volume 19 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Cancer can be considered as a disease in which normal cells start behaving badly, multiplying uncontrollably, ignoring signals to stop and accumulating to form a mass that is generally termed as a tumor. Apoptosis or programmed cell death is a physiological process that enables organisms to control their cell numbers in many developmental and physiological settings and to eliminate unwanted cells and it plays essential role in chemotherapy-induced tumor-cell killing. The correct balance between apoptosis and inhibition of apoptosis is important in animal development as well as in tissue homeostasis. The aim of this paper is to introduce the readers about the design strategy and synthesis of effective cytotoxic and apoptotic inducing agents based on benzo[d]imidazo[2,1-b]thiazole scaffold.

Methods: Benzo[d]imidazo[2,1-b]thiazole-propenone conjugates were synthesized by the condensation of 7- methoxy-2-(aryl)benzo[d]imidazo[2,1-b]thiazol-3-yl)prop-2-yn-1-ones with aryl/hetero aryl amines in ethanol at room temperature. These in turn were obtained from 7-methoxy-2-(aryl)benzo[d]imidazo[2,1-b]thiazole-3- carbaldehydes on treatment with ethynylmagnesium bromide followed by oxidation.

Results: 3-Arylaminopropenone linked 2-arylbenzo[d]imidazo[2,1-b]thiazole conjugates prepared in this investigation exhibited significant cytotoxic activity and arrested HeLa cancer cells in G1 phase. The treatment of the conjugate led to 40% of loss of mitochondrial membrane potential (DΨm) in HeLa cells and 4 fold increase in the levels of reactive oxygen species (ROS). In addition, it induces apoptosis in HeLa cells, this was examined by the wound healing assay, Actin filaments and Hoechst staining assay.

Conclusion: The encouraging biological profile exhibited by these 3-arylaminopropenone 2-aryl linked benzo[d]imidazo[2,1-b]thiazole conjugates demonstrate that they have the potential to be developed as a lead by further structural modifications to obtain potential chemotherapeutic agents that are likely to target the HeLa cancer cells.

Keywords: Benzo[d]imidazo[2, 1-b]thiazole, cytotoxicity, apoptosis, mitochondrial membrane depolarization, ROS.

[1]
Darnell, J.E. Transcription factors as targets for cancer therapy. J. Nat. Rev. Cancer, 2002, 2, 740.
[2]
Kibria, G.; Hatakeyama, H.; Harashima, H. Cancer multidrug resistance: Mechanisms involved and strategies for circumvention using a drug delivery system. Arch. Pharm. Res., 2014, 37, 4.
[3]
Gibbs, J.B. Mechanism-based target identification and drug discovery in cancer research. Science, 2000, 287, 1969.
[4]
Reed, J.C.; Tomaselli, K.J. Drug discovery opportunities from apoptosis research. Curr. Opin. Biotechno., 2000, 11, 586.
[5]
Fischer, U.; Schulze-Osthoff, K. Apoptosis-based therapies and drug targets. Cell Death Differ., 2005, 942.
[6]
Mollinedo, F.; Gajate, C. Microtubules, microtubule-interfering agents and apoptosis., 2003, 8, 413.
[7]
Simoni, D.; Tolomeo, M. Retinoids, apoptosis and cancer. Curr. Pharm. Des., 2001, 7, 1823.
[8]
Fesik, S.W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer, 2005, 5, 876.
[9]
Zhang, H.Z.; Kasibhatla, S.; Kuemmerle, J.; Kemnitzer, W.; Ollis-Mason, K.; Qiu, L.; Crogan-Grundy, C.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery and structure-activity relationship of 3-aryl-5-aryl-1, 2, 4-oxadiazoles as a new series of apoptosis inducers and potential anticancer agents. J. Med. Chem., 2005, 48, 5215.
[10]
Porretta, G.C.; Cerreto, F.; Fioravanti, R.; Scalzo, M.; Fischetti, M.; Riccardi, F.; de-Joannon, C.A.; de-Feo, G.; Mazzanti, G.; Tolu, L. Green Route to the 2,6-Disubstituted Imidazo[2,1-b]-1,3,4-Thiadiazoles by the cyclocondensation of α-bromoacetophenone derivative and 1,3,4- Thiadiazoles using ionic liquids. Farmaco, Sci., 1988, 43, 15.
[11]
Zuliani, V.; Fantini, M.; Nigam, A.; Stables, J.P.; Patel, M.K.; Rivara, M. Anticonvulsant activity of 2,4(1H)-diarylimidazoles in mice and rats acute seizure models. Bioorg. Med. Chem., 2010, 18, 7957.
[12]
Fantini, M.; Rivara, M.; Zuliani, V.; Kalmar, C.L.; Vacondio, F.; Silva, C.; Baheti, A.R.; Singh, N.; Merrick, E.C.; Katari, R.S.; Cocconcelli, G.; Ghiron, C.; Patel, M.K. 2,4(5)-Diarylimidazoles as inhibitors of hNaV1.2 sodium channels: Pharmacological evaluation and structure-property relationships. Bioorg. Med. Chem., 2009, 17, 3642.
[13]
(a) Tuyen, T.N.; Sin, K.S.; Kim, H.P.; Park, H. Synthesis and antiinflammatory activity of 1,5-Diarylimidazoles. Arch. Pharmacol. Res., 2005, 28, 1013.
(b) Khanna, I.K.; Yu, Y.; Huff, R.M.; Weier, R.M.; Xu, X.; Koszyk, F.J.; Collins, P.W.; Cogburn, J.N.; Isakson, P.C.; Koboldt, C.M.; Masferrer, J.L.; Perkins, W.E.; Seibert, K.; Veenhuizen, A.W.; Yuan, J.; Yang, D.C.; Zhang, Y.Y. Selective cyclooxygenase-2 Inhibitors: Heteroaryl modified 1,2-Diarylimidazoles are potent, orally activeanti-inflammatory agents. J. Med. Chem., 2000, 43, 3168.
[14]
Plummer, C.W.; Finke, P.E.; Mills, S.G.; Wang, J.; Tong, X.; Doss, G.A.; Fong, T.M.; Lao, J.Z.; Schaeffer, M.T.; Chen, J.; Shen, C.P.; Stribling, D.S.; Shearman, L.P.; Strack, A.M.; Van-der-Ploeg, L.H. Design, synthesis and in vitro antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Bioorg. Med. Chem. Lett., 2005, 15, 1441.
[15]
Bellina, F.; Cauteruccio, S.; Di-Fiore, A.; Rossi, R. Regioselective synthesis of 4,5-Diaryl-1-methyl-1H-imidazoles including highly cytotoxic derivatives by Pd-catalyzed direct C-5 arylation of 1-Methyl-1H-imidazole with aryl bromides. Eur. J. Org. Chem., 2008, 32, 5436.
[16]
Bonezzi, K.; Taraboletti, G.; Borsotti, P.; Bellina, F.; Rossi, R.; Giavazzi, R. Vascular disrupting activity of tubulin-binding 1,5-Diaryl-1H-imidazoles. J. Med. Chem., 2009, 52, 7906.
[17]
(a) Schobert, R.; Biersack, B.; Dietrich, A.; Effenberger, K.; Knauer, S.; Mueller, T. 4-(3-Halo/amino-4,5-dimethoxyphenyl)-5-aryloxazoles and -N-methylimidazoles that are cytotoxic against combretastatin a resistant tumor cells and vascular disrupting in a cisplatin resistant germ cell tumor model. J. Med. Chem., 2010, 53, 6595.
(b) Li, W.T.; Hwang, D.R.; Song, J.S.; Chen, C.P.; Chuu, J.J.; Hu, C.B.; Lin, H.L.; Huang, C.L.; Huang, C.Y.; Tseng, H.Y.; Lin, C.C.; Chen, T.W.; Lin, C.H.; Wang, H.S.; Shen, C.C.; Chang, C.M.; Chao, Y.S.; Chen, C.T. Synthesis and biological activities of 2-amino-1-arylidenamino imidazoles as orally active anticancer agents. J. Med. Chem., 2010, 53, 2409.
[18]
(a)Cremlyn, R.J. An Introduction to Organosulfur Chemistry; John Wiley & Sons: Chichester, 1996.
(b) Hulten, J.; Bonham, N.M.; Nillroth, U.; Hansson, T.; Zuccarello, G.; Bouzide, A.; Aaqvist, J.; Classon, B.; Danielson, H. Cyclic HIV-1 protease inhibitors derived from mannitol: synthesis, inhibitory potencies, and computational predictions of binding affinities. J. Med. Chem., 1997, 40, 885.
(c) Dauben, P.; Dodd, R.H. Synthesis of Cyclic sulfonamides via intramolecular copper-catalyzed reaction of unsaturated iminoiodinanes. Org. Lett., 2000, 2, 2327.
(d) Katritzky, A.R.; Wu, J.; Rachwal, S.; Rachwal, B.; Macomber, D.W.; Smith, T.P. Preparation of 6-, 7- and 8-membered sultams by friedel-crafts cyclization of ω-phenylalkanesulfamoyl chlorides. Org Prep Proced, 1992, 24, 463.
(e) Greig, I.R.; Tozer, M.J.; Wright, P.T. Synthesis of cyclic sulfonamides through intramolecular diels−alder reactions. Org. Lett., 2001, 3, 369.
(f) Matthew, D.M.; Joseph, M.D.; Paul, R.H. Synthesis of phosphorus and sulfur heterocycles via ring-closing olefin metathesis. Chem. Rev., 2004, 104, 2239-2258.
(g) Dawson, P.E.; Muir, T.W.; Lewis, C.I.; Kent, S.B.H. Synthesis of proteins by native chemical ligation. Science, 1994, 266, 776.
[19]
(a) Farag, A.M.; Mayhoub, A.S.; Barakat, S.E.; Bayomi, A.H. Synthesis of new N-phenylpyrazole derivatives with potent antimicrobial activity. Bioorg. Med. Chem., 2008, 16, 4569-4578.
(b) Al-Tel, T.H.; Al-Qawasmeh, R.A.; Zaarour, R. Design, synthesis and in vitro antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur. J. Med. Chem., 2011, 46, 1874-1881.
[20]
(a) Furlan, A.; Colombo, F.; Kover, A.; Issaly, N. Identification of new aminoacid amides containing the imidazo[2,1-b]benzothiazol-2-ylphenyl moiety as inhibitors of tumorigenesis by oncogenic Met signalling. Eur. J. Med. Chem., 2012, 47, 239.
(b) Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A. New Antitumor Imidazo[2,1-b]thiazole Guanylhydrazones and Analogues. J. Med. Chem., 2008, 51, 809.
(c) Andreani, A.; Granaiola, M.; Locatelli, A.; Morigi, R. Substituted 3-(5-Imidazo[2,1-b]thiazolylmethylene)-2-indolinones and Analogues: Synthesis, Cytotoxic Activity, and Study of the Mechanism of Action. J. Med. Chem., 2012, 55, 2078.
(d) Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A. Antitumor Activity of New Substituted 3-(5-Imidazo[2,1-b]thiazolylmethylene)-2-indolinones and 3-(5-Imidazo[2,1-b]thiadiazolylmethylene)-2-indolinones: Selectivity against Colon Tumor Cells and Effect on Cell Cycle-Related Events. J. Med. Chem., 2008, 51, 7508.
(e) Trapani, G.; Franco, M.; Latrofa, A.; Reho, A.; Liso, G. Synthesis, in vitro and in vivo cytotoxicity, and prediction of the intestinal absorption of substituted 2-ethoxycarbonyl-imidazo[2,1-b]benzothiazoles. Eur. J. Pharm. Sci., 2001, 14, 209.
[21]
Ager, I.R.; Barnes, A.C.; Danswan, G.W.; Hairsine, P.W. Synthesis and oral antiallergic activity of carboxylic acids derived from imidazo[2,1-c][1,4]benzoxazines, imidazo[1,2-a]quinolines, imidazo [1,2-a]quinoxalines, imidazo[1,2-a]quinoxalinones, pyrrolo[1,2-a]quinoxalinones, pyrrolo[2,3-a]quinoxalinones, and imidazo[2,1-b]benzothiazoles. J. Med. Chem., 1988, 31, 1098.
[22]
Palkar, M.; Noolvi, M.; Sankangoud, R.; Maddi, V. Synthesis and antibacterial activity of a novel series of 2,3-diaryl-substituted-imidazo(2,1-b)-benzothiazole derivatives. Arch. Pharm. Chem. Life Sci, 2010, 343, 353.
[23]
Chao, Q.; Sprankle, K.G.; Grotzfeld, R.M.; Lai, A.G.; Carter, T.A.; Velasco, A.M.; Gunawardane, R.N.; Cramer, M.D.; Gardner, M.F.; James, J.; Zarrinkar, P.P.; Patel, H.K.; Bhagwat, S.S. Identification of N-(5-tert-Butyl-isoxazol-3-yl)-N′-4-[7-(2-morpholin-4-yl-ethoxy) imidazo[2,1 b][1,3]benzothiazol-2-yl]phenylurea Dihydrochloride (AC220), a uniquely potent, selective, and efficacious FMS-Like Tyrosine Kinase-3 (FLT3) inhibitor. J. Med. Chem., 2009, 52, 7808.
[24]
Christodoulou, M.S.; Colombo, F.; Passarella, D.; Ieronimo, G.; Zuco, V.; De-Cesare, M.; Zunino, F. Synthesis and biological evaluation of imidazolo[2,1-b] benzothiazole derivatives, as potential p53 inhibitors. Bioorg. Med. Chem., 2011, 19, 1649-1657.
[25]
(a) Kamal, A.; Sultana, F. JanakiRamaiah, M.; Srikanth, Y.V.V.; Viswanath, A.; Kishore, C.; Sharma, P.; Pushpavalli, S.N.C.V.L.; Addlagatta, A.; Bhadra, M.P. 3-Diarylethyne quinazolinones: A new class of senescene inducers. ChemMedChem, 2012, 7, 292.
(b) Shaik, S.P.; Vishnuvardhan, M.V.P.S.; Sultana, F.; Rao, A.V.S.; Bagul, C.; Bhattacharjee, D.; Kapure, J.S.; Jain, N.; Kamal, A. Design and synthesis of 1,2,3-triazolo linked benzo[d]imidazo[2,1-b]thiazole conjugates as tubulin polymerization inhibitors. Bioorg. Med. Chem., 2017, 25, 3285.
(c) Sultana, F.; Reddy, S.B.; Reddy, G.V.; Naik, V.L.; Ravikumar, A.; Rani, S.R.; Alarafi, A.M.; Kumar, S.H.; Kamal, A. Synthesis of benzo[d]imidazo[2,1-b]thiazole-chalcone conjugates as microtubule targeting and apoptosis inducing agents. Bioorg. Chem., 2018, 76, 1-12.
[26]
Amino, N.; Ideyama, Y.; Yamano, M.; Kuromitsu, S.; Tajinda, K.; Samizu, K.; Matsuhisa, A.; Kudoh, M.; Shibasaki, M. YM-201627: An orally active antitumor agent with selective inhibition of vascular endothelial cell proliferation. Cancer Lett., 2006, 238, 119-127.
[27]
Kumbhare, R.M.; Kumar, K.V.; Ramaiah, M.J.; Dadmal, T.; Pushpavalli, S.N.C.V.L.; Mukhopadhyay, D.; Divya, B.; Devi, A.T.; Kosurkar, U.; Pal-Bhadra, M. Synthesis and biological evaluation of novel Mannich bases of 2-arylimidazo[2,1-b]benzothiazoles as potential anti-cancer agents. Eur. J. Med. Chem., 2011, 46, 4258-4266.
[28]
Shaik, S.P.; Nayak, V.L.; Sultana, F.; Rao, A.V.S.; Shaik, A.B.; Babu, K.S.; Kamal, A. Design and synthesis of imidazo[2,1-b]thiazole linked triazole conjugates: Microtubule-destabilizing agents. Eur. J. Med. Chem., 2017, 126, 36-51.
[29]
(a) Reddy, R.M.V.; Akula, B.; Cosenza, S.C.; Lee, C.M.; Mallireddigari, M.R.; Pallela, V.R.; Subbaiah, D.R.C.V.; Udofa, A.; Reddy, E.P. (Z)-1-Aryl-3-arylamino-2-propen-1-ones, highly active stimulators of tubulin polymerization: synthesis, Structure-Activity Relationship (SAR), tubulin polymerization, and cell growth inhibition studies. J. Med. Chem., 2012, 55, 5174-5187.
(b) Zhu, C.; Zuo, Y.; Wang, R.; Liang, B.; Yue, X.; Wen, G.; Shang, N.; Huang, L.; Chen, Y.; Du, J.; Bu, X. Discovery of potent cytotoxic ortho-aryl chalcones as new scaffold targeting tubulin and mitosis with affinity-based fluorescence. J. Med. Chem., 2014, 57, 6364.
[30]
Botta, M.; Armaroli, S.; Castagnolo, D.; Fontana, G.; Perad, P.; Bombardelli, E. Synthesis and biological evaluation of new taxoids derived from 2-deacetoxytaxinine J. Bioorg. Med. Chem. Lett., 2007, 17, 1579-1583.
[31]
Rodriguez, L.G.; Wu, X.; Guan, J.L. Wound-healing assay. Methods Mol. Biol., 2005, 294, 23.
[32]
Clainche, C.L.; Carlier, M.F. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol. Rev., 2008, 88, 489-513.
[33]
Zhao, Y.; Liu, W.; Zhou, Y.; Zhang, X.; Murphy, P.V.N. -(8-(3-Ethynylphenoxy)octyl-deoxynojirimycin suppresses growth and migration of human lung cancer cells. Bioorg. Med. Chem. Let., 2010, 20, 7540-7543.
[34]
Ly, J.D.; Grubb, D.R.; Lawen, A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis: An update. Apoptosis, 2003, 8, 115-128.
[35]
Emaus, R.K.; Grunwald, R.; Lemasters, J.J. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim. Biophys. Acta, 1986, 850, 436-448.
[36]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8, 579.
[37]
Lebel, C.P.; Ischiropoulos, H.; Bondy, S.C. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol., 1992, 5, 227-231.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 3
Year: 2019
Page: [347 - 355]
Pages: 9
DOI: 10.2174/1871520619666181127112621
Price: $58

Article Metrics

PDF: 17
HTML: 2